Index
All Classes and Interfaces|All Packages|Constant Field Values|Serialized Form
A
- aa - Enum constant in enum class edu.cmu.tetrad.graph.EdgeTypeProbability.EdgeType
-
Arrow-to-arrow
- ABSOLUTE - Enum constant in enum class edu.cmu.tetrad.search.CpdagParentDistancesFromTrue.DistanceType
-
Calculate the absolute distance between the true edge strength and the range of estimated coefficients.
- absoluteValue - Enum constant in enum class edu.cmu.tetrad.search.Lofs.Score
-
The absolute value.
- AbstractAnnotations<T> - Class in edu.cmu.tetrad.annotation
-
Abstract class for annotations.
- AbstractAnnotations(String, Class<T>) - Constructor for class edu.cmu.tetrad.annotation.AbstractAnnotations
-
Constructor.
- AbstractBootstrapAlgorithm - Class in edu.cmu.tetrad.algcomparison.algorithm
-
This is a base class for bootstrap algorithms.
- AbstractNbComponent - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin
-
Abstract NB component.
- AbstractNbComponent(double, double, NbComponent[], int[], String) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.AbstractNbComponent
-
Constructs a new component with the given factor, power, parents, and
- AbstractVariable - Class in edu.cmu.tetrad.data
-
Base class for variable specifications for DataSet.
- ac - Enum constant in enum class edu.cmu.tetrad.graph.EdgeTypeProbability.EdgeType
-
Arrow-to-circle
- active() - Method in class edu.cmu.tetrad.util.DefaultTetradLoggerConfig
-
isActive.
- active() - Method in class edu.cmu.tetrad.util.TetradLogger.EmptyConfig
-
isActive.
- active() - Method in interface edu.cmu.tetrad.util.TetradLoggerConfig
-
States whether the config is active or not.
- ActiveLagGraph - Class in edu.cmu.tetrad.study.gene.tetrad.gene.graph
-
Adds Javabean property change events so that it can be used in a MVC type architecture.
- ActiveLagGraph() - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ActiveLagGraph
-
Creates new ActiveLagGraph
- AD_TREE - Enum constant in enum class edu.cmu.tetrad.search.test.ChiSquareTest.CellTableType
-
The AD tree cell table.
- add(int, DataModel) - Method in class edu.cmu.tetrad.data.DataModelList
-
Adds the given DataModel to the list at the given index.
- add(Algorithm) - Method in class edu.cmu.tetrad.algcomparison.algorithm.Algorithms
-
Adds an algorithm.
- add(Simulation) - Method in class edu.cmu.tetrad.algcomparison.simulation.Simulations
-
Adds an simulation.
- add(Statistic) - Method in class edu.cmu.tetrad.algcomparison.statistic.Statistics
-
Adds a statistic.
- add(IndependenceFact) - Method in class edu.cmu.tetrad.data.IndependenceFacts
-
add.
- add(OutputStream, Level) - Method in class edu.cmu.tetrad.util.LogUtils
-
Adds the given stream to logging.
- ADD - Enum constant in enum class edu.cmu.tetrad.search.work_in_progress.HbsmsBeam.Move.Type
-
Add an edge.
- ADD_COLLIDER - Enum constant in enum class edu.cmu.tetrad.search.work_in_progress.HbsmsBeam.Move.Type
-
Add a collider.
- ADD_ORIGINAL_DATASET - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
ADD_ORIGINAL_DATASET="addOriginalDataset"
- addAll(SepsetMap) - Method in class edu.cmu.tetrad.search.utils.SepsetMap
-
Adds all entries in the given sepset map to the current one.
- addAmbiguousTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.Dag
-
Adds an ambiguous triple to the list of ambiguous triples.
- addAmbiguousTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
addAmbiguousTriple.
- addAmbiguousTriple(Node, Node, Node) - Method in interface edu.cmu.tetrad.graph.Graph
-
addAmbiguousTriple.
- addAmbiguousTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.LagGraph
-
addAmbiguousTriple.
- addAmbiguousTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.SemGraph
-
addAmbiguousTriple.
- addAmbiguousTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Adds an ambiguous triple to the list of ambiguous triples.
- addAmbiguousTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.Underlines
-
addAmbiguousTriple.
- addAttribute(String, Object) - Method in class edu.cmu.tetrad.data.ContinuousVariable
-
addAttribute.
- addAttribute(String, Object) - Method in class edu.cmu.tetrad.data.DiscreteVariable
-
addAttribute.
- addAttribute(String, Object) - Method in class edu.cmu.tetrad.graph.Dag
-
Adds an attribute to the graph.
- addAttribute(String, Object) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
addAttribute.
- addAttribute(String, Object) - Method in interface edu.cmu.tetrad.graph.Graph
-
addAttribute.
- addAttribute(String, Object) - Method in class edu.cmu.tetrad.graph.GraphNode
-
addAttribute.
- addAttribute(String, Object) - Method in class edu.cmu.tetrad.graph.LagGraph
-
addAttribute.
- addAttribute(String, Object) - Method in interface edu.cmu.tetrad.graph.Node
-
addAttribute.
- addAttribute(String, Object) - Method in class edu.cmu.tetrad.graph.SemGraph
-
addAttribute.
- addAttribute(String, Object) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Adds a key-value pair to the attributes map.
- addBidirectedEdge(Node, Node) - Method in class edu.cmu.tetrad.graph.Dag
-
Adds a bidirectional edge between two nodes.
- addBidirectedEdge(Node, Node) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
Adds a bidirected edges <-> to the graph.
- addBidirectedEdge(Node, Node) - Method in interface edu.cmu.tetrad.graph.Graph
-
Adds a bidirected edges <-> to the graph.
- addBidirectedEdge(Node, Node) - Method in class edu.cmu.tetrad.graph.LagGraph
-
Adds a bidirected edges <-> to the graph.
- addBidirectedEdge(Node, Node) - Method in class edu.cmu.tetrad.graph.SemGraph
-
Adds a bidirected edges <-> to the graph.
- addBidirectedEdge(Node, Node) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Adds a bidirected edge between two nodes.
- addCategory(int, int) - Method in class edu.cmu.tetrad.bayes.Proposition
-
addCategory.
- addCollider(Triple) - Method in class edu.cmu.tetrad.search.work_in_progress.GraphChange
-
Add another collider operation to the GraphChange.
- addConditioningVariable(String, double, double) - Method in class edu.cmu.tetrad.data.Histogram
-
Adds a continuous conditioning variables, conditioning on a range of values.
- addConditioningVariable(String, int) - Method in class edu.cmu.tetrad.data.Histogram
-
Adds a discrete conditioning variable, conditioning on a particular value.
- addCounts(int, int, int) - Method in class edu.cmu.tetrad.bayes.CptMapCounts
-
Adds the specified count to the cell count at the given row and column.
- addDirectedEdge(Node, Node) - Method in class edu.cmu.tetrad.graph.Dag
-
Adds a directed edge between two nodes.
- addDirectedEdge(Node, Node) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
Adds a directed edge --> to the graph.
- addDirectedEdge(Node, Node) - Method in interface edu.cmu.tetrad.graph.Graph
-
Adds a directed edge --> to the graph.
- addDirectedEdge(Node, Node) - Method in class edu.cmu.tetrad.graph.LagGraph
-
Adds a directed edge --> to the graph.
- addDirectedEdge(Node, Node) - Method in class edu.cmu.tetrad.graph.SemGraph
-
Adds a directed edge --> to the graph.
- addDirectedEdge(Node, Node) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Adds a directed edge between two nodes to the graph.
- addDottedUnderlineTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.Dag
-
Adds a dotted underline triple to the graph.
- addDottedUnderlineTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
addDottedUnderlineTriple.
- addDottedUnderlineTriple(Node, Node, Node) - Method in interface edu.cmu.tetrad.graph.Graph
-
addDottedUnderlineTriple.
- addDottedUnderlineTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.LagGraph
-
addDottedUnderlineTriple.
- addDottedUnderlineTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.SemGraph
-
addDottedUnderlineTriple.
- addDottedUnderlineTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Adds a triple with dotted underline to the list of triples.
- addDottedUnderlineTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.Underlines
-
addDottedUnderlineTriple.
- addEdge(Edge) - Method in class edu.cmu.tetrad.graph.Dag
-
Adds a directed edge to the Directed Acyclic Graph (DAG).
- addEdge(Edge) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
Adds the specified edge to the graph, provided it is not already in the graph.
- addEdge(Edge) - Method in interface edu.cmu.tetrad.graph.Graph
-
Adds the specified edge to the graph, provided it is not already in the graph.
- addEdge(Edge) - Method in class edu.cmu.tetrad.graph.LagGraph
-
Adds the specified edge to the graph, provided it is not already in the graph.
- addEdge(Edge) - Method in class edu.cmu.tetrad.graph.SemGraph
-
Adds the specified edge to the graph, provided it is not already in the graph.
- addEdge(Edge) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Adds a directed edge to the graph.
- addEdge(String, LaggedFactor) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ActiveLagGraph
-
Adds an edge to the given factor at lag 0 from the specified lagged factor.
- addEdge(String, LaggedFactor) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ManualLagGraph
-
Adds an edge to the given factor at lag 0 from the specified lagged factor.
- addEdge(String, LaggedFactor) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BasicLagGraph
-
Adds an edge to the given factor at lag 0 from the specified lagged factor.
- addEdge(String, LaggedFactor) - Method in interface edu.cmu.tetrad.study.gene.tetrad.gene.history.LagGraph
-
Adds an edge to the given factor at lag 0 from the specified lagged factor.
- addEdgeSpecializationMarkup(Graph) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Adds markups for edge specializations for the edges in the given graph.
- addEdgeTypeProbability(EdgeTypeProbability) - Method in class edu.cmu.tetrad.graph.Edge
-
addEdgeTypeProbability.
- adDep() - Method in record class edu.cmu.tetrad.search.MarkovCheck.MarkovCheckRecord
-
Returns the value of the
adDep
record component. - addFactor(String) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ActiveLagGraph
-
Adds a factor to the graph.
- addFactor(String) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ManualLagGraph
-
Adds a factor to the graph.
- addFactor(String) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BasicLagGraph
-
Adds a factor to the graph.
- addFactor(String) - Method in interface edu.cmu.tetrad.study.gene.tetrad.gene.history.LagGraph
-
Adds a factor to the graph.
- addFactors(String, int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ActiveLagGraph
-
Returns a string representation of the graph, indicating for each factor which lagged factors map into it.
- addFactors(String, int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ManualLagGraph
-
Returns a string representation of the graph, indicating for each factor which lagged factors map into it.
- addFactors(String, int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BasicLagGraph
-
Returns a string representation of the graph, indicating for each factor which lagged factors map into it.
- addFactors(String, int) - Method in interface edu.cmu.tetrad.study.gene.tetrad.gene.history.LagGraph
-
Returns a string representation of the graph, indicating for each factor which lagged factors map into it.
- addForbiddenReverseEdgesForDirectedEdges(Graph, Knowledge) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Adds forbidden reverse edges for directed edges in the given graph based on the knowledge.
- addIndex(DataSet) - Static method in class edu.cmu.tetrad.search.utils.TsUtils
-
Creates new time series dataset from the given one with index variable (e.g., time)
- addKnowledgeGroup(KnowledgeGroup) - Method in class edu.cmu.tetrad.data.Knowledge
-
Adds a knowledge group.
- addMissingData(DataSet, double[]) - Static method in class edu.cmu.tetrad.data.DataTransforms
-
Adds missing data values to cases in accordance with probabilities specified in a double array which has as many elements as there are columns in the input dataset.
- addNode(Node) - Method in class edu.cmu.tetrad.graph.Dag
-
Adds a Node to the graph.
- addNode(Node) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
Adds a node to the graph.
- addNode(Node) - Method in interface edu.cmu.tetrad.graph.Graph
-
Adds a node to the graph.
- addNode(Node) - Method in class edu.cmu.tetrad.graph.LagGraph
-
Adds a node to the graph.
- addNode(Node) - Method in class edu.cmu.tetrad.graph.SemGraph
-
Adds a node to the graph.
- addNode(Node) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Adds a node to the graph.
- addNonCollider(Triple) - Method in class edu.cmu.tetrad.search.work_in_progress.GraphChange
-
Add another non-collider operation to the GraphChange.
- addNondirectedEdge(Node, Node) - Method in class edu.cmu.tetrad.graph.Dag
-
Adds a nondirected edge between two nodes in the graph.
- addNondirectedEdge(Node, Node) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
Adds a nondirected edges o-o to the graph.
- addNondirectedEdge(Node, Node) - Method in interface edu.cmu.tetrad.graph.Graph
-
Adds a nondirected edges o-o to the graph.
- addNondirectedEdge(Node, Node) - Method in class edu.cmu.tetrad.graph.LagGraph
-
Adds a nondirected edges o-o to the graph.
- addNondirectedEdge(Node, Node) - Method in class edu.cmu.tetrad.graph.SemGraph
-
Adds a nondirected edges o-o to the graph.
- addNondirectedEdge(Node, Node) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Adds a nondirected edge between two nodes.
- addObserver(ModelObserver) - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Adds a ModelObserver to the list of observers.
- addOrient(Node, Node) - Method in class edu.cmu.tetrad.search.work_in_progress.GraphChange
-
Add another orient operation to the GraphChange.
- addOutputStream(OutputStream) - Method in class edu.cmu.tetrad.util.TetradLogger
-
Sets the
OutputStream
that is used to log matters out to. - addParent(NbComponent, int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.AbstractNbComponent
-
Returns the parents of this component.
- addParent(NbComponent, int) - Method in interface edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.NbComponent
-
Returns the parents of this component.
- addPartiallyOrientedEdge(Node, Node) - Method in class edu.cmu.tetrad.graph.Dag
-
Adds a partially oriented edge between two nodes.
- addPartiallyOrientedEdge(Node, Node) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
Adds a partially oriented edge o-> to the graph.
- addPartiallyOrientedEdge(Node, Node) - Method in interface edu.cmu.tetrad.graph.Graph
-
Adds a partially oriented edge o-> to the graph.
- addPartiallyOrientedEdge(Node, Node) - Method in class edu.cmu.tetrad.graph.LagGraph
-
Adds a partially oriented edge o-> to the graph.
- addPartiallyOrientedEdge(Node, Node) - Method in class edu.cmu.tetrad.graph.SemGraph
-
Adds a partially oriented edge o-> to the graph.
- addPartiallyOrientedEdge(Node, Node) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Adds a partially oriented edge between two given nodes.
- addProperty(Edge.Property) - Method in class edu.cmu.tetrad.graph.Edge
-
addProperty.
- addProperty(Edge.Property) - Method in class edu.cmu.tetrad.graph.EdgeTypeProbability
-
addProperty.
- addPropertyChangeListener(PropertyChangeListener) - Method in class edu.cmu.tetrad.data.ContinuousVariable
-
Adds a property change listener.
- addPropertyChangeListener(PropertyChangeListener) - Method in class edu.cmu.tetrad.data.DiscreteVariable
-
Adds a property change listener.
- addPropertyChangeListener(PropertyChangeListener) - Method in class edu.cmu.tetrad.graph.Dag
-
Adds a PropertyChangeListener to the underlying graph object.
- addPropertyChangeListener(PropertyChangeListener) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
Adds a PropertyChangeListener to the graph.
- addPropertyChangeListener(PropertyChangeListener) - Method in interface edu.cmu.tetrad.graph.Graph
-
Adds a PropertyChangeListener to the graph.
- addPropertyChangeListener(PropertyChangeListener) - Method in class edu.cmu.tetrad.graph.GraphNode
-
Adds a property change listener.
- addPropertyChangeListener(PropertyChangeListener) - Method in class edu.cmu.tetrad.graph.LagGraph
-
Adds a PropertyChangeListener to the graph.
- addPropertyChangeListener(PropertyChangeListener) - Method in interface edu.cmu.tetrad.graph.Node
-
Adds a property change listener.
- addPropertyChangeListener(PropertyChangeListener) - Method in class edu.cmu.tetrad.graph.SemGraph
-
Adds a PropertyChangeListener to the graph.
- addPropertyChangeListener(PropertyChangeListener) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Adds a
PropertyChangeListener
to the list of listeners that are notified when a bound property is changed. - addPropertyChangeListener(PropertyChangeListener) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ActiveLagGraph
-
Registers a listener to events concerning the lag graph.
- addRecord(Node, SortedSet<Node>, SortedSet<Node>, SortedSet<Node>) - Method in class edu.cmu.tetrad.search.work_in_progress.DMSearch.LatentStructure
-
addRecord.
- addRemove(Edge) - Method in class edu.cmu.tetrad.search.work_in_progress.GraphChange
-
Add another remove operation to the GraphChange.
- addRow(List<? extends V>) - Method in interface edu.pitt.isp.sverchkov.data.DataTable
-
addRow.
- addRow(List<? extends V>) - Method in class edu.pitt.isp.sverchkov.data.DataTableImpl
-
addRow.
- addSimilarEdges(Node, Node) - Method in class edu.cmu.tetrad.search.SvarFges
-
Adds similar edges between two nodes.
- addTetradLoggerConfig(Class<?>, TetradLoggerConfig) - Method in class edu.cmu.tetrad.util.TetradLogger
-
Adds the given
TetradLoggerConfig
to the logger, so that it can be used throughout the life of the application. - addTetradLoggerListener(TetradLoggerListener) - Method in class edu.cmu.tetrad.util.TetradLogger
-
Adds a TetradLoggerListener to the TetradLogger.
- addToCluster(int, String) - Method in class edu.cmu.tetrad.data.Clusters
-
Adds the given variable to the given index.
- addToTier(int, String) - Method in class edu.cmu.tetrad.data.Knowledge
-
Adds the given variable or wildcard cpdag to the given tier.
- addToTiersByVarNames(List<String>) - Method in class edu.cmu.tetrad.data.Knowledge
-
Puts a variable into tier i if its name is xxx:ti for some xxx and some i.
- addTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.search.utils.AlmostCycleRemover
-
Adds a triple consisting of three given nodes to the data structure.
- addTwoCycles(Graph, int) - Static method in class edu.cmu.tetrad.graph.RandomGraph
-
addTwoCycles.
- addUnderlineTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.Dag
-
Adds an underline triple to the current object.
- addUnderlineTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
addUnderlineTriple.
- addUnderlineTriple(Node, Node, Node) - Method in interface edu.cmu.tetrad.graph.Graph
-
addUnderlineTriple.
- addUnderlineTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.LagGraph
-
addUnderlineTriple.
- addUnderlineTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.SemGraph
-
addUnderlineTriple.
- addUnderlineTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Adds an underline triple consisting of three nodes to the graph.
- addUnderlineTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.Underlines
-
addUnderlineTriple.
- addUndirectedEdge(Node, Node) - Method in class edu.cmu.tetrad.graph.Dag
-
Adds an undirected edge between two nodes.
- addUndirectedEdge(Node, Node) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
Adds an undirected edge --- to the graph.
- addUndirectedEdge(Node, Node) - Method in interface edu.cmu.tetrad.graph.Graph
-
Adds an undirected edge --- to the graph.
- addUndirectedEdge(Node, Node) - Method in class edu.cmu.tetrad.graph.LagGraph
-
Adds an undirected edge --- to the graph.
- addUndirectedEdge(Node, Node) - Method in class edu.cmu.tetrad.graph.SemGraph
-
Adds an undirected edge --- to the graph.
- addUndirectedEdge(Node, Node) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Adds an undirected edge between two nodes.
- addVariable(int, Node) - Method in class edu.cmu.tetrad.data.BoxDataSet
-
Adds the given variable at the given index.
- addVariable(int, Node) - Method in interface edu.cmu.tetrad.data.DataSet
-
Adds the given variable at the given index.
- addVariable(int, Node) - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
Adds the given variable at the given index.
- addVariable(Node) - Method in class edu.cmu.tetrad.data.BoxDataSet
-
Adds the given variable to the data set.
- addVariable(Node) - Method in interface edu.cmu.tetrad.data.DataSet
-
Adds the given variable to the data set.
- addVariable(Node) - Method in class edu.cmu.tetrad.data.MixedDataBox
-
addVariable.
- addVariable(Node) - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
Adds the given variable to the data set.
- addVariable(String) - Method in class edu.cmu.tetrad.data.Knowledge
-
addVariable.
- addVariable(String) - Method in class edu.cmu.tetrad.graph.LagGraph
-
addVariable.
- adInd() - Method in record class edu.cmu.tetrad.search.MarkovCheck.MarkovCheckRecord
-
Returns the value of the
adInd
record component. - AdjacencyConfusion - Class in edu.cmu.tetrad.algcomparison.statistic.utils
-
A confusion matrix for adjacencies--i.e.
- AdjacencyConfusion(Graph, Graph) - Constructor for class edu.cmu.tetrad.algcomparison.statistic.utils.AdjacencyConfusion
-
Constructs a new AdjacencyConfusion object from the given graphs.
- AdjacencyFn - Class in edu.cmu.tetrad.algcomparison.statistic
-
The adjacency precision.
- AdjacencyFn() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.AdjacencyFn
-
Constructs the statistic.
- AdjacencyFp - Class in edu.cmu.tetrad.algcomparison.statistic
-
The adjacency precision.
- AdjacencyFp() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.AdjacencyFp
-
Constructs the statistic.
- AdjacencyFpr - Class in edu.cmu.tetrad.algcomparison.statistic
-
The adjacency true positive rate.
- AdjacencyFpr() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.AdjacencyFpr
-
Constructs the statistic.
- AdjacencyPrecision - Class in edu.cmu.tetrad.algcomparison.statistic
-
The adjacency precision.
- AdjacencyPrecision() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.AdjacencyPrecision
-
Constructs the statistic.
- AdjacencyRecall - Class in edu.cmu.tetrad.algcomparison.statistic
-
The adjacency recall.
- AdjacencyRecall() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.AdjacencyRecall
-
Constructs the statistic.
- AdjacencyTn - Class in edu.cmu.tetrad.algcomparison.statistic
-
The adjacency precision.
- AdjacencyTn() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.AdjacencyTn
-
Constructs the statistic.
- AdjacencyTp - Class in edu.cmu.tetrad.algcomparison.statistic
-
The adjacency precision.
- AdjacencyTp() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.AdjacencyTp
-
Constructs the statistic.
- AdjacencyTpr - Class in edu.cmu.tetrad.algcomparison.statistic
-
The adjacency true positive rate.
- AdjacencyTpr() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.AdjacencyTpr
-
Constructs the statistic.
- adjacent(Node, Node) - Method in class edu.cmu.tetrad.search.utils.TeyssierScorer
-
Returns True iff a is adjacent to b in the current graph.
- AdjCor - Enum constant in enum class edu.cmu.tetrad.study.performance.Comparison.TableColumn
-
The number of adjacency correct edges.
- AdjCor - Enum constant in enum class edu.cmu.tetrad.study.performance.Comparison2.TableColumn
-
Constant
AdjCor
- AdjFn - Enum constant in enum class edu.cmu.tetrad.study.performance.Comparison.TableColumn
-
The number of adjacency false negative edges.
- AdjFn - Enum constant in enum class edu.cmu.tetrad.study.performance.Comparison2.TableColumn
-
Constant
AdjFn
- AdjFp - Enum constant in enum class edu.cmu.tetrad.study.performance.Comparison.TableColumn
-
The number of adjacency false positive edges.
- AdjFp - Enum constant in enum class edu.cmu.tetrad.study.performance.Comparison2.TableColumn
-
Constant
AdjFp
- adjMatFromMGM() - Method in class edu.pitt.csb.mgm.Mgm
-
Converts MGM to matrix of doubles.
- AdjPrec - Enum constant in enum class edu.cmu.tetrad.study.performance.Comparison.TableColumn
-
The adjacency precision.
- AdjPrec - Enum constant in enum class edu.cmu.tetrad.study.performance.Comparison2.TableColumn
-
Constant
AdjPrec
- AdjRec - Enum constant in enum class edu.cmu.tetrad.study.performance.Comparison.TableColumn
-
The adjacency recall.
- AdjRec - Enum constant in enum class edu.cmu.tetrad.study.performance.Comparison2.TableColumn
-
Constant
AdjRec
- adjustmentSets(Node, Node, int, int, int, int) - Method in class edu.cmu.tetrad.graph.Paths
-
An adjustment set for a pair of nodes <source, target> for a CPDAG is a set of nodes that blocks all paths from the source to the target that cannot contribute to a calculation for the total effect of the source on the target in any DAG in a CPDAG while not blocking any path from the source to the target that could be causal.
- AdTree - Class in edu.cmu.tetrad.search.utils
-
An AD tree is a data structure used to store the data for a given dataset in a way that makes it easy to calculate cell counts for a multidimensional contingency table for a given set of variables.
- AdTree<A,
V> - Class in edu.pitt.isp.sverchkov.data -
An implementation of a static AD tree based on Moore and Lee 1998 (mostly)
- AdTree(DataSet) - Constructor for class edu.cmu.tetrad.search.utils.AdTree
-
Constructs an AD Leaf Tree for the given dataset, without subsampling.
- AdTree(DataSet, List<Integer>) - Constructor for class edu.cmu.tetrad.search.utils.AdTree
-
Constructs an AD Leaf Tree for the given dataset.
- AdTree(DataTable<A, V>) - Constructor for class edu.pitt.isp.sverchkov.data.AdTree
-
Constructs an AD tree for the given data set.
- AdTreeTest - Class in edu.pitt.isp.sverchkov.data
-
A test of the AD tree implementation.
- AdTreeTest() - Constructor for class edu.pitt.isp.sverchkov.data.AdTreeTest
-
Creates a new AdTreeTest object.
- AhdCor - Enum constant in enum class edu.cmu.tetrad.study.performance.Comparison.TableColumn
-
The number of arrowhead false positive edges.
- AhdCor - Enum constant in enum class edu.cmu.tetrad.study.performance.Comparison2.TableColumn
-
Constant
AhdCor
- AhdFn - Enum constant in enum class edu.cmu.tetrad.study.performance.Comparison.TableColumn
-
The number of arrowhead false negative edges.
- AhdFn - Enum constant in enum class edu.cmu.tetrad.study.performance.Comparison2.TableColumn
-
Constant
AhdFn
- AhdFp - Enum constant in enum class edu.cmu.tetrad.study.performance.Comparison.TableColumn
-
The number of arrowhead false positive edges.
- AhdFp - Enum constant in enum class edu.cmu.tetrad.study.performance.Comparison2.TableColumn
-
Constant
AhdFp
- AhdPrec - Enum constant in enum class edu.cmu.tetrad.study.performance.Comparison.TableColumn
-
The arrowhead precision.
- AhdPrec - Enum constant in enum class edu.cmu.tetrad.study.performance.Comparison2.TableColumn
-
Constant
AhdPrec
- AhdRec - Enum constant in enum class edu.cmu.tetrad.study.performance.Comparison.TableColumn
-
The arrowhead recall.
- AhdRec - Enum constant in enum class edu.cmu.tetrad.study.performance.Comparison2.TableColumn
-
Constant
AhdRec
- Algorithm - Interface in edu.cmu.tetrad.algcomparison.algorithm
-
Interface that algorithm must implement.
- Algorithm - Annotation Interface in edu.cmu.tetrad.annotation
-
Sep 5, 2017 10:47:30 AM
- AlgorithmAnnotations - Class in edu.cmu.tetrad.annotation
-
Annotations for algorithms.
- AlgorithmDescriptions - Class in edu.cmu.tetrad.util
-
Algorithm descriptions.
- AlgorithmFactory - Class in edu.cmu.tetrad.algcomparison.algorithm
-
Aug 30, 2017 3:14:40 PM
- Algorithms - Class in edu.cmu.tetrad.algcomparison.algorithm
-
A list of algorithm to be compared.
- Algorithms() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.Algorithms
-
Constructs an empty list of algorithms.
- algoType() - Element in annotation interface edu.cmu.tetrad.annotation.Algorithm
-
Description of the algorithm.
- AlgType - Enum Class in edu.cmu.tetrad.annotation
-
Author : Jeremy Espino MD Created 6/30/17 10:36 AM
- All - Enum constant in enum class edu.cmu.tetrad.data.DataType
-
All.
- allDirectedPaths(Node, Node, int) - Method in class edu.cmu.tetrad.graph.Paths
-
Finds all directed paths from node1 to node2 with a maximum length.
- allEdgeStats(Graph, Graph) - Static method in class edu.pitt.csb.mgm.MixedUtils
-
allEdgeStats.
- allEdgeStats(Graph, Graph, HashMap<String, String>) - Static method in class edu.pitt.csb.mgm.MixedUtils
-
allEdgeStats.
- allEigenvaluesAreSmallerThanOneInModulus(Matrix) - Static method in class edu.cmu.tetrad.search.utils.TsUtils
-
allEigenvaluesAreSmallerThanOneInModulus.
- allNodePairs(List<Node>) - Static method in class edu.cmu.tetrad.search.work_in_progress.ResolveSepsetsDci
-
Generates NodePairs of all possible pairs of nodes from given list of nodes.
- ALLOW_INTERNAL_RANDOMNESS - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
ALLOW_INTERNAL_RANDOMNESS="allowInternalRandomness"
- allow_latent_common_causes - Enum constant in enum class edu.cmu.tetrad.annotation.AlgType
-
If an algorithm allows latent common causes.
- allPaths(Node, Node, int) - Method in class edu.cmu.tetrad.graph.Paths
-
Finds all paths from node1 to node2 within a specified maximum length.
- allPaths(Node, Node, int, int, Set<Node>, Map<Node, Set<Node>>, boolean) - Method in class edu.cmu.tetrad.graph.Paths
-
Finds all paths between two nodes satisfying certain conditions.
- allPaths(Node, Node, int, Set<Node>, boolean) - Method in class edu.cmu.tetrad.graph.Paths
-
Finds all paths between two nodes within a given maximum length, considering optional condition set and selection bias.
- allPathsOutOf(Node, int, Set<Node>, boolean) - Method in class edu.cmu.tetrad.graph.Paths
-
Generates all paths out of a given node within a specified maximum length and conditional set.
- AllSubsetsIndependenceFacts(Set<IndependenceFact>, Set<IndependenceFact>) - Constructor for class edu.cmu.tetrad.search.MarkovCheck.AllSubsetsIndependenceFacts
-
Constructor.
- allToString() - Method in class edu.cmu.tetrad.simulation.PRAOerrors
-
allToString.
- AlmostCycleRemover - Class in edu.cmu.tetrad.search.utils
-
A class for heuristically removing almost cycles from a PAG to avoid unfaithfulness in an estimated PAG.
- AlmostCycleRemover() - Constructor for class edu.cmu.tetrad.search.utils.AlmostCycleRemover
-
Constructs a new instance of the AlmostCycleRemover class with the specified Graph.
- alongPathIn(Graph) - Method in class edu.cmu.tetrad.graph.Triple
-
alongPathIn.
- ALPHA - Static variable in interface edu.cmu.tetrad.graph.Node
-
Constant
ALPHA
- ALPHA - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
ALPHA="alpha"
- ALPHA_NUM - Static variable in interface edu.cmu.tetrad.graph.Node
-
Constant
ALPHA_NUM
- AMBIGUOUS - Enum constant in enum class edu.cmu.tetrad.search.utils.GraphSearchUtils.CpcTripleType
-
An ambiguous triple.
- AMBIGUOUS - Enum constant in enum class edu.cmu.tetrad.search.work_in_progress.VcPc.CpcTripleType
-
The triple is ambiguous.
- AMBIGUOUS - Enum constant in enum class edu.cmu.tetrad.search.work_in_progress.VcPcFast.CpcTripleType
-
Constant
AMBIGUOUS
- amenablePathsMpdagMag(Node, Node, int) - Method in class edu.cmu.tetrad.graph.Paths
-
Finds amenable paths from the given source node to the given destination node with a maximum length.
- amenablePathsPag(Node, Node, int) - Method in class edu.cmu.tetrad.graph.Paths
-
Finds amenable paths from the given source node to the given destination node with a maximum length, for a PAG.
- AncestorF1 - Class in edu.cmu.tetrad.algcomparison.statistic
-
Calculates the F1 statistic for adjacencies.
- AncestorF1() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.AncestorF1
-
Constructs the statistic.
- AncestorPrecision - Class in edu.cmu.tetrad.algcomparison.statistic
-
Ancestor precision.
- AncestorPrecision() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.AncestorPrecision
-
Constructs the statistic.
- AncestorRecall - Class in edu.cmu.tetrad.algcomparison.statistic
-
Ancestor recall.
- AncestorRecall() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.AncestorRecall
-
Constructs the statistic.
- AncestralPrecision - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- AncestralPrecision() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.AncestralPrecision
-
Constructs the statistic.
- AncestralRecall - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- AncestralRecall() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.AncestralRecall
-
Constructs the statistic.
- andersonDarling - Enum constant in enum class edu.cmu.tetrad.search.Lofs.Score
-
The Anderson-Darling score.
- AndersonDarlingTest - Class in edu.cmu.tetrad.data
-
Implements the Anderson-Darling test for normality, with P values calculated as in R's ad.test method (in package nortest).
- AndersonDarlingTest(double[]) - Constructor for class edu.cmu.tetrad.data.AndersonDarlingTest
-
Constructs an Anderson-Darling test for the given column of data.
- AnnotatedClass<T> - Class in edu.cmu.tetrad.annotation
-
Represents a class that encapsulates a class along with its associated annotation.
- AnnotatedClass(Class<?>, T) - Constructor for class edu.cmu.tetrad.annotation.AnnotatedClass
-
Creates an annotated class.
- AnnotatedClassUtils - Class in edu.cmu.tetrad.annotation
-
Sep 6, 2017 11:11:38 AM
- annotation() - Method in class edu.cmu.tetrad.annotation.AnnotatedClass
-
Gets the annotation.
- anteriority(Graph, Node...) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Computes the anteriority of the given nodes in a graph.
- anteriority(Node...) - Method in class edu.cmu.tetrad.graph.Paths
-
Returns the set of nodes that are in the anteriority of the given nodes in the graph.
- ANY_DAG - Static variable in class edu.cmu.tetrad.graph.RandomGraph.UniformGraphGenerator
-
Any DAG uniformly selected
- append(int[], int) - Method in interface edu.cmu.tetrad.search.score.Score
-
Appends an extra int to a list of ints.
- APPLY_R1 - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
APPLY_R1="applyR1"
- applyDmSearch(Graph, Set<String>, double) - Method in class edu.cmu.tetrad.search.work_in_progress.DMSearch
-
applyDmSearch.
- applyTo(Graph) - Method in class edu.cmu.tetrad.search.work_in_progress.GraphChange
-
Outputs a new PAG, a copy of the input excepting the applied changes of this object.
- ApproximateUpdater - Class in edu.cmu.tetrad.bayes
-
Calculates updated marginals for a Bayes net by simulating data and calculating likelihood ratios.
- ApproximateUpdater(BayesIm) - Constructor for class edu.cmu.tetrad.bayes.ApproximateUpdater
-
Constructs a new updater for the given Bayes net.
- ApproximateUpdater(BayesIm, Evidence) - Constructor for class edu.cmu.tetrad.bayes.ApproximateUpdater
-
Constructs a new updater for the given Bayes net.
- ar(DataSet, int) - Static method in class edu.cmu.tetrad.search.utils.TsUtils
-
ar.
- ar2(DataSet, int) - Static method in class edu.cmu.tetrad.search.utils.TsUtils
-
ar2.
- archiveCurrentDirectory() - Method in class edu.cmu.tetrad.util.TetradSerializableUtils
-
Creates a zip archive of the currently serialized files in getCurrentDirectory(), placing the archive in getArchiveDirectory().
- arrangeByKnowledgeTiers(Graph) - Static method in class edu.cmu.tetrad.search.utils.GraphSearchUtils
-
arrangeByKnowledgeTiers.
- arrangeByKnowledgeTiers(Graph, Knowledge) - Static method in class edu.cmu.tetrad.search.utils.GraphSearchUtils
-
arrangeByKnowledgeTiers.
- arrangeByLayout(Graph, HashMap<String, PointXy>) - Static method in class edu.cmu.tetrad.graph.LayoutUtil
-
arrangeByLayout.
- arrangeBySourceGraph(Graph, Graph) - Static method in class edu.cmu.tetrad.graph.LayoutUtil
-
Arranges the nodes in the result graph according to their positions in the source graph.
- arrayPermute(double[]) - Static method in class edu.pitt.csb.mgm.MixedUtils
-
arrayPermute.
- arrayPermute(int[]) - Static method in class edu.pitt.csb.mgm.MixedUtils
-
arrayPermute.
- ARROW - Enum constant in enum class edu.cmu.tetrad.graph.Endpoint
-
Arrow endpoint.
- ArrowConfusion - Class in edu.cmu.tetrad.algcomparison.statistic.utils
-
A confusion matrix for arrows--i.e.
- ArrowConfusion(Graph, Graph) - Constructor for class edu.cmu.tetrad.algcomparison.statistic.utils.ArrowConfusion
-
Constructs a new ArrowConfusion object.
- ArrowConfusion(Graph, Graph, boolean) - Constructor for class edu.cmu.tetrad.algcomparison.statistic.utils.ArrowConfusion
-
Constructs a new ArrowConfusion object.
- ArrowheadFn - Class in edu.cmu.tetrad.algcomparison.statistic
-
The arrow precision.
- ArrowheadFn() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.ArrowheadFn
-
Constructs the statistic.
- ArrowheadFp - Class in edu.cmu.tetrad.algcomparison.statistic
-
The arrow precision.
- ArrowheadFp() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.ArrowheadFp
-
Constructs the statistic.
- ArrowheadFpr - Class in edu.cmu.tetrad.algcomparison.statistic
-
The adjacency true positive rate.
- ArrowheadFpr() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.ArrowheadFpr
-
Constructs the statistic.
- ArrowheadPrecision - Class in edu.cmu.tetrad.algcomparison.statistic
-
The arrow precision.
- ArrowheadPrecision() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.ArrowheadPrecision
-
Constructs the statistic.
- ArrowheadPrecisionCommonEdges - Class in edu.cmu.tetrad.algcomparison.statistic
-
The arrow precision.
- ArrowheadPrecisionCommonEdges() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.ArrowheadPrecisionCommonEdges
-
Constructs the statistic.
- ArrowheadRecall - Class in edu.cmu.tetrad.algcomparison.statistic
-
The arrow recall.
- ArrowheadRecall() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.ArrowheadRecall
-
Constructs the statistic.
- ArrowheadRecallCommonEdges - Class in edu.cmu.tetrad.algcomparison.statistic
-
The arrow recall.
- ArrowheadRecallCommonEdges() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.ArrowheadRecallCommonEdges
-
Constructs the statistic.
- ArrowheadTn - Class in edu.cmu.tetrad.algcomparison.statistic
-
The arrow precision.
- ArrowheadTn() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.ArrowheadTn
-
Constructs the statistic.
- ArrowheadTp - Class in edu.cmu.tetrad.algcomparison.statistic
-
The arrow precision.
- ArrowheadTp() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.ArrowheadTp
-
Constructs the statistic.
- ASCENDING - Static variable in class edu.cmu.tetrad.util.RocCalculator
-
Constant
ASCENDING=0
- asList(int[]) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Creates a new list containing the elements of the given array.
- asList(int[], List<Node>) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Constructs a list of nodes from the given
nodes
list at the given indices in that list. - asRow(double[]) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
asRow.
- asSet(int[], List<Node>) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Converts an array of indices into a set of corresponding nodes from a given list of nodes.
- asSet(Node...) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Converts the given array of nodes into a Set of nodes.
- assign(double) - Method in class edu.cmu.tetrad.util.Vector
-
assign.
- assign(Matrix) - Method in class edu.cmu.tetrad.util.Matrix
-
assign.
- assign(Vector) - Method in class edu.cmu.tetrad.util.Vector
-
assign.
- assignColumn(int, Vector) - Method in class edu.cmu.tetrad.util.Matrix
-
assignColumn.
- assignRow(int, Vector) - Method in class edu.cmu.tetrad.bayes.CptMapProbs
-
Assigns the values in the provided vector to a specific row in the probability map.
- assignRow(int, Vector) - Method in class edu.cmu.tetrad.util.Matrix
-
assignRow.
- at - Enum constant in enum class edu.cmu.tetrad.graph.EdgeTypeProbability.EdgeType
-
Arrow-to-tail
- average - Enum constant in enum class edu.cmu.tetrad.search.utils.ResolveSepsets.Method
-
Wilkinson's method
- average - Enum constant in enum class edu.cmu.tetrad.search.work_in_progress.ResolveSepsetsDci.Method
-
`The average method.
- AverageDegreeEst - Class in edu.cmu.tetrad.algcomparison.statistic
-
The adjacency precision.
- AverageDegreeEst() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.AverageDegreeEst
-
Constructs the statistic.
- AverageDegreeTrue - Class in edu.cmu.tetrad.algcomparison.statistic
-
The adjacency precision.
- AverageDegreeTrue() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.AverageDegreeTrue
-
Constructs the statistic.
- averageDeviation(double[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
averageDeviation.
- averageDeviation(double[], int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
averageDeviation.
- averageDeviation(long[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
averageDeviation.
- averageDeviation(long[], int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
averageDeviation.
- averagetest - Enum constant in enum class edu.cmu.tetrad.search.utils.ResolveSepsets.Method
-
Average method
- averagetest - Enum constant in enum class edu.cmu.tetrad.search.work_in_progress.ResolveSepsetsDci.Method
-
The average test method.
- AVG_DEGREE - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
AVG_DEGREE="avgDegree"
B
- b() - Method in record class edu.cmu.tetrad.search.score.SemBicScore.CovAndCoefs
-
Returns the value of the
b
record component. - BasalInitializer - Class in edu.cmu.tetrad.study.gene.tetrad.gene.history
-
Initializes a history array by setting the value of each variable to basal if it is unregulated (has no parents other than itself one time step back) and to a random value chosen from a N(basal, initStDev) distribution otherwise.
- BasalInitializer(UpdateFunction, double, double) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.history.BasalInitializer
-
Constructs a new history that will initialize genes using the given basal expression and initial standard deviation.
- basicCpdag(Graph) - Static method in class edu.cmu.tetrad.search.utils.GraphSearchUtils
-
Get a graph and direct only the unshielded colliders.
- basicCpdagRestricted2(Graph, Node) - Static method in class edu.cmu.tetrad.search.utils.GraphSearchUtils
-
basicCpdagRestricted2.
- BasicGraph - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util
-
Basic functionality that all graph-derived classes should provide.
- BasicGraph(String) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.BasicGraph
-
Creates a Graph reading it from file
fname
. - BasicGraph(String, int) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.BasicGraph
-
Creates a graph with
gName
name, andn
nodes. - BasicLagGraph - Class in edu.cmu.tetrad.study.gene.tetrad.gene.history
-
Stores a time series in the "update" (rather than, say, the "repeated") form--that is, for a given set of factors (the word "factor" is being used here to avoid ambiguity), only lags behind the getModel time step are recorded temporally, with causal edges extending from lagged factors with lags >= 1 to factors in the getModel time step (lag = 0) only.
- BasicLagGraph() - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.history.BasicLagGraph
-
Constructs an empty update graph--that is, a graph with no factors (and therefore no edges).
- BasicLagGraph(LagGraph) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.history.BasicLagGraph
-
Constructs a copy of the given lag graph.
- BasicLTMatrix - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util
-
Implements a space-efficient Lower Triangular Matrix of elements of type
short
- BasicLTMatrix(String) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.BasicLTMatrix
-
Creates a lower triangular matrix reading it from file
fname
. - BasicLTMatrix(String, int) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.BasicLTMatrix
-
Creates a lower triangular matrix with
nrows
rows. - BasicMatrix - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util
-
Basic functionality of a Matrix
- BasicMatrix(String) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.BasicMatrix
-
Creates a matrix reading it from a file
fname
. - BasicMatrix(String, int) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.BasicMatrix
-
Creates a matrix with
nrows
rows, and with namemname
. - BASIS_SCALE - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
BASIS_TYPE="basisType"
- BASIS_TYPE - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
BASIS_TYPE="basisType"
- BasisFunctionBicScore - Class in edu.cmu.tetrad.algcomparison.score
-
Wrapper for Basis Function BIC Score (Basis-BIC).
- BasisFunctionBicScore - Class in edu.cmu.tetrad.search.score
-
Calculates the basis function BIC score for a given dataset.
- BasisFunctionBicScore() - Constructor for class edu.cmu.tetrad.algcomparison.score.BasisFunctionBicScore
-
Initializes a new instance of the BasisFunctionBicScore class.
- BasisFunctionBicScore(DataSet, boolean, int, int, double) - Constructor for class edu.cmu.tetrad.search.score.BasisFunctionBicScore
-
Constructs a BasisFunctionBicScore object with the specified parameters.
- BasisFunctionBicTest - Class in edu.cmu.tetrad.algcomparison.independence
- BasisFunctionBicTest() - Constructor for class edu.cmu.tetrad.algcomparison.independence.BasisFunctionBicTest
-
Constructs a new instance of the Basis Function BIC test.
- basisFunctionValue(int, int, double) - Static method in class edu.cmu.tetrad.util.StatUtils
-
Performs a calculation that involves repeatedly multiplying an initial value of `1.0` by the product of `0.95` and a given parameter `x`, iterating `index` times.
- BayesBifParser - Class in edu.cmu.tetrad.bayes
-
The
BayesBifParser
class provides a set of static methods for parsing Bayesian Network Interchange Format (BIF) files. - BayesBifRenderer - Class in edu.cmu.tetrad.bayes
-
Renders Bayes nets and related models in XML.
- BayesianConstraintInference - Class in edu.pitt.dbmi.algo.bayesian.constraint.inference
-
Feb 22, 2014 3:26:17 PM
- BayesianConstraintInference() - Constructor for class edu.pitt.dbmi.algo.bayesian.constraint.inference.BayesianConstraintInference
-
Constructor.
- BayesianConstraintInferenceTest - Class in edu.pitt.dbmi.algo.bayesian.constraint.inference
-
Feb 22, 2014 3:35:38 PM
- BayesianConstraintInferenceTest() - Constructor for class edu.pitt.dbmi.algo.bayesian.constraint.inference.BayesianConstraintInferenceTest
-
Constructor.
- BayesIm - Interface in edu.cmu.tetrad.bayes
-
Interface implemented by Bayes instantiated models.
- BayesImParser - Class in edu.cmu.tetrad.search.utils
-
Takes an xml element representing a bayes im and converts it to a BayesIM
- BayesImParser() - Constructor for class edu.cmu.tetrad.search.utils.BayesImParser
-
Creates a new BayesImParser.
- BayesImProbs - Class in edu.cmu.tetrad.bayes
-
Calculates cell probabilities from conditional BayesIm probabilities on the fly without constructing the entire table.
- BayesImProbs(BayesIm) - Constructor for class edu.cmu.tetrad.bayes.BayesImProbs
-
Constructs a BayesImProbs object from the given BayesIm.
- BayesNetSimulation - Class in edu.cmu.tetrad.algcomparison.simulation
-
Bayes net simulation.
- BayesNetSimulation(RandomGraph) - Constructor for class edu.cmu.tetrad.algcomparison.simulation.BayesNetSimulation
-
Constructs a new BayesNetSimulation.
- BayesNetSimulation(BayesIm) - Constructor for class edu.cmu.tetrad.algcomparison.simulation.BayesNetSimulation
-
Constructs a new BayesNetSimulation.
- BayesNetSimulation(BayesPm) - Constructor for class edu.cmu.tetrad.algcomparison.simulation.BayesNetSimulation
-
Constructs a new BayesNetSimulation.
- BayesPm - Class in edu.cmu.tetrad.bayes
-
Implements a discrete Bayes parametric model--that is, a DAG together with a map from the nodes in the graph to a set of discrete variables, specifying the number of categories for each variable and the name of each category for each variable.
- BayesPm(BayesPm) - Constructor for class edu.cmu.tetrad.bayes.BayesPm
-
Copy constructor.
- BayesPm(Graph) - Constructor for class edu.cmu.tetrad.bayes.BayesPm
-
Construct a new BayesPm using the given DAG, assigning each variable two values named "value1" and "value2" unless nodes are discrete variables with categories already defined.
- BayesPm(Graph, int, int) - Constructor for class edu.cmu.tetrad.bayes.BayesPm
-
Constructs a new BayesPm from the given DAG, assigning each variable a random number of values between
lowerBound
andupperBound
. - BayesPm(Graph, BayesPm) - Constructor for class edu.cmu.tetrad.bayes.BayesPm
-
Constructs a new BayesPm using a given DAG, using as much information from the old BayesPm as possible.
- BayesPm(Graph, BayesPm, int, int) - Constructor for class edu.cmu.tetrad.bayes.BayesPm
-
Constructs a new BayesPm from the given DAG, using as much information from the old BayesPm as possible.
- BayesProperties - Class in edu.cmu.tetrad.bayes
-
Calculates some scores for Bayes nets as a whole.
- BayesProperties(DataSet) - Constructor for class edu.cmu.tetrad.bayes.BayesProperties
-
Constructs a new BayesProperties object for the given data set.
- BayesProperties.LikelihoodRet - Class in edu.cmu.tetrad.bayes
-
The LikelihoodRet class represents the result of a likelihood ratio test.
- BayesUpdater - Interface in edu.cmu.tetrad.bayes
-
Interface for a discrete Bayes updating algorithm.
- BayesXmlParser - Class in edu.cmu.tetrad.bayes
-
Parses Bayes elements back to objects.
- BayesXmlParser() - Constructor for class edu.cmu.tetrad.bayes.BayesXmlParser
-
A parser for Bayes XML files.
- BayesXmlRenderer - Class in edu.cmu.tetrad.bayes
-
Renders Bayes nets and related models in XML.
- BAYS_NET - Static variable in class edu.cmu.tetrad.algcomparison.simulation.SimulationTypes
-
Constant
BAYS_NET="Bayes Net (Multinomial)"
- BCCausalInference - Class in edu.pitt.dbmi.algo.bayesian.constraint.inference
-
This is a thread-safe version of BCInference.
- BCCausalInference(int[], int[][]) - Constructor for class edu.pitt.dbmi.algo.bayesian.constraint.inference.BCCausalInference
-
Constructor
- BCCausalInference.OP - Enum Class in edu.pitt.dbmi.algo.bayesian.constraint.inference
-
An enum for the type of operation.
- BCInference - Class in edu.pitt.dbmi.algo.bayesian.constraint.inference
-
Feb 26, 2014 8:07:20 PM
- BCInference(int[][], int[]) - Constructor for class edu.pitt.dbmi.algo.bayesian.constraint.inference.BCInference
-
Cases is a two-dimensional array dataset.
- BCInference.OP - Enum Class in edu.pitt.dbmi.algo.bayesian.constraint.inference
-
Enum for the type of constraint.
- BdeMetricCache - Class in edu.cmu.tetrad.bayes
-
Provides a method for computing the score of a model, called the BDe metric (Bayesian Dirchlet likelihood equivalence), given a dataset (assumes no missing values) and a Bayes parameterized network (assumes no latent variables).> 0
- BdeMetricCache(DataSet, BayesPm) - Constructor for class edu.cmu.tetrad.bayes.BdeMetricCache
-
Constructs a BdeMetricCache object for a given dataset and BayesPm.
- BdeScore - Class in edu.cmu.tetrad.search.score
-
Calculates the BDe score (Bayes Dirichlet Equivalent) score for analyzing discrete multinomial data.
- BdeScore(DataSet) - Constructor for class edu.cmu.tetrad.search.score.BdeScore
-
Constructs a BDe score for the given dataset.
- BDeu - Enum constant in enum class edu.cmu.tetrad.sem.ScoreType
-
the BDeu score
- BdeuScore - Class in edu.cmu.tetrad.algcomparison.score
-
Wrapper for Fisher Z test.
- BdeuScore - Class in edu.cmu.tetrad.search.score
-
Calculates the BDeu score, which the BDe (Bayes Dirichlet Equivalent) score with uniform priors.
- BdeuScore() - Constructor for class edu.cmu.tetrad.algcomparison.score.BdeuScore
-
Constructs a new instance of the test.
- BdeuScore(DataSet) - Constructor for class edu.cmu.tetrad.search.score.BdeuScore
-
Constructs a BDe score for the given dataset.
- BdeuTest - Class in edu.cmu.tetrad.algcomparison.independence
-
Wrapper for Fisher Z test.
- BdeuTest() - Constructor for class edu.cmu.tetrad.algcomparison.independence.BdeuTest
-
Constructs a new instance of the test.
- bernoulliRand(double) - Static method in class edu.cmu.tetrad.util.ProbUtils
-
bernoulliRand.
- bes(Graph, List<Node>) - Method in class edu.cmu.tetrad.search.utils.Bes
-
Runs BES for a graph over the given list of variables
- bes(Graph, List<Node>, List<Node>) - Method in class edu.cmu.tetrad.search.utils.BesPermutation
-
Runs BES.
- Bes - Class in edu.cmu.tetrad.search.utils
-
Extracts the backward step of GES for use GES but also in other algorithms.
- Bes(Score) - Constructor for class edu.cmu.tetrad.search.utils.Bes
-
Constructs the search.
- Bes.Arrow - Class in edu.cmu.tetrad.search.utils
-
An arrow in the search.
- BesPermutation - Class in edu.cmu.tetrad.search.utils
-
Implements a version of the BES (Best Equivalent Search) algorithm that takes a permutation as input and yields a permtuation as output, where the related DAG or CPDAG models are implied by the ordering or variables in these permutations.
- BesPermutation(Score) - Constructor for class edu.cmu.tetrad.search.utils.BesPermutation
-
Constructor.
- bestOrder(List<Node>) - Method in class edu.cmu.tetrad.search.Grasp
-
Given an initial permutation, 'order,' of the variables, searches for a best permutation of the variables by rearranging the variables in 'order.'
- bestOrder(List<Node>) - Method in class edu.cmu.tetrad.search.work_in_progress.GraspTol
-
bestOrder.
- beta(double, double) - Static method in class edu.cmu.tetrad.util.StatUtils
-
Calculates the value of beta for doubles
- Beta - Class in edu.cmu.tetrad.util.dist
-
Implements a Beta distribution for purposes of drawing random numbers.
- betaCdf(double, double, double) - Static method in class edu.cmu.tetrad.util.ProbUtils
-
Incomplete Beta function.
- betaPdf(double, double, double) - Static method in class edu.cmu.tetrad.util.ProbUtils
-
betaPdf.
- betaQuantile(double, double, double) - Static method in class edu.cmu.tetrad.util.ProbUtils
-
betaQuantile.
- betaRand(double, double) - Static method in class edu.cmu.tetrad.util.ProbUtils
-
Beta distribution random generator.
- betterMutation(TeyssierScorer) - Method in class edu.cmu.tetrad.search.work_in_progress.GraspTol
-
betterMutation.
- Bfci - Class in edu.cmu.tetrad.algcomparison.algorithm.oracle.pag
-
Adjusts GFCI to use a permutation algorithm (such as BOSS-Tuck) to do the initial steps of finding adjacencies and unshielded colliders.
- Bfci() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Bfci
-
No-arg constructor.
- Bfci(IndependenceWrapper, ScoreWrapper) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Bfci
-
Constructs a new BFCI algorithm using the given test and score.
- BFci - Class in edu.cmu.tetrad.search
-
Uses BOSS in place of FGES for the initial step in the GFCI algorithm.
- BFci(IndependenceTest, Score) - Constructor for class edu.cmu.tetrad.search.BFci
-
Constructor.
- bfsAllPathsOutOfX(Graph, Set<Node>, Set<Node>, Set<Node>, int, Node, Node, boolean) - Static method in class edu.cmu.tetrad.search.SepsetFinder
-
Performs a breadth-first search to find all paths out of a specific node in a graph, considering certain conditions and constraints.
- bic - Variable in class edu.cmu.tetrad.bayes.BayesProperties.LikelihoodRet
-
The BIC.
- BIC - Enum constant in enum class edu.cmu.tetrad.search.score.GicScores.RuleType
-
The Bayesian Information Criterion.
- BicDiff - Class in edu.cmu.tetrad.algcomparison.statistic
-
Difference between the true and estimated BIC scores.
- BicDiff() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.BicDiff
-
Constructs a new instance of the statistic.
- BicDiffPerRecord - Class in edu.cmu.tetrad.algcomparison.statistic
-
Difference between the true and estiamted BIC scores.
- BicDiffPerRecord() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.BicDiffPerRecord
-
Constructs a new instance of the statistic.
- BicEst - Class in edu.cmu.tetrad.algcomparison.statistic
-
Estimated BIC score.
- BicEst() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.BicEst
-
No-arg constructor.
- BicTrue - Class in edu.cmu.tetrad.algcomparison.statistic
-
True BIC score.
- BicTrue() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.BicTrue
-
Constructs a new instance of the statistic.
- BidirectedConfusion - Class in edu.cmu.tetrad.algcomparison.statistic.utils
-
A confusion matrix for bidireced edges--i.e.
- BidirectedConfusion(Graph, Graph) - Constructor for class edu.cmu.tetrad.algcomparison.statistic.utils.BidirectedConfusion
-
Constructs a new confusion matrix for bidirected edges.
- bidirectedEdge(Node, Node) - Static method in class edu.cmu.tetrad.graph.Edges
-
Constructs a new bidirected edge from nodeA to nodeB (<->).
- BidirectedEst - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- BidirectedEst() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.BidirectedEst
-
Constructs a new instance of the statistic.
- BidirectedFP - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected false negatives.
- BidirectedFP() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.BidirectedFP
-
Constructs a new instance of the statistic.
- BidirectedLatentPrecision - Class in edu.cmu.tetrad.algcomparison.statistic
-
The BidirectedLatentPrecision class implements the Statistic interface and represents a statistic that calculates the percentage of bidirected edges in an estimated graph for which a latent confounder exists in the true graph.
- BidirectedLatentPrecision() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.BidirectedLatentPrecision
-
The BidirectedLatentPrecision class implements the Statistic interface and represents a statistic that calculates the percentage of bidirected edges in an estimated graph for which a latent confounder exists in the true graph.
- BidirectedPrecision - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected edge precision.
- BidirectedPrecision() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.BidirectedPrecision
-
Constructs a new instance of the statistic.
- BidirectedRecall - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected edge precision.
- BidirectedRecall() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.BidirectedRecall
-
Constructs a new instance of the statistic.
- bidirectedToUndirected(Graph) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Converts a bidirected graph to an undirected graph.
- BidirectedTP - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- BidirectedTP() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.BidirectedTP
-
Constructs a new instance of the statistic.
- BidirectedTrue - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- BidirectedTrue() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.BidirectedTrue
-
Constructs a new instance of the statistic.
- binDep() - Method in record class edu.cmu.tetrad.search.MarkovCheck.MarkovCheckRecord
-
Returns the value of the
binDep
record component. - binIndep() - Method in record class edu.cmu.tetrad.search.MarkovCheck.MarkovCheckRecord
-
Returns the value of the
binIndep
record component. - binomialCdf(int, int, double) - Static method in class edu.cmu.tetrad.util.ProbUtils
-
Binomial cumulative distribution function.
- binomialPmf(int, int, double) - Static method in class edu.cmu.tetrad.util.ProbUtils
-
binomialPmf.
- binomialQuantile(double, int, double) - Static method in class edu.cmu.tetrad.util.ProbUtils
-
binomialQuantile.
- binomialRand(int, double) - Static method in class edu.cmu.tetrad.util.ProbUtils
-
Binomial random generator from Numerical Recipes
- biNormalCdf(double, double, double) - Static method in class edu.cmu.tetrad.util.ProbUtils
-
Bivariate normal CDF.
- Biolingua - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.biolingua
-
Implements an algorithm for revising regulatory models with expression data.
- BiolinguaAlgorithm(SymMatrixF, BiolinguaDigraph) - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.biolingua.Biolingua
-
Runs the biolingua algorithm using the given correlation matrix (all values are assumed significant) and the initial graph, and uses some default values for the coefficients in the evaluation metric for annotations, errors, links, and predictions.
- BiolinguaAlgorithm(SymMatrixF, BiolinguaDigraph, float, float, float, float) - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.biolingua.Biolingua
-
Runs the biolingua algorithm using the given correlation matrix (all values are assumed significant), an initial graph, and the coefficients in the evaluation metric for annotations, errors, links, and predictions.
- BiolinguaAlgorithm(SymMatrixF, SymMatrixF, BiolinguaDigraph, float, float, float, float) - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.biolingua.Biolingua
-
Runs the biolingua algorithm using the given correlation matrix, significance matrix, the initial graph, and the coefficients in the evaluation metric for annotations, errors, links, and predictions.
- BiolinguaDigraph - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.biolingua
-
Implements a digraph to be used by the Biolingua algorithm.
- BiolinguaDigraph(BiolinguaDigraph) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.biolingua.BiolinguaDigraph
-
Copy constructor.
- BiolinguaDigraph(String) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.biolingua.BiolinguaDigraph
-
Creates a BiolinguaDigraph reading it from file
fname
. - BiolinguaDigraph(String, int) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.biolingua.BiolinguaDigraph
-
Creates a BiolinguaDigraph with name
gName
andn
nodes - BiolinguaRunner - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.biolingua
-
Client of the Biolingua class, can be used to easily run the algorithm with different inputs.
- BiolinguaRunner() - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.biolingua.BiolinguaRunner
-
Initializes a new instance of the BiolinguaRunner class.
- blankDirichletIm(BayesPm) - Static method in class edu.cmu.tetrad.bayes.DirichletBayesIm
-
blankDirichletIm.
- blockPathsLocalMarkov(Graph, Node) - Static method in class edu.cmu.tetrad.search.SepsetFinder
-
Returns a set of nodes that are the parents of the given node in the graph.
- blockPathsNoncollidersOnly(Graph, Node, Node, int, boolean) - Static method in class edu.cmu.tetrad.search.SepsetFinder
-
Returns a set that blocks all paths that can be blocked by conditioning on noncolliders only, searching outward from x.
- blockPathsRecursively(Graph, Node, Node, Set<Node>, Set<Node>, int) - Static method in class edu.cmu.tetrad.search.SepsetFinder
-
Retrieves set that blocks all blockable paths between x and y in the given graph, where this set contains the given nodes.
- blockPathsWithMarkovBlanket(Node, Graph) - Static method in class edu.cmu.tetrad.search.SepsetFinder
-
Identifies the set of nodes that form the Markov Blanket for a given node in a graph.
- bookmark() - Method in class edu.cmu.tetrad.search.utils.TeyssierScorer
-
Bookmarks the current pi with index Integer.MIN_VALUE.
- bookmark(int) - Method in class edu.cmu.tetrad.search.utils.TeyssierScorer
-
Bookmarks the current pi as the index key.
- bool2(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.akutsu.BoolSearch
-
Implements the BOOL-2 algorithm of Akutsu, et al, found in section 2.2 of their paper "Algorithms for Inferring Qualitative Models of Biological Networks".
- bool2(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.BoolSearch
-
Implements the BOOL-2 algorithm of Akutsu, et al, found in section 2.2 of their paper "Algorithms for Inferring Qualitative Models of Biological Networks".
- BOOLEAN_GLASS_SIMULATION - Static variable in class edu.cmu.tetrad.algcomparison.simulation.SimulationTypes
-
Constant
BOOLEAN_GLASS_SIMULATION="Boolean Glass Simulation"
- BooleanFunction - Class in edu.cmu.tetrad.study.gene.tetrad.gene.history
-
Stores a boolean function from a set of boolean-valued parents to a single boolean-valued column.
- BooleanFunction(IndexedParent[]) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.history.BooleanFunction
-
Constructs a new boolean function for the given array of parents.
- BooleanGlassFunction - Class in edu.cmu.tetrad.study.gene.tetrad.gene.history
-
Updates a gene given a history using the formula Gi.0 = max(Gi.1 - decayRate * -Gi.1 + booleanInfluenceRate * F(Parents(Gi) in the graph \ Gi.1), lowerBound), as described in Edwards and Glass, (2000), "Combinatorial explosion in model gene networks", American Institute of Physics.
- BooleanGlassFunction(LagGraph) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.history.BooleanGlassFunction
-
Constructs a new random boolean Glass function using the given lag graph, with a basalExpression of 0.0, a true value of +1.0 and a false value of -1.0.
- BooleanGlassFunction(LagGraph, double, double) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.history.BooleanGlassFunction
-
Constructs a new random boolean Glass function using the given lag graph, lower bound, and basalExpression.
- booleanRepresentation(int, int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.akutsu.BoolSearch
-
Computes a byte vector which corresponds to the argument ind.
- booleanRepresentation(int, int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.ideker.ItkPredictorSearch
-
Computes a byte vector which corresponds to the argument ind.
- booleanRepresentation(int, int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.reveal.RevealEvaluator
-
Computes a byte vector which corresponds to the argument ind.
- booleanRepresentation(int, int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.BoolSearch
-
Computes a byte vector which corresponds to the argument ind.
- booleanRepresentation(int, int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.LTestReveal
-
Computes a byte vector which corresponds to the argument ind.
- booleanRepresentation(int, int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.RevealEvaluator
-
Computes a byte vector which corresponds to the argument ind.
- BoolSearch - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.akutsu
-
This class contains as a member variable (cases) the time series data stored in an int array of microarray measurements.
- BoolSearch - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin
-
This class contains as a member variable (cases) the time series data stored in an int array of microarray measurements.
- BoolSearch(int[][], String[]) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.akutsu.BoolSearch
-
Constructor
- BoolSearch(int[][], String[]) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.BoolSearch
-
Constructor for BoolSearch.
- BOOTSTRAP - Enum constant in enum class edu.cmu.tetrad.search.Cstar.SampleStyle
-
Use bootstrap.
- Bootstrapping - Annotation Interface in edu.cmu.tetrad.annotation
-
Indicate algorithm can do bootstrapping.
- BOOTSTRAPPING_NUM_THREADS - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
BOOTSTRAPPING_NUM_THEADS="bootstrappingNumThreads"
- BootstrapSampler - Class in edu.cmu.tetrad.data
-
Provides a static method for sampling with replacement from a dataset to create a new dataset with a sample size supplied by the user.
- BootstrapSampler() - Constructor for class edu.cmu.tetrad.data.BootstrapSampler
-
Constructs a sample that does not do any logging.
- bootStrapSampling(DataSet, int) - Method in class edu.cmu.tetrad.calibration.DataForCalibrationRfci
-
bootStrapSampling.
- Boss - Class in edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag
-
BOSS (Best Order Score Search)
- Boss - Class in edu.cmu.tetrad.search
-
Implements Best Order Score Search (BOSS).
- Boss() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Boss
-
Constructs a new BOSS algorithm.
- Boss(ScoreWrapper) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Boss
-
Constructs a new BOSS algorithm with the given score.
- Boss(Score) - Constructor for class edu.cmu.tetrad.search.Boss
-
This algorithm will work with an arbitrary BIC score.
- BOSS - Enum constant in enum class edu.cmu.tetrad.search.Cstar.CpdagAlgorithm
-
The BOSS algorihtm.
- BOSS - Enum constant in enum class edu.cmu.tetrad.search.FaskOrig.AdjacencyMethod
-
A permutation search with the BOSS algorithm.
- BOSS - Enum constant in enum class edu.cmu.tetrad.search.LvLite.START_WITH
-
Start with BOSS.
- BOSS_ALG - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
BOSS_ALG="bossAlg"
- BossDumb - Class in edu.cmu.tetrad.algcomparison.algorithm.oracle.pag
-
This class represents the LV-Lite algorithm, which is an implementation of the GFCI algorithm for learning causal structures from observational data using the BOSS algorithm as an initial CPDAG and using all score-based steps afterward.
- BossDumb() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.BossDumb
-
This class represents a LV-Lite algorithm.
- BossDumb(ScoreWrapper) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.BossDumb
-
LV-Lite is a class that represents a LV-Lite algorithm.
- BossLingam - Class in edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag
-
BOSS-LiNGAM algorithm.
- BossLingam - Class in edu.cmu.tetrad.search
-
Implements an algorithm which first finds a CPDAG for the variables and then uses a non-Gaussian orientation method to orient the undirected edges.
- BossLingam() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.BossLingam
-
Constructs a new BOSS-LiNGAM algorithm.
- BossLingam(ScoreWrapper) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.BossLingam
-
Constructs a new BOSS-LiNGAM algorithm with the given score.
- BossLingam(Graph, DataSet) - Constructor for class edu.cmu.tetrad.search.BossLingam
-
Constructor.
- BossPag - Class in edu.cmu.tetrad.algcomparison.algorithm.oracle.pag
-
This class represents the LV-Lite algorithm, which is an implementation of the GFCI algorithm for learning causal structures from observational data using the BOSS algorithm as an initial CPDAG and using all score-based steps afterward.
- BossPag() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.BossPag
-
This class represents a LV-Lite algorithm.
- BossPag(ScoreWrapper) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.BossPag
-
LV-Lite is a class that represents a LV-Lite algorithm.
- BOTH - Enum constant in enum class edu.cmu.tetrad.calculator.expression.ExpressionDescriptor.Position
-
The expression can occur in both the prefix and infix position.
- BoxDataSet - Class in edu.cmu.tetrad.data
-
Wraps a DataBox in such a way that mixed data sets can be stored.
- BoxDataSet(BoxDataSet) - Constructor for class edu.cmu.tetrad.data.BoxDataSet
-
Makes of copy of the given data set.
- BoxDataSet(DataBox, List<Node>) - Constructor for class edu.cmu.tetrad.data.BoxDataSet
-
Constructs a new data set with the given number of rows and columns, with all values set to missing.
- Bpc - Class in edu.cmu.tetrad.algcomparison.algorithm.cluster
-
Build Pure Clusters.
- Bpc - Class in edu.cmu.tetrad.search
-
Implements the Build Pure Clusters (BPC) algorithm, which allows one to identify clusters of measured variables in a dataset that are explained by a single latent.
- Bpc() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.cluster.Bpc
-
Constructs a new BPC algorithm.
- Bpc(DataSet, double, BpcTestType) - Constructor for class edu.cmu.tetrad.search.Bpc
-
Constructor.
- Bpc(ICovarianceMatrix, double, BpcTestType) - Constructor for class edu.cmu.tetrad.search.Bpc
-
Constructor.
- BpcAlgorithmType - Enum Class in edu.cmu.tetrad.search.utils
-
Enumerates the algorithm types for BuildPureClusters, and Purify.
- BpcTestType - Enum Class in edu.cmu.tetrad.search.utils
-
Enumerates the test types for BuildPureClusters, and Purify.
- BpcTetradPurifyWashdown - Class in edu.cmu.tetrad.search.work_in_progress
-
Implements a really simple idea for building pure clusters, just using the Purify algorithm.
- BpcTetradPurifyWashdown(DataSet, BpcTestType, double) - Constructor for class edu.cmu.tetrad.search.work_in_progress.BpcTetradPurifyWashdown
-
Construct the algorithm using a data set.
- BpcTetradPurifyWashdown(ICovarianceMatrix, BpcTestType, double) - Constructor for class edu.cmu.tetrad.search.work_in_progress.BpcTetradPurifyWashdown
-
Construct the algorithm using a covariance matrix.
- BryanSensitivityStudy - Class in edu.cmu.tetrad.study.examples.conditions
-
An example script to simulate data and run a comparison analysis on it.
- BUILD_PURE_CLUSTERS - Enum constant in enum class edu.cmu.tetrad.search.utils.BpcAlgorithmType
-
This one will work and does a good job for medium-sized models.
- buildIndexing(List<Node>) - Static method in class edu.cmu.tetrad.search.utils.LogUtilsSearch
-
buildIndexing.
- buildTable(List<DiscreteVariable>) - Method in class edu.cmu.tetrad.search.utils.AdTree
-
Builds the contingency table based on the given list of discrete variables.
- bumpInitialization(double) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.DishModel
-
Bumps the given expression value in the manner prescribed for the getModel dish.
- ByteDataBox - Class in edu.cmu.tetrad.data
-
Stores a 2D array of byte data.
- ByteDataBox(byte[][]) - Constructor for class edu.cmu.tetrad.data.ByteDataBox
-
Constructs a new data box using the given 2D byte data array as data.
- ByteDataBox(int, int) - Constructor for class edu.cmu.tetrad.data.ByteDataBox
-
Constructs an 2D byte array consisting entirely of missing values (-99).
C
- ca - Enum constant in enum class edu.cmu.tetrad.graph.EdgeTypeProbability.EdgeType
-
Circle-to-arrow
- CACHE_SCORES - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
CACHE_SCORES="cacheScores"
- calcAdjacencyGraph(Graph) - Static method in class edu.cmu.tetrad.search.utils.DagToPag
-
Calculates the adjacency graph for the given Directed Acyclic Graph (DAG).
- calcChiSquare(int[], double) - Method in class edu.cmu.tetrad.search.test.ChiSquareTest
-
Calculates chi square for a conditional cross-tabulation table for independence question 0 _||_ 1 | 2, 3, ...max by summing up chi square and degrees of freedom for each conditional table in turn.
- calcChiSquare(Sextad[]) - Method in class edu.cmu.tetrad.search.utils.DeltaSextadTest
-
Takes a list of tetrads for the given data set and returns the chi square value for the test.
- calcChiSquare(Tetrad...) - Method in class edu.cmu.tetrad.search.utils.DeltaTetradTest
-
Takes a list of tetrads for the given data set and returns the chi square value for the test.
- calcMargin(int[]) - Method in interface edu.cmu.tetrad.data.CellTable
-
Calculates the marginal sum for the cell table based on the given coordinates.
- calcMargin(int[]) - Method in class edu.cmu.tetrad.data.CellTableAdTree
-
Calculates a marginal sum for the cell table.
- calcMargin(int[]) - Method in class edu.cmu.tetrad.data.CellTableCountSample
-
Calculates a marginal sum for the cell table.
- calcMargin(int[], int[]) - Method in interface edu.cmu.tetrad.data.CellTable
-
Calculates the marginal sum for the cell table based on the given coordinates and margin variables.
- calcMargin(int[], int[]) - Method in class edu.cmu.tetrad.data.CellTableAdTree
-
An alternative way to specify a marginal calculation.
- calcMargin(int[], int[]) - Method in class edu.cmu.tetrad.data.CellTableCountSample
-
An alternative way to specify a marginal calculation.
- CALCULATE_FROM_SEM - Enum constant in enum class edu.cmu.tetrad.sem.StandardizedSemIm.Initialization
-
Calculate from SEM.
- calculateCentralMoment(double[], int) - Static method in class edu.cmu.tetrad.util.StatUtils
- calculateCumulant(double[], int) - Static method in class edu.cmu.tetrad.util.StatUtils
- calculateMinimumTotalEffectsOnY(Node) - Method in class edu.cmu.tetrad.search.Ida
-
Returns a map from nodes in V \ {Y} to their minimum effects.
- calculateMoment(double[], int) - Static method in class edu.cmu.tetrad.util.StatUtils
- calculatePriorMarginals(int) - Method in class edu.cmu.tetrad.bayes.ApproximateUpdater
-
Calculates the prior marginal probabilities of the given node.
- calculatePriorMarginals(int) - Method in interface edu.cmu.tetrad.bayes.BayesUpdater
-
Calculates the prior marginal probabilities of the given node.
- calculatePriorMarginals(int) - Method in class edu.cmu.tetrad.bayes.CptInvariantUpdater
-
Calculates the prior marginal probabilities of the given node.
- calculatePriorMarginals(int) - Method in class edu.cmu.tetrad.bayes.Identifiability
-
Calculates the prior marginal probabilities of the given node.
- calculatePriorMarginals(int) - Method in class edu.cmu.tetrad.bayes.JunctionTreeUpdater
-
Calculates the prior marginal probabilities of the given node.
- calculatePriorMarginals(int) - Method in class edu.cmu.tetrad.bayes.RowSummingExactUpdater
-
Calculates the prior marginal probabilities of the given node.
- calculateUpdatedMarginals(int) - Method in class edu.cmu.tetrad.bayes.ApproximateUpdater
-
Calculates the updated marginal probabilities of the given node, given the evidence.
- calculateUpdatedMarginals(int) - Method in interface edu.cmu.tetrad.bayes.BayesUpdater
-
Calculates the updated marginal probabilities of the given node, given the evidence.
- calculateUpdatedMarginals(int) - Method in class edu.cmu.tetrad.bayes.CptInvariantUpdater
-
Calculates the updated marginal probabilities of the given node, given the evidence.
- calculateUpdatedMarginals(int) - Method in class edu.cmu.tetrad.bayes.Identifiability
-
Calculates the updated marginal probabilities of the given node, given the evidence.
- calculateUpdatedMarginals(int) - Method in class edu.cmu.tetrad.bayes.JunctionTreeUpdater
-
Calculates the updated marginal probabilities of the given node, given the evidence.
- calculateUpdatedMarginals(int) - Method in class edu.cmu.tetrad.bayes.RowSummingExactUpdater
-
Calculates the updated marginal probabilities of the given node, given the evidence.
- CanCor(double[][], double[][]) - Static method in class edu.cmu.tetrad.search.utils.EstimateRank
-
Compute canonical correlations from data.
- CanCor(int[], int[], double[][]) - Static method in class edu.cmu.tetrad.search.utils.EstimateRank
-
Compute canonical correlations from covariance matrix.
- CaseExpander - Class in edu.cmu.tetrad.data
-
Makes a new data set in which cases in the given data set that have been assigned multiplicies other than n = 1 are copied out n times.
- CaseExpander() - Constructor for class edu.cmu.tetrad.data.CaseExpander
-
Initializes a new instance of the CaseExpander class.
- cauchyCdf(double) - Static method in class edu.cmu.tetrad.util.ProbUtils
-
Cauchy CDF
- cauchyPdf(double) - Static method in class edu.cmu.tetrad.util.ProbUtils
-
cauchyPdf.
- cauchyQuantile(double) - Static method in class edu.cmu.tetrad.util.ProbUtils
-
cauchyQuantile.
- cauchyRand() - Static method in class edu.cmu.tetrad.util.ProbUtils
-
Cauchy random generator.
- cc - Enum constant in enum class edu.cmu.tetrad.graph.EdgeTypeProbability.EdgeType
-
Circle-to-circle
- Ccd - Class in edu.cmu.tetrad.algcomparison.algorithm.oracle.pag
-
CCD (Cyclic Causal Discovery)
- Ccd - Class in edu.cmu.tetrad.search
-
Implemented the Cyclic Causal Discovery (CCD) algorithm by Thomas Richardson.
- Ccd() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Ccd
-
Constructs a new CCD algorithm.
- Ccd(IndependenceWrapper) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Ccd
-
Constructs a new CCD algorithm with the given independence test.
- Ccd(IndependenceTest) - Constructor for class edu.cmu.tetrad.search.Ccd
-
Construct a CCD algorithm with the given independence test.
- CCI_SCORE_ALPHA - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
CCI_SCORE_ALPHA="cciScoreAlpha"
- CciTest - Class in edu.cmu.tetrad.algcomparison.independence
-
Wrapper for Daudin Conditional Independence test.
- CciTest() - Constructor for class edu.cmu.tetrad.algcomparison.independence.CciTest
-
Initializes a new instance of the CciTest class.
- CELL_TABLE_TYPE - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
CELL_COUNT_TYPE="cellCountType"
- CellTable - Interface in edu.cmu.tetrad.data
-
Represents a cell table that stores the values of the cells in a table of arbitrary dimension, for use, e.g., in the context of a contingency table--e.g.
- CellTableAdTree - Class in edu.cmu.tetrad.data
-
Stores a cell count table of arbitrary dimension.
- CellTableAdTree(DataSet, int[]) - Constructor for class edu.cmu.tetrad.data.CellTableAdTree
-
Constructs a new CellTableAdTree using the provided data set and test indices.
- CellTableAdTree(DataSet, int[], List<Integer>) - Constructor for class edu.cmu.tetrad.data.CellTableAdTree
-
Constructs a new cell table using the given array for dimensions, initializing all cells in the table to zero.
- CellTableCountSample - Class in edu.cmu.tetrad.data
-
Stores a cell count table of arbitrary dimension.
- CellTableCountSample(DataSet, int[]) - Constructor for class edu.cmu.tetrad.data.CellTableCountSample
-
Constructs a new cell table using the given array for dimensions, initializing all cells in the table to zero.
- CellTableCountSample(DataSet, int[], List<Integer>) - Constructor for class edu.cmu.tetrad.data.CellTableCountSample
-
Constructs a new cell table using the given array for dimensions, initializing all cells in the table to zero.
- CellTableProbs - Class in edu.cmu.tetrad.bayes
-
Estimates probabilities from data by constructing the entire cell count table for the data.
- CellTableProbs(DataSet) - Constructor for class edu.cmu.tetrad.bayes.CellTableProbs
-
Creates a cell count table for the given data set.
- center(double[]) - Static method in class edu.cmu.tetrad.data.DataTransforms
-
center.
- center(DataSet) - Static method in class edu.cmu.tetrad.data.DataTransforms
-
Subtracts the mean of each column from each datum that column.
- center(Matrix) - Static method in class edu.cmu.tetrad.search.FastIca
-
Centers each row of the given matrix by subtracting the mean of the row from each element.
- center(List<DataSet>) - Static method in class edu.cmu.tetrad.data.DataTransforms
-
center.
- centerData(Matrix) - Static method in class edu.cmu.tetrad.data.DataTransforms
-
centerData.
- centeringComp() - Static method in class edu.cmu.tetrad.util.JOptionUtils
-
centeringComp.
- Cfci - Class in edu.cmu.tetrad.algcomparison.algorithm.oracle.pag
-
Conservative FCI.
- Cfci - Class in edu.cmu.tetrad.search
-
Adjusts FCI (see) to use conservative orientation as in CPC (see).
- Cfci() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Cfci
-
Constructs a new conservative FCI algorithm.
- Cfci(IndependenceWrapper) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Cfci
-
Constructs a new conservative FCI algorithm with the given independence test.
- Cfci(IndependenceTest) - Constructor for class edu.cmu.tetrad.search.Cfci
-
Constructs a new FCI search for the given independence test and background knowledge.
- CG_EXACT - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
CG_EXACT="cgExact"
- changeName(String, String) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
changeName.
- changeVariable(Node, Node) - Method in class edu.cmu.tetrad.data.BoxDataSet
-
Changes the variable for the given column from
from
toto
. - changeVariable(Node, Node) - Method in interface edu.cmu.tetrad.data.DataSet
-
Changes the variable for the given column from
from
toto
. - changeVariable(Node, Node) - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
Changes the variable for the given column from
from
toto
. - chebyshev(int, double) - Static method in class edu.cmu.tetrad.util.StatUtils
-
Computes the value of the Chebyshev polynomial of a given degree at a specified point x.
- CHECK_TYPE - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
CHECK_TYPE="checkType"
- checkAgainstAndersonDarlingTest(List<Double>) - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Tests a list of p-values against the Anderson-Darling Test.
- checkIndependence(Node, Node, Node...) - Method in interface edu.cmu.tetrad.search.IndependenceTest
-
Checks the independence fact in question and returns and independence result.
- checkIndependence(Node, Node, Node...) - Method in class edu.cmu.tetrad.search.test.IndTestProbabilistic
-
Checks the independence fact in question and returns and independence result.
- checkIndependence(Node, Node, Node...) - Method in class edu.cmu.tetrad.search.work_in_progress.ProbabilisticMapIndependence
-
Checks the independence fact in question and returns and independence result.
- checkIndependence(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.CompositeIndependenceTest
-
checkIndependence.
- checkIndependence(Node, Node, Set<Node>) - Method in interface edu.cmu.tetrad.search.IndependenceTest
-
checkIndependence.
- checkIndependence(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.IndTestIod
-
Checks the independence between two nodes given a set of nodes.
- checkIndependence(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.test.IndTestChiSquare
-
Determines whether variable x is independent of variable y given a list of conditioning varNames z.
- checkIndependence(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.test.IndTestConditionalCorrelation
-
Checks the independence of x _||_ y | z
- checkIndependence(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.test.IndTestConditionalGaussianLrt
-
Returns and independence result that states whether x _||_y | z and what the p-value of the test is.
- checkIndependence(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.test.IndTestDegenerateGaussianLrt
-
Returns an independence result specifying whether x _||_ y | Z and what its p-values are.
- checkIndependence(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.test.IndTestFisherZ
-
Determines whether variable x _||_ y | z given a list of conditioning variables z.
- checkIndependence(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.test.IndTestFisherZConcatenateResiduals
-
Determines whether x _||_ y | z.
- checkIndependence(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.test.IndTestFisherZFisherPValue
-
Checks for independence between two nodes given a set of conditioning nodes.
- checkIndependence(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.test.IndTestGSquare
-
Determines whether variable x is independent of variable y given a list of conditioning varNames z.
- checkIndependence(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.test.IndTestHsic
-
Determines whether variable x is independent of variable y given a list of conditioning variables z.
- checkIndependence(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.test.IndTestIndependenceFacts
-
Checks independence by looking up facts in the list of facts supplied in the constructor.
- checkIndependence(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.test.IndTestMulti
-
Determines whether variable x is independent of variable y given a list of conditioning variables z.
- checkIndependence(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.test.IndTestMvpLrt
-
Determines whether two nodes are independent given a set of conditioning nodes.
- checkIndependence(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.test.IndTestProbabilistic
-
checkIndependence.
- checkIndependence(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.test.IndTestRegression
-
Checks the independence between two variables, given a set of conditioning variables.
- checkIndependence(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.test.IndTestTrekSep
-
Determines independence between variables x and y, given the set of variables z.
- checkIndependence(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.test.Kci
-
Checks the independence between two nodes given a set of conditioning variables.
- checkIndependence(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.test.MsepTest
-
Checks the independence between two nodes with respect to a set of conditioning nodes.
- checkIndependence(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.test.ScoreIndTest
-
Checks the independence between two nodes given a set of additional nodes.
- checkIndependence(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestCramerT
-
Checks the independence between two nodes given a set of conditioning nodes.
- checkIndependence(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestFisherZPercentIndependent
-
Checks the independence between two nodes x and y given a set of conditioning nodes z.
- checkIndependence(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestFisherZRecursive
-
checkIndependence.
- checkIndependence(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestMixedMultipleTTest
-
Checks for independence between two nodes.
- checkIndependence(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestMnlrLr
-
Checks the independence between two nodes given a set of conditioning nodes.
- checkIndependence(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestMultinomialLogisticRegression
-
Checks for independence between two nodes, given a set of conditioning nodes.
- checkIndependence(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestPositiveCorr
-
Checks the independence between two nodes, given a set of conditioning nodes.
- checkIndependence(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestSepsetDci
-
Checks the independence between two nodes, given a set of conditioning nodes.
- checkIndependence(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.work_in_progress.ProbabilisticMapIndependence
-
checkIndependence.
- checkIndependence(Node, Node, Set<Node>) - Method in class edu.pitt.csb.mgm.IndTestMultinomialLogisticRegressionWald
-
Determines the independence between two variables given a set of conditioning variables.
- checkIndependenceForTargetNode(Node) - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Retrieves the list of local independence facts for a given node.
- CheckKnowledge - Class in edu.cmu.tetrad.search
-
Identifies violations of knowledge for a given graph.
- checkNestingOfFields() - Method in class edu.cmu.tetrad.util.TetradSerializableUtils
-
Checks all of the classes in the serialization scope that implement TetradSerializable to make sure all of their fields are either themselves (a) primitive, (b) TetradSerializable, or (c) assignable from types designated as safely serializable by virtue of being included in the safelySerializableTypes array (see), or are arrays whose lowest order component types satisfy either (a), (b), or (c).
- checkProbFileExists(String, int, int, int, int, String, int, double, double, String) - Method in class edu.cmu.tetrad.calibration.DataForCalibrationRfci
-
checkProbFileExists.
- checkValue(int) - Method in class edu.cmu.tetrad.data.DiscreteVariable
-
checkValue.
- checkValue(Object) - Method in class edu.cmu.tetrad.data.AbstractVariable
-
Checks to see whether the passed value can be converted into a value for this variable.
- checkValue(Object) - Method in class edu.cmu.tetrad.data.ContinuousVariable
-
Checks to see whether the passed value can be converted into a value for this variable.
- checkValue(Object) - Method in interface edu.cmu.tetrad.data.Variable
-
Checks to see whether the passed value can be converted into a value for this variable.
- CHI_SQUARE - Enum constant in enum class edu.cmu.tetrad.search.test.ChiSquareTest.TestType
-
The chi-square test.
- CHICKERING - Enum constant in enum class edu.cmu.tetrad.search.score.SemBicScore.RuleType
-
The standard linear, Gaussian BIC score.
- chidist(double, int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
Calculates the one-tail probability of the Chi-squared distribution for doubles
- chiSq - Variable in class edu.cmu.tetrad.bayes.BayesProperties.LikelihoodRet
-
The chi-squared statistic.
- chisqCdf(double, double) - Static method in class edu.cmu.tetrad.util.ProbUtils
-
chisqCdf.
- chisqPdf(double, double) - Static method in class edu.cmu.tetrad.util.ProbUtils
-
chisqPdf.
- chisqQuantile(double, double) - Static method in class edu.cmu.tetrad.util.ProbUtils
-
chisqQuantile.
- chisqRand(double) - Static method in class edu.cmu.tetrad.util.ProbUtils
-
Chi square random generator.
- ChiSquare - Class in edu.cmu.tetrad.algcomparison.independence
-
Wrapper for Fisher Z test.
- ChiSquare - Class in edu.cmu.tetrad.util.dist
-
Wraps a chi square distribution for purposes of drawing random samples.
- ChiSquare - Enum constant in enum class edu.cmu.tetrad.study.performance.ComparisonParameters.IndependenceTestType
-
Constant for the ChiSquare independence test.
- ChiSquare() - Constructor for class edu.cmu.tetrad.algcomparison.independence.ChiSquare
-
Initializes a new instance of the ChiSquare class.
- ChiSquareTest - Class in edu.cmu.tetrad.search.test
-
Calculates chi-square or g-square for a conditional cross-tabulation table for independence question 0 _||_ 1 | 2, 3, ...max by summing up chi-square and degrees of freedom for each conditional table in turn, where rows or columns that sum to less than a given threshold have been removed.
- ChiSquareTest(DataSet, double, ChiSquareTest.TestType, List<Integer>) - Constructor for class edu.cmu.tetrad.search.test.ChiSquareTest
-
Constructs a test using the given data set and significance level.
- ChiSquareTest.CellTableType - Enum Class in edu.cmu.tetrad.search.test
-
The type of cell table to use.
- ChiSquareTest.Result - Class in edu.cmu.tetrad.search.test
-
Simple class to store the parameters of the result returned by the G Square test.
- ChiSquareTest.TestType - Enum Class in edu.cmu.tetrad.search.test
-
The type of test to perform.
- ChoiceGenerator - Class in edu.cmu.tetrad.util
-
Generates (nonrecursively) all of the combinations of a choose b, where a, b are nonnegative integers and a >= b.
- ChoiceGenerator(int, int) - Constructor for class edu.cmu.tetrad.util.ChoiceGenerator
-
Constructs a new choice generator for a choose b.
- cholesky(Matrix) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
cholesky.
- choleskySimulation(CovarianceMatrix) - Static method in class edu.cmu.tetrad.data.DataUtils
-
choleskySimulation.
- choose(int, int) - Static method in class edu.cmu.tetrad.util.MathUtils
-
choose.
- CIRCLE - Enum constant in enum class edu.cmu.tetrad.graph.Endpoint
-
Circle endpoint.
- circleLayout(Graph) - Static method in class edu.cmu.tetrad.graph.LayoutUtil
-
Arranges the nodes in the graph in a circle.
- ClassifierBayesUpdaterDiscrete - Class in edu.cmu.tetrad.classify
-
This class contains a method classify which uses an instantiated Bayes net (BayesIm) provided in the constructor.
- ClassifierBayesUpdaterDiscrete(BayesIm, DataSet) - Constructor for class edu.cmu.tetrad.classify.ClassifierBayesUpdaterDiscrete
-
The constructor sets the values of the private member variables.
- ClassifierDiscrete - Interface in edu.cmu.tetrad.classify
-
Interface implemented by classes that do discrete classification.
- ClassifierMbDiscrete - Class in edu.cmu.tetrad.classify
-
Performs a Bayesian classification of a test set based on a given training set.
- ClassifierMbDiscrete(String, String, String, String, String, String, String) - Constructor for class edu.cmu.tetrad.classify.ClassifierMbDiscrete
-
Constructs a new ClassifierMbDiscrete object using the given training and test data, target variable, alpha value,
- classify() - Method in class edu.cmu.tetrad.classify.ClassifierBayesUpdaterDiscrete
-
Computes and returns the cross-tabulation of observed versus estimated values of the target variable as described above.
- classify() - Method in interface edu.cmu.tetrad.classify.ClassifierDiscrete
-
classify.
- classify() - Method in class edu.cmu.tetrad.classify.ClassifierMbDiscrete
-
Classifies the test data by Bayesian updating.
- clazz() - Method in class edu.cmu.tetrad.annotation.AnnotatedClass
-
Gets the class.
- clear() - Method in class edu.cmu.tetrad.data.Knowledge
-
Removes explicit knowledge and tier information.
- clear() - Method in class edu.cmu.tetrad.graph.Dag
-
clear.
- clear() - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
Removes all nodes (and therefore all edges) from the graph.
- clear() - Method in interface edu.cmu.tetrad.graph.Graph
-
Removes all nodes (and therefore all edges) from the graph.
- clear() - Method in class edu.cmu.tetrad.graph.LagGraph
-
clear.
- clear() - Method in class edu.cmu.tetrad.graph.SemGraph
-
clear.
- clear() - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Clears the graph by removing all vertices and edges.
- clear() - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Clears the results stored in the `resultsIndep` and `resultsDep` lists.
- clear() - Method in class edu.cmu.tetrad.util.LogUtils
-
Removes all streams from logging.
- clear() - Method in class edu.cmu.tetrad.util.TetradLogger
-
Removes all streams from the logger.
- clearArchiveDirectory() - Method in class edu.cmu.tetrad.util.TetradSerializableUtils
-
Clears the archive directory.
- clearBookmarks() - Method in class edu.cmu.tetrad.search.utils.TeyssierScorer
-
Clears all bookmarks.
- clearCellTable() - Method in class edu.cmu.tetrad.bayes.StoredCellProbsObs
-
clearCellTable.
- clearEdges() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ActiveLagGraph
-
clearEdges.
- clearEdges() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ManualLagGraph
-
clearEdges.
- clearEdges() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BasicLagGraph
-
Removes all edges from the graph.
- clearEdges() - Method in interface edu.cmu.tetrad.study.gene.tetrad.gene.history.LagGraph
-
Removes all edges from the graph.
- clearRow(int, int) - Method in interface edu.cmu.tetrad.bayes.BayesIm
-
Assigns random probability values to the child values of this row that add to 1.
- clearRow(int, int) - Method in class edu.cmu.tetrad.bayes.DirichletBayesIm
-
Assigns random probability values to the child values of this row that add to 1.
- clearRow(int, int) - Method in class edu.cmu.tetrad.bayes.MlBayesIm
-
Clears all values in the specified row of a table.
- clearRow(int, int) - Method in class edu.cmu.tetrad.bayes.MlBayesImObs
-
Assigns random probability values to the child values of this row that add to 1.
- clearRow(int, int) - Method in class edu.cmu.tetrad.bayes.UpdatedBayesIm
-
Assigns random probability values to the child values of this row that add to 1.
- clearSelection() - Method in class edu.cmu.tetrad.data.BoxDataSet
-
Marks all variables as deselected.
- clearSelection() - Method in class edu.cmu.tetrad.data.CorrelationMatrixOnTheFly
-
clearSelection.
- clearSelection() - Method in class edu.cmu.tetrad.data.CovarianceMatrix
-
clearSelection.
- clearSelection() - Method in class edu.cmu.tetrad.data.CovarianceMatrixOnTheFly
-
clearSelection.
- clearSelection() - Method in interface edu.cmu.tetrad.data.DataSet
-
Marks all variables as deselected.
- clearSelection() - Method in interface edu.cmu.tetrad.data.ICovarianceMatrix
-
Clears the current selection of variables in the covariance matrix.
- clearSelection() - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
Marks all variables as deselected.
- clearTable(int) - Method in interface edu.cmu.tetrad.bayes.BayesIm
-
Randomizes every row in the table for the given node index.
- clearTable(int) - Method in class edu.cmu.tetrad.bayes.DirichletBayesIm
-
Randomizes every row in the table for the given node index.
- clearTable(int) - Method in class edu.cmu.tetrad.bayes.MlBayesIm
-
Clears the table by clearing all rows for the given node.
- clearTable(int) - Method in class edu.cmu.tetrad.bayes.MlBayesImObs
-
Randomizes every row in the table for the given node index.
- clearTable(int) - Method in class edu.cmu.tetrad.bayes.UpdatedBayesIm
-
Randomizes every row in the table for the given node index.
- clique(List<Node>) - Method in class edu.cmu.tetrad.search.utils.TeyssierScorer
-
True iff the nodes in W form a clique in the current DAG.
- Clique - Enum constant in enum class edu.cmu.tetrad.search.utils.ClusterSignificance.CheckType
-
Check to see if the cluster is a clique.
- cliques(Graph) - Method in class edu.cmu.tetrad.sem.Ricf
-
cliques.
- clone() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.biolingua.BiolinguaDigraph
-
Returns a clone of this graph
- clone() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.biolingua.Digraph
-
Returns a clone of this graph
- clone() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.BasicGraph
-
Returns a clone of this graph
- cluster(Matrix) - Method in interface edu.cmu.tetrad.cluster.ClusteringAlgorithm
-
Clusters the given data set.
- cluster(Matrix) - Method in class edu.cmu.tetrad.cluster.KMeans
-
Clusters the given data set.
- ClusterAlgorithm - Interface in edu.cmu.tetrad.algcomparison.algorithm.cluster
-
Tags an algorithm that generates clusters.
- ClusteringAlgorithm - Interface in edu.cmu.tetrad.cluster
-
Represents a clustering algorithm to cluster some data.
- Clusters - Class in edu.cmu.tetrad.data
-
Stores clusters of variables for MimBuild, Purify, etc.
- Clusters() - Constructor for class edu.cmu.tetrad.data.Clusters
-
Constructs a blank knowledge object.
- Clusters(Clusters) - Constructor for class edu.cmu.tetrad.data.Clusters
-
Copy constructor.
- ClusterSignificance - Class in edu.cmu.tetrad.search.utils
-
Provides some methods to check significance of clusters for clustering algroithms.
- ClusterSignificance(List<Node>, DataModel) - Constructor for class edu.cmu.tetrad.search.utils.ClusterSignificance
-
Constructs a new cluster significance object.
- ClusterSignificance.CheckType - Enum Class in edu.cmu.tetrad.search.utils
-
Gives the options for checking significance of clusters--could check the significance using a regression model, or could check to see if the cluster is a clique, or could not do the check.
- clustersToPartition(Clusters, List<Node>) - Static method in class edu.cmu.tetrad.search.utils.ClusterUtils
-
Converts a list of indices into a list of Nodes representing a cluster.
- ClusterUtils - Class in edu.cmu.tetrad.search.utils
-
Provides some general utilities for dealing with clustering input and output.
- COEF - Enum constant in enum class edu.cmu.tetrad.sem.ParamType
-
Enum representing the free parameter type for structural equation modeling (SEM) models.
- COEF_HIGH - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
COEF_HIGH="coefHigh"
- COEF_LOW - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
COEF_LOW="coefLow"
- COEF_SYMMETRIC - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
COEF_SYMMETRIC="coefSymmetric"
- collider(Node, Node, Node) - Method in class edu.cmu.tetrad.search.utils.TeyssierScorer
-
Returns true iff [a, b, c] is a collider.
- COLLIDER - Enum constant in enum class edu.cmu.tetrad.search.utils.GraphSearchUtils.CpcTripleType
-
A collider triple.
- COLLIDER - Enum constant in enum class edu.cmu.tetrad.search.work_in_progress.VcPc.CpcTripleType
-
The triple is a collider.
- COLLIDER - Enum constant in enum class edu.cmu.tetrad.search.work_in_progress.VcPcFast.CpcTripleType
-
Constant
COLLIDER
- COLLIDER_DISCOVERY_RULE - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
COLLIDER_DISCOVERY_RULE="colliderDiscoveryRule"
- colliderAllowed(Graph, Node, Node, Node, Knowledge) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Determines if the collider is allowed.
- colliderAllowed(Graph, Node, Node, Node, Knowledge) - Static method in class edu.cmu.tetrad.search.utils.PcCommon
-
Checks if colliders are allowed based on the given knowledge.
- colliderOrientedMsg(Node, Node, Node) - Static method in class edu.cmu.tetrad.search.utils.LogUtilsSearch
-
colliderOrientedMsg.
- colliderOrientedMsg(Node, Node, Node, Set<Node>) - Static method in class edu.cmu.tetrad.search.utils.LogUtilsSearch
-
colliderOrientedMsg.
- colliderOrientedMsg(String, Node, Node, Node) - Static method in class edu.cmu.tetrad.search.utils.LogUtilsSearch
-
colliderOrientedMsg.
- colMax(DoubleMatrix2D) - Static method in class edu.pitt.csb.mgm.MixedUtils
-
return vector of the maximum of each column in m (as ints, i.e.
- COLON - Static variable in class edu.cmu.tetrad.data.DelimiterType
-
Constant
COLON
- columnCount() - Method in interface edu.pitt.isp.sverchkov.data.DataTable
-
columnCount.
- columnCount() - Method in class edu.pitt.isp.sverchkov.data.DataTableImpl
-
columnCount.
- CombinationGenerator - Class in edu.cmu.tetrad.util
-
Generates (nonrecursively) all of the combinations of objects, where the number of objects in each dimension is specified.
- CombinationGenerator(int[]) - Constructor for class edu.cmu.tetrad.util.CombinationGenerator
-
Constructs a new combination of objects, choosing one object from each dimension.
- CombinationIterator - Class in edu.cmu.tetrad.util
-
Iterates through all the posible combinations for a set of variables (each with a different number of possible values).
- CombinationIterator(int[]) - Constructor for class edu.cmu.tetrad.util.CombinationIterator
-
Creates a combination set for a set of variables with the given number of maxValues
- combineContinuousData(List<DataModel>, double[][]) - Static method in class edu.cmu.tetrad.util.MultidataUtils
-
combineContinuousData.
- combineDataset(List<DataModel>) - Static method in class edu.cmu.tetrad.util.MultidataUtils
-
combineDataset.
- combineDiscreteDataToDiscreteVerticalData(List<DataModel>, List<Node>, int[][], int, int) - Static method in class edu.cmu.tetrad.util.MultidataUtils
-
combineDiscreteDataToDiscreteVerticalData.
- combineMixedContinuousData(List<DataModel>, List<Node>, double[][], int, int) - Static method in class edu.cmu.tetrad.util.MultidataUtils
-
combineMixedContinuousData.
- combineMixedDiscreteData(List<DataModel>, List<Node>, int[][], int, int) - Static method in class edu.cmu.tetrad.util.MultidataUtils
-
combineMixedDiscreteData.
- combineVariables(List<DataModel>, List<Node>) - Static method in class edu.cmu.tetrad.util.MultidataUtils
-
Combine the list of variables from each of data model in the list into one variable list.
- COMMA - Enum constant in enum class edu.cmu.tetrad.calculator.parser.Token
-
Comma.
- COMMA - Enum constant in enum class edu.cmu.tetrad.util.TextTable.Delimiter
-
Constant
COMMA
- COMMA - Static variable in class edu.cmu.tetrad.data.DelimiterType
-
Constant
COMMA
- command() - Element in annotation interface edu.cmu.tetrad.annotation.Algorithm
-
Command of the algorithm.
- command() - Element in annotation interface edu.cmu.tetrad.annotation.Score
-
The command to execute the score.
- command() - Element in annotation interface edu.cmu.tetrad.annotation.TestOfIndependence
-
Command of the test.
- CommonAncestorFalseNegativeBidirected - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- CommonAncestorFalseNegativeBidirected() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.CommonAncestorFalseNegativeBidirected
-
Constructs a new instance of the statistic.
- CommonAncestorFalsePositiveBidirected - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- CommonAncestorFalsePositiveBidirected() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.CommonAncestorFalsePositiveBidirected
-
Constructs a new instance of the statistic.
- CommonAncestorTruePositiveBidirected - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- CommonAncestorTruePositiveBidirected() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.CommonAncestorTruePositiveBidirected
-
Constructs a new instance of the statistic.
- CommonMeasuredAncestorRecallBidirected - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- CommonMeasuredAncestorRecallBidirected() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.CommonMeasuredAncestorRecallBidirected
-
Initializes a new instance of the CommonMeasuredAncestorRecallBidirected class.
- compare(ComparisonParameters) - Static method in class edu.cmu.tetrad.study.performance.Comparison
-
Simulates data from model paramerizing the given DAG, and runs the algorithm on that data, printing out error statistics.
- compare(ComparisonParameters) - Static method in class edu.cmu.tetrad.study.performance.Comparison2
-
Simulates data from model parameterizing the given DAG, and runs the algorithm on that data, printing out error statistics.
- COMPARE_GRAPH_ALGCOMP - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
USE_PSEUDOINVERSE_FOR_LATENT="usePseudoinverseForLatent"
- compareFromFiles(String, Algorithms, Statistics, Parameters) - Method in class edu.cmu.tetrad.algcomparison.Comparison
-
compareFromFiles.
- compareFromFiles(String, Algorithms, Statistics, Parameters, long, TimeUnit) - Method in class edu.cmu.tetrad.algcomparison.TimeoutComparison
-
compareFromFiles.
- compareFromFiles(String, String, Algorithms, Statistics, Parameters) - Method in class edu.cmu.tetrad.algcomparison.Comparison
-
Compares algorithms.
- compareFromFiles(String, String, Algorithms, Statistics, Parameters, long, TimeUnit) - Method in class edu.cmu.tetrad.algcomparison.TimeoutComparison
-
Compares algorithms.
- compareFromSimulations(String, Simulations, Algorithms, Statistics, Parameters) - Method in class edu.cmu.tetrad.algcomparison.Comparison
-
Compare simulation results using the provided parameters and write the comparison results to a file.
- compareFromSimulations(String, Simulations, Algorithms, Statistics, Parameters, long, TimeUnit) - Method in class edu.cmu.tetrad.algcomparison.TimeoutComparison
-
compareFromSimulations.
- compareFromSimulations(String, Simulations, String, Algorithms, Statistics, Parameters) - Method in class edu.cmu.tetrad.algcomparison.Comparison
-
Compares the results obtained from simulations.
- compareFromSimulations(String, Simulations, String, Algorithms, Statistics, Parameters, long, TimeUnit) - Method in class edu.cmu.tetrad.algcomparison.TimeoutComparison
-
Compares algorithms.
- compareFromSimulations(String, Simulations, String, PrintStream, Algorithms, Statistics, Parameters) - Method in class edu.cmu.tetrad.algcomparison.Comparison
-
Compares the results of simulations and generates an output file.
- compareFromSimulations(String, Simulations, String, PrintStream, PrintStream, Algorithms, Statistics, Parameters) - Method in class edu.cmu.tetrad.algcomparison.Comparison
-
Compares the results of different simulations and algorithms.
- compareTo(Edge) - Method in class edu.cmu.tetrad.graph.Edge
-
compareTo.
- compareTo(IndependenceFact) - Method in class edu.cmu.tetrad.graph.IndependenceFact
-
Note that this compareTo method gives a lexical ordering for independence facts and doesn't reflect independence fact equality.
- compareTo(Node) - Method in interface edu.cmu.tetrad.graph.Node
-
Returns the hashcode for this node.
- compareTo(ScoredGraph) - Method in class edu.cmu.tetrad.search.score.ScoredGraph
-
Returns a compare value for this scored graph compared ot the given scored graph.
- compareTo(Bes.Arrow) - Method in class edu.cmu.tetrad.search.utils.Bes.Arrow
-
Sorting by bump, high to low.
- compareTo(Point) - Method in class edu.cmu.tetrad.util.Point
-
True iff the given object is a point with the same coordinates as this one.
- compareTo(Object) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.ideker.ItkPredictorSearch.Gene
- compareTo(Object) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.LaggedFactor
- CompareTwoGraphs - Class in edu.cmu.tetrad.algcomparison
-
Gives the comparison of a target graph to a reference graph that is implemented in the interface.
- Comparison - Class in edu.cmu.tetrad.algcomparison
-
Script to do a comparison of a list of algorithms using a list of statistics and a list of parameters and their values.
- Comparison - Class in edu.cmu.tetrad.study.performance
-
Does a comparison of algorithm results across algorithm type, sample sizes, etc.
- Comparison() - Constructor for class edu.cmu.tetrad.algcomparison.Comparison
-
Initializes a new instance of the Comparison class.
- Comparison.ComparisonGraph - Enum Class in edu.cmu.tetrad.algcomparison
-
An enum of comparison graphs types.
- Comparison.TableColumn - Enum Class in edu.cmu.tetrad.study.performance
-
An enumeration of the columns in the comparison table.
- Comparison2 - Class in edu.cmu.tetrad.study.performance
-
Does a comparison of algorithm results across algorithm type, sample sizes, etc.
- Comparison2.TableColumn - Enum Class in edu.cmu.tetrad.study.performance
-
An enum of table columns.
- ComparisonParameters - Class in edu.cmu.tetrad.study.performance
-
Created by jdramsey on 3/24/16.
- ComparisonParameters() - Constructor for class edu.cmu.tetrad.study.performance.ComparisonParameters
-
Constructor for ComparisonParameters.
- ComparisonParameters(ComparisonParameters) - Constructor for class edu.cmu.tetrad.study.performance.ComparisonParameters
-
Constructor for ComparisonParameters.
- ComparisonParameters.Algorithm - Enum Class in edu.cmu.tetrad.study.performance
-
An enumeration of the algorithms that can be used for structure learning.
- ComparisonParameters.DataType - Enum Class in edu.cmu.tetrad.study.performance
-
An enumeration of the data types that can be used for structure learning.
- ComparisonParameters.IndependenceTestType - Enum Class in edu.cmu.tetrad.study.performance
-
An enumeration of the independence test types that can be used for structure learning.
- ComparisonParameters.ResultType - Enum Class in edu.cmu.tetrad.study.performance
-
An enumeration of the result types that can be used for structure learning.
- ComparisonResult - Class in edu.cmu.tetrad.study.performance
-
.
- ComparisonResult(ComparisonParameters) - Constructor for class edu.cmu.tetrad.study.performance.ComparisonResult
-
Constructor for ComparisonResult.
- ComparisonScript - Class in edu.cmu.tetrad.study.performance
-
Runs algorithm on data set (simulation is OK), printing out error statistics.
- compatible(Edge, Edge) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Determines if two edges are compatible.
- COMPLETE_RULE_SET_USED - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
COMPLETE_RULE_SET_USED="completeRuleSetUsed"
- completeGraph(Graph) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
completeGraph.
- CompositeIndependenceTest - Class in edu.cmu.tetrad.search
-
CompositeIndependenceTest class.
- CompositeIndependenceTest(IndependenceTest[]) - Constructor for class edu.cmu.tetrad.search.CompositeIndependenceTest
-
Constructor for CompositeIndependenceTest.
- composition() - Method in class edu.cmu.tetrad.search.utils.GraphoidAxioms
-
Checks if composition holds--e.g., (X ⊥⊥ Y | Z) ∧ (X ⊥⊥ W |Z) ==> X ⊥⊥ (Y ∪ W) |Z
- compositionalGraphoid() - Method in class edu.cmu.tetrad.search.utils.GraphoidAxioms
-
Checks whether the IM is a compositional graphoid.
- compressedCorrelation(Vector, Vector) - Static method in class edu.cmu.tetrad.util.StatUtils
-
compressedCorrelation.
- compute(boolean) - Method in interface edu.cmu.tetrad.stat.correlation.Covariance
-
compute.
- compute(boolean) - Method in class edu.cmu.tetrad.stat.correlation.CovarianceMatrix
-
compute.
- compute(boolean) - Method in interface edu.cmu.tetrad.stat.correlation.RealCovariance
-
compute.
- compute(boolean) - Method in class edu.cmu.tetrad.stat.correlation.RealCovarianceMatrix
-
compute.
- compute(boolean) - Method in class edu.cmu.tetrad.stat.correlation.RealCovarianceMatrixForkJoin
-
compute.
- compute(boolean) - Method in interface edu.cmu.tetrad.stat.RealVariance
-
compute.
- compute(boolean) - Method in class edu.cmu.tetrad.stat.RealVarianceVector
-
compute.
- compute(boolean) - Method in class edu.cmu.tetrad.stat.RealVarianceVectorForkJoin
-
compute.
- compute(boolean) - Method in interface edu.cmu.tetrad.stat.Variance
-
compute.
- compute(boolean) - Method in class edu.cmu.tetrad.stat.VarianceVector
-
compute.
- compute(boolean) - Method in class edu.cmu.tetrad.stat.VarianceVectorForkJoin
-
compute.
- computeLowerTriangle(boolean) - Method in interface edu.cmu.tetrad.stat.correlation.Covariance
-
computeLowerTriangle.
- computeLowerTriangle(boolean) - Method in class edu.cmu.tetrad.stat.correlation.CovarianceMatrix
-
computeLowerTriangle.
- computeLowerTriangle(boolean) - Method in interface edu.cmu.tetrad.stat.correlation.RealCovariance
-
computeLowerTriangle.
- computeLowerTriangle(boolean) - Method in class edu.cmu.tetrad.stat.correlation.RealCovarianceMatrix
-
computeLowerTriangle.
- computeLowerTriangle(boolean) - Method in class edu.cmu.tetrad.stat.correlation.RealCovarianceMatrixForkJoin
-
computeLowerTriangle.
- computeStdErrors(ISemIm) - Method in class edu.cmu.tetrad.sem.SemStdErrorEstimator
-
This method computes the information matrix or Hessian matrix of second order partial derivatives of the fitting function (4B_2 on page 135 of Bollen) with respect to the free freeParameters of the estimated SEM.
- concatenate(double[][]) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
Concatenates the vectors rows[i], i = 0...rows.length, into a single vector.
- concatenate(DataSet...) - Static method in class edu.cmu.tetrad.data.DataTransforms
-
concatenate.
- concatenate(DataSet, DataSet) - Static method in class edu.cmu.tetrad.data.DataTransforms
-
concatenate.
- concatenate(Matrix...) - Static method in class edu.cmu.tetrad.data.DataTransforms
-
concatenate.
- concatenate(List<DataSet>) - Static method in class edu.cmu.tetrad.data.DataTransforms
-
concatenate.
- CONCURRENT_FAS - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
CONCURRENT_FAS="concurrentFAS"
- CONDITIONAL_GAUSSIAN - Static variable in class edu.cmu.tetrad.algcomparison.simulation.SimulationTypes
-
Constant
CONDITIONAL_GAUSSIAN="Mixed Conditional Gaussian"
- ConditionalCorrelationIndependence - Class in edu.cmu.tetrad.search.test
-
Checks conditional independence of variable in a continuous data set using Daudin's method.
- ConditionalCorrelationIndependence(DataSet, int, double, int) - Constructor for class edu.cmu.tetrad.search.test.ConditionalCorrelationIndependence
-
Initializes a new instance of the ConditionalCorrelationIndependence class using the provided DataSet.
- ConditionalGaussianBicScore - Class in edu.cmu.tetrad.algcomparison.score
-
Wrapper for Fisher Z test.
- ConditionalGaussianBicScore() - Constructor for class edu.cmu.tetrad.algcomparison.score.ConditionalGaussianBicScore
-
Initializes a new instance of the FisherZ class.
- ConditionalGaussianLikelihood - Class in edu.cmu.tetrad.search.score
-
Implements a conditional Gaussian likelihood.
- ConditionalGaussianLikelihood(DataSet) - Constructor for class edu.cmu.tetrad.search.score.ConditionalGaussianLikelihood
-
Constructs the score using a covariance matrix.
- ConditionalGaussianLikelihood.Ret - Class in edu.cmu.tetrad.search.score
-
Gives return value for a conditional Gaussian likelihood, returning a likelihood value and the degrees of freedom for it.
- ConditionalGaussianLRT - Class in edu.cmu.tetrad.algcomparison.independence
-
Wrapper for Fisher Z test.
- ConditionalGaussianLRT() - Constructor for class edu.cmu.tetrad.algcomparison.independence.ConditionalGaussianLRT
-
Initializes a new instance of the FisherZ class.
- ConditionalGaussianScore - Class in edu.cmu.tetrad.search.score
-
Implements a conditional Gaussian BIC score for FGS, which calculates a BIC score for mixed discrete/Gaussian data using the conditional Gaussian likelihood function (see).
- ConditionalGaussianScore(DataSet, double, boolean) - Constructor for class edu.cmu.tetrad.search.score.ConditionalGaussianScore
-
Constructs the score using a covariance matrix.
- ConditionalGaussianSimulation - Class in edu.cmu.tetrad.algcomparison.simulation
-
A simulation method based on the conditional Gaussian assumption.
- ConditionalGaussianSimulation(RandomGraph) - Constructor for class edu.cmu.tetrad.algcomparison.simulation.ConditionalGaussianSimulation
-
Constructor for ConditionalGaussianSimulation.
- ConditioningSetType - Enum Class in edu.cmu.tetrad.search
-
The type of conditioning set to use for the Markov check.
- config(String) - Method in class edu.cmu.tetrad.util.LogUtils
-
config.
- configuration(String) - Method in class edu.cmu.tetrad.algcomparison.Comparison
-
Generates a configuration file containing information about available algorithms, statistics, independence tests, scores, and simulations.
- configuration(String) - Method in class edu.cmu.tetrad.algcomparison.TimeoutComparison
-
configuration.
- configurationActivated(TetradLoggerEvent) - Method in interface edu.cmu.tetrad.util.TetradLoggerListener
-
Invoked whenever a logger configuration is set on the
TetradLogger
and the logger is active (i.e., logging isn't turned off etc). - configurationDeactivated(TetradLoggerEvent) - Method in interface edu.cmu.tetrad.util.TetradLoggerListener
-
Invoked whenever a previously set logger config is resert or set to null and the logger is active (i.e., logging isn't turned off etc).
- CONFLICT_RULE - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
CONFLICT_RULE="conflictRule"
- CONNECTED - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
CONNECTED="connected"
- CONNECTED_DAG - Static variable in class edu.cmu.tetrad.graph.RandomGraph.UniformGraphGenerator
-
Connected DAG uniformly selected
- connectedComponents() - Method in class edu.cmu.tetrad.graph.Paths
-
Returns a list of connected components in the graph.
- ConnectionFunction - Interface in edu.cmu.tetrad.sem
-
Created by IntelliJ IDEA.
- CONSERVATIVE - Enum constant in enum class edu.cmu.tetrad.search.utils.PcCommon.ColliderDiscovery
-
FAS with conservative reasoning.
- CONSTANT - Static variable in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.LagGraphParams
-
Constant
CONSTANT=0
- CONSTANT - Static variable in class edu.cmu.tetrad.study.gene.tetrad.gene.history.SimpleRandomizer
-
Indicates constant indegree.
- ConstantExpression - Class in edu.cmu.tetrad.calculator.expression
-
Represents a constant expression, that is an expression that always evaluates to the same value.
- ConstantExpression(double) - Constructor for class edu.cmu.tetrad.calculator.expression.ConstantExpression
-
Constructs the constant expression given the value to use.
- constructCentralizedGramMatrix(List<Kernel>, DataSet, List<Node>) - Static method in class edu.cmu.tetrad.search.utils.KernelUtils
-
Constructs the centralized Gram matrix for a given vector valued sample.
- constructGramMatrix(List<Kernel>, DataSet, List<Node>) - Static method in class edu.cmu.tetrad.search.utils.KernelUtils
-
Constructs Gram matrix for a given vector valued sample.
- constructH(int) - Static method in class edu.cmu.tetrad.search.utils.KernelUtils
-
Constructs the projection matrix on 1/m
- contains(GraphChange) - Method in class edu.cmu.tetrad.search.work_in_progress.GraphChange
-
Contains is defined such that if the internal strucs of this GraphChange all individually contain the elements in the corresponding strucs of GraphChange gc, then this "contains" gc.
- containsBidirectedEdge(Graph) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Checks if a given graph contains a bidirected edge.
- containsEdge(KnowledgeEdge) - Method in class edu.cmu.tetrad.data.KnowledgeGroup
-
containsEdge.
- containsEdge(Edge) - Method in class edu.cmu.tetrad.graph.Dag
-
Checks if the given edge is present in the graph.
- containsEdge(Edge) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
Determines whether this graph contains the given edge.
- containsEdge(Edge) - Method in interface edu.cmu.tetrad.graph.Graph
-
Determines whether this graph contains the given edge.
- containsEdge(Edge) - Method in class edu.cmu.tetrad.graph.LagGraph
-
Determines whether this graph contains the given edge.
- containsEdge(Edge) - Method in class edu.cmu.tetrad.graph.SemGraph
-
Determines whether this graph contains the given edge.
- containsEdge(Edge) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Checks if the given
Edge
object exists in the graph. - containsEmptyData() - Method in class edu.cmu.tetrad.data.DataModelList
-
Use this to check if the dataModelList only contains the default empty dataset that is being used to populat the empty spreadsheet - Added by Kevin
- containsLatent(Node) - Method in class edu.cmu.tetrad.search.work_in_progress.DMSearch.LatentStructure
-
containsLatent.
- containsMissingValue(DataSet) - Static method in class edu.cmu.tetrad.data.DataUtils
-
containsMissingValue.
- containsMissingValue(Matrix) - Static method in class edu.cmu.tetrad.data.DataUtils
-
containsMissingValue.
- containsNode(Node) - Method in class edu.cmu.tetrad.graph.Dag
-
Checks if the given Node object is contained in the graph.
- containsNode(Node) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
Determines whether this graph contains the given node.
- containsNode(Node) - Method in interface edu.cmu.tetrad.graph.Graph
-
Determines whether this graph contains the given node.
- containsNode(Node) - Method in class edu.cmu.tetrad.graph.LagGraph
-
Determines whether this graph contains the given node.
- containsNode(Node) - Method in class edu.cmu.tetrad.graph.SemGraph
-
Determines whether this graph contains the given node.
- containsNode(Node) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Checks if the graph contains a specific node.
- containsParameter(Edge) - Method in class edu.cmu.tetrad.sem.StandardizedSemIm
-
containsParameter.
- Context - Interface in edu.cmu.tetrad.calculator.expression
-
Looks up the value of a variable.
- Continuous - Enum constant in enum class edu.cmu.tetrad.data.DataType
-
Continuous.
- Continuous - Enum constant in enum class edu.cmu.tetrad.study.performance.ComparisonParameters.DataType
-
Constant for continuous data.
- ContinuousDiscretizationSpec - Class in edu.cmu.tetrad.data
-
Specifies how a column (continuous or discrete) should be discretized.
- ContinuousDiscretizationSpec(double[], List<String>) - Constructor for class edu.cmu.tetrad.data.ContinuousDiscretizationSpec
-
Constructor for creating a ContinuousDiscretizationSpec object.
- ContinuousDiscretizationSpec(double[], List<String>, int) - Constructor for class edu.cmu.tetrad.data.ContinuousDiscretizationSpec
-
Creates a ContinuousDiscretizationSpec object with the given breakpoints, categories, and method.
- ContinuousVariable - Class in edu.cmu.tetrad.data
-
Represents a real-valued variable.
- ContinuousVariable(ContinuousVariable) - Constructor for class edu.cmu.tetrad.data.ContinuousVariable
-
Copy constructor.
- ContinuousVariable(String) - Constructor for class edu.cmu.tetrad.data.ContinuousVariable
-
Constructs a new continuous variable with the given name.
- contraction() - Method in class edu.cmu.tetrad.search.utils.GraphoidAxioms
-
Checks if contraction holds--e.g., (X ⊥⊥ Y |Z) ∧ (X ⊥⊥ W |Z ∪ Y) ==> X ⊥⊥ (Y ∪ W) |Z
- convert() - Method in class edu.cmu.tetrad.search.utils.DagToPag
-
This method does the conversion of DAG to PAG.
- convert() - Method in class edu.cmu.tetrad.search.utils.TsDagToPag
-
convert.
- convert(String) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Converts a string spec of a graph--for example, "X1-->X2, X1---X3, X2o->X4, X3<->X4" to a Graph.
- convertCovToCorr(Matrix) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
Converts a covariance matrix to a correlation matrix in place; the same matrix is returned for convenience, but m is modified in the process.
- convertListToInt(List<List<Node>>, List<Node>) - Static method in class edu.cmu.tetrad.search.utils.ClusterUtils
-
Converts a list of indices into a list of Nodes representing a cluster.
- convertLowerTriangleToSymmetric(double[][]) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
Converts a matrix in lower triangular form to a symmetric matrix in square form.
- convertNodes(Set<Edge>, List<Node>) - Static method in class edu.cmu.tetrad.graph.MisclassificationUtils
-
convertNodes.
- convertNumericalDiscreteToContinuous(DataSet) - Static method in class edu.cmu.tetrad.data.DataTransforms
-
convertNumericalDiscreteToContinuous.
- convertSearchGraph(SemGraph) - Static method in class edu.cmu.tetrad.search.utils.Purify
-
convertSearchGraph.
- convertSearchGraph(List<int[]>, String[]) - Static method in class edu.cmu.tetrad.search.utils.ClusterUtils
-
Converts a list of indices into a list of Nodes representing a cluster.
- convertTo1DArray(SimpleMatrix) - Static method in class edu.cmu.tetrad.search.test.Kci
-
Converts a SimpleMatrix to a 1D array.
- convertToClusters(Graph) - Static method in class edu.cmu.tetrad.search.utils.MimUtils
-
convertToClusters.
- convertToClusters(Graph, List<Node>) - Static method in class edu.cmu.tetrad.search.utils.MimUtils
-
Converts a disconnected multiple indicator model into a set of clusters.
- convertToClusters2(Graph) - Static method in class edu.cmu.tetrad.search.utils.MimUtils
-
convertToClusters2.
- convertToXml(Graph) - Static method in class edu.cmu.tetrad.graph.GraphSaveLoadUtils
-
convertToXml.
- ConvexProximal - Class in edu.pitt.csb.mgm
-
This interface should be used for non-differentiable convex functions that are decomposable such that f(x) = g(x) + h(x) where g(x) is a differentiable convex function (i.e.
- ConvexProximal() - Constructor for class edu.pitt.csb.mgm.ConvexProximal
-
Constructor for ConvexProximal.
- copy() - Method in class edu.cmu.tetrad.data.BoxDataSet
-
Returns a copy of this dataset.
- copy() - Method in class edu.cmu.tetrad.data.ByteDataBox
-
copy.
- copy() - Method in class edu.cmu.tetrad.data.CorrelationMatrixOnTheFly
-
copy.
- copy() - Method in class edu.cmu.tetrad.data.CovarianceMatrix
-
copy.
- copy() - Method in class edu.cmu.tetrad.data.CovarianceMatrixOnTheFly
-
copy.
- copy() - Method in interface edu.cmu.tetrad.data.DataBox
-
copy.
- copy() - Method in interface edu.cmu.tetrad.data.DataModel
-
copy.
- copy() - Method in class edu.cmu.tetrad.data.DataModelList
-
copy.
- copy() - Method in interface edu.cmu.tetrad.data.DataSet
-
Returns a copy of this dataset.
- copy() - Method in class edu.cmu.tetrad.data.DoubleDataBox
-
copy.
- copy() - Method in class edu.cmu.tetrad.data.FloatDataBox
-
copy.
- copy() - Method in class edu.cmu.tetrad.data.IndependenceFacts
-
copy.
- copy() - Method in class edu.cmu.tetrad.data.IntDataBox
-
copy.
- copy() - Method in class edu.cmu.tetrad.data.Knowledge
-
Makes a shallow copy.
- copy() - Method in class edu.cmu.tetrad.data.LongDataBox
-
copy.
- copy() - Method in class edu.cmu.tetrad.data.MixedDataBox
-
copy.
- copy() - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
Returns a copy of this dataset.
- copy() - Method in class edu.cmu.tetrad.data.ShortDataBox
-
copy.
- copy() - Method in class edu.cmu.tetrad.data.TimeSeriesData
-
copy.
- copy() - Method in class edu.cmu.tetrad.data.VerticalDoubleDataBox
-
copy.
- copy() - Method in class edu.cmu.tetrad.data.VerticalIntDataBox
-
copy.
- copy() - Method in class edu.cmu.tetrad.util.DefaultTetradLoggerConfig
-
copy.
- copy() - Method in class edu.cmu.tetrad.util.Matrix
-
copy.
- copy() - Method in class edu.cmu.tetrad.util.TetradLogger.EmptyConfig
-
copy.
- copy() - Method in interface edu.cmu.tetrad.util.TetradLoggerConfig
-
Creates a copy of the TetradLoggerConfig object.
- copy() - Method in class edu.cmu.tetrad.util.Vector
-
copy.
- copy() - Method in class edu.pitt.csb.stability.DataGraphSearch
-
copy.
- copy() - Method in class edu.pitt.csb.stability.SearchWrappers.FgesWrapper
-
Copy constructor.
- copy() - Method in class edu.pitt.csb.stability.SearchWrappers.MGMWrapper
-
Copy constructor.
- copy() - Method in class edu.pitt.csb.stability.SearchWrappers.PcStableWrapper
-
Copy constructor.
- copyColumn(Node, DataSet, DataSet) - Static method in class edu.cmu.tetrad.data.DataTransforms
-
copyColumn.
- copyOf(double[][]) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
copyOf.
- copyOf(int[], int) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
copyOf.
- corr(Node, Node, List<Node>) - Method in class edu.cmu.tetrad.search.utils.PartialCorrelation
-
Calculates the partial correlation of x and y conditional on the nodes in z recursively.
- correctnessRatio(int[][]) - Static method in class edu.cmu.tetrad.simulation.HsimUtils
-
correctnessRatio.
- CorrectSkeleton - Class in edu.cmu.tetrad.algcomparison.statistic
-
Outputs 1 if the skeleton is correct, 0 if not..
- CorrectSkeleton() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.CorrectSkeleton
-
Initializes a new instance of the CorrectSkeleton class.
- correlation(double[], double[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
correlation.
- correlation(double[], double[], int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
correlation.
- correlation(long[], long[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
correlation.
- correlation(long[], long[], int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
correlation.
- correlation(Vector, Vector) - Static method in class edu.cmu.tetrad.util.StatUtils
-
correlation.
- CorrelationMatrix - Class in edu.cmu.tetrad.data
-
Stores a correlation matrix together with variable names and sample size; intended as a representation of a data set.
- CorrelationMatrix(DataSet) - Constructor for class edu.cmu.tetrad.data.CorrelationMatrix
-
Constructs a new correlation matrix from the the given DataSet.
- CorrelationMatrix(ICovarianceMatrix) - Constructor for class edu.cmu.tetrad.data.CorrelationMatrix
-
Constructs a new correlation matrix using the covariances in the given covariance matrix.
- CorrelationMatrix(List<Node>, Matrix, int) - Constructor for class edu.cmu.tetrad.data.CorrelationMatrix
-
Constructs a correlation matrix data set using the given information.
- CorrelationMatrixOnTheFly - Class in edu.cmu.tetrad.data
-
Stores a covariance matrix together with variable names and sample size, intended as a representation of a data set.
- CorrelationMatrixOnTheFly(ICovarianceMatrix) - Constructor for class edu.cmu.tetrad.data.CorrelationMatrixOnTheFly
-
Constructs a new covariance matrix from the given data set.
- corrExp(double[], double[], double[]) - Static method in class edu.cmu.tetrad.search.Fask
-
Calculates the expected correlation between two arrays of double values where z is positive.
- count(Map<A, V>) - Method in class edu.pitt.isp.sverchkov.data.AdTree
-
Returns the number of rows in the data set.
- COUNT_MAP - Enum constant in enum class edu.cmu.tetrad.bayes.MlBayesIm.CptMapType
-
Represents a count-based CptMap type.
- COUNT_SAMPLE - Enum constant in enum class edu.cmu.tetrad.search.test.ChiSquareTest.CellTableType
-
The count sample cell table.
- countAdjErrors(Graph, Graph) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Counts the adjacencies that are in graph1 but not in graph2.
- countColumn(File, char) - Static method in class edu.cmu.tetrad.util.DataUtility
-
countColumn.
- countLine(File) - Static method in class edu.cmu.tetrad.util.DataUtility
-
countLine.
- counts(A, Map<A, V>) - Method in class edu.pitt.isp.sverchkov.data.AdTree
-
Returns the number of rows in the data set.
- cov() - Method in record class edu.cmu.tetrad.search.score.SemBicScore.CovAndCoefs
-
Returns the value of the
cov
record component. - cov(double[], double[], double[], double, double) - Static method in class edu.cmu.tetrad.util.StatUtils
-
cov.
- cov(Matrix) - Static method in class edu.cmu.tetrad.data.DataUtils
-
cov.
- COV_HIGH - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
COV_HIGH="covHigh"
- COV_LOW - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
COV_LOW="covLow"
- COV_SYMMETRIC - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
COV_SYMMETRIC="covSymmetric"
- CovAndCoefs(Matrix, Matrix) - Constructor for record class edu.cmu.tetrad.search.score.SemBicScore.CovAndCoefs
-
Creates an instance of a
CovAndCoefs
record class. - COVAR - Enum constant in enum class edu.cmu.tetrad.sem.ParamType
-
Represents a free parameter type for structural equation modeling (SEM) models.
- covariance(double[], double[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
covariance.
- covariance(double[], double[], int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
covariance.
- covariance(int, int) - Method in interface edu.cmu.tetrad.data.Covariances
-
Returns the covariance at (i, j).
- covariance(int, int) - Method in class edu.cmu.tetrad.data.CovariancesDoubleForkJoin
-
covariance.
- covariance(long[], long[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
covariance.
- covariance(long[], long[], int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
covariance.
- Covariance - Enum constant in enum class edu.cmu.tetrad.data.DataType
-
Covariance.
- Covariance - Interface in edu.cmu.tetrad.stat.correlation
-
Interface for computing covariances.
- CovarianceMatrix - Class in edu.cmu.tetrad.data
-
Stores a covariance matrix together with variable names and sample size, intended as a representation of a data set.
- CovarianceMatrix - Class in edu.cmu.tetrad.stat.correlation
-
Jan 25, 2016 2:13:26 PM
- CovarianceMatrix(float[][]) - Constructor for class edu.cmu.tetrad.stat.correlation.CovarianceMatrix
-
Constructor for CovarianceMatrix.
- CovarianceMatrix(CovarianceMatrix) - Constructor for class edu.cmu.tetrad.data.CovarianceMatrix
-
Copy constructor.
- CovarianceMatrix(DataSet) - Constructor for class edu.cmu.tetrad.data.CovarianceMatrix
-
Constructs a new covariance matrix from the given data set.
- CovarianceMatrix(DataSet, boolean) - Constructor for class edu.cmu.tetrad.data.CovarianceMatrix
-
Constructor for CovarianceMatrix.
- CovarianceMatrix(ICovarianceMatrix) - Constructor for class edu.cmu.tetrad.data.CovarianceMatrix
-
Constructor for CovarianceMatrix.
- CovarianceMatrix(List<Node>, double[][], int) - Constructor for class edu.cmu.tetrad.data.CovarianceMatrix
-
Constructor for CovarianceMatrix.
- CovarianceMatrix(List<Node>, Matrix, int) - Constructor for class edu.cmu.tetrad.data.CovarianceMatrix
-
Protected constructor to construct a new covariance matrix using the supplied continuous variables and the the given symmetric, positive definite matrix and sample size.
- CovarianceMatrixOnTheFly - Class in edu.cmu.tetrad.data
-
Stores a covariance matrix together with variable names and sample size, intended as a representation of a data set.
- CovarianceMatrixOnTheFly(DataSet) - Constructor for class edu.cmu.tetrad.data.CovarianceMatrixOnTheFly
-
Constructs a new covariance matrix from the given data set.
- CovarianceMatrixOnTheFly(DataSet, boolean) - Constructor for class edu.cmu.tetrad.data.CovarianceMatrixOnTheFly
-
Constructor for CovarianceMatrixOnTheFly.
- covarianceNonparanormalDrton(DataSet) - Static method in class edu.cmu.tetrad.data.DataTransforms
-
covarianceNonparanormalDrton.
- Covariances - Interface in edu.cmu.tetrad.data
-
Some comemon methods for the various covariance implementations.
- CovariancesDoubleForkJoin - Class in edu.cmu.tetrad.data
-
Computes covariances using the standard calculation.
- CovariancesDoubleForkJoin(double[][], boolean) - Constructor for class edu.cmu.tetrad.data.CovariancesDoubleForkJoin
-
Constructor for CovariancesDoubleForkJoin.
- covered(SortedSet<ItkPredictorSearch.Gene>, SortedSet<ItkPredictorSearch.Gene>) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.ideker.ItkPredictorSearch
-
covered.
- coveredEdge(Node, Node) - Method in class edu.cmu.tetrad.search.utils.TeyssierScorer
-
Returns true iff x->y or y->x is a covered edge.
- covMatrix(double[], double[], double[][], double[], double, double) - Static method in class edu.cmu.tetrad.util.StatUtils
-
covMatrix.
- Cpc - Class in edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag
-
Conservative PC (CPC).
- Cpc - Class in edu.cmu.tetrad.search
-
Implements a convervative version of PC, in which the Markov condition is assumed but faithfulness is tested locally.
- Cpc() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Cpc
-
This class represents the constructor for the Cpc class.
- Cpc(IndependenceWrapper) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Cpc
-
This class represents the constructor for the Cpc class.
- Cpc(IndependenceTest) - Constructor for class edu.cmu.tetrad.search.Cpc
-
Constructs a CPC algorithm that uses the given independence test as oracle.
- CPC - Enum constant in enum class edu.cmu.tetrad.study.performance.ComparisonParameters.Algorithm
-
Constant for the CPC algorithm.
- CPDAG - Enum constant in enum class edu.cmu.tetrad.graph.GraphUtils.GraphType
-
The CPDAG graph type.
- CPDAG - Enum constant in enum class edu.cmu.tetrad.study.performance.ComparisonParameters.ResultType
-
Constant for CPDAG result type.
- CPDAG - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
CPDAG="cpdag"
- CPDAG_of_the_true_DAG - Enum constant in enum class edu.cmu.tetrad.algcomparison.Comparison.ComparisonGraph
-
Constant for the CPDAG of the true DAG.
- CPDAG_of_the_true_DAG - Enum constant in enum class edu.cmu.tetrad.algcomparison.TimeoutComparison.ComparisonGraph
-
The cpdag of the true dag.
- CpdagParentDistancesFromTrue - Class in edu.cmu.tetrad.search
-
CpdagParentDistancesFromTrue computes the distances between true edge strengths in a true DAG and the range of estimated edge strengths in an output CPDAG.
- CpdagParentDistancesFromTrue() - Constructor for class edu.cmu.tetrad.search.CpdagParentDistancesFromTrue
-
Constructs a new instance of the class.
- CpdagParentDistancesFromTrue.DistanceType - Enum Class in edu.cmu.tetrad.search
-
The type of distance to calculate.
- CptInvariantMarginalCalculator - Class in edu.cmu.tetrad.bayes
-
Calculates marginals of the form P(V=v') for an updated Bayes net for purposes of the CPT Invariant Updater.
- CptInvariantMarginalCalculator(BayesIm, Evidence) - Constructor for class edu.cmu.tetrad.bayes.CptInvariantMarginalCalculator
-
Constructs a new marginal calculator for the given updated Bayes IM.
- CptInvariantUpdater - Class in edu.cmu.tetrad.bayes
-
Calculates updated probabilities for variables conditional on their parents as well as single-variable updated marginals for a Bayes IM using an algorithm that restricts expensive updating summations only to conditional probabilities of variables with respect to their parents that change from non-updated to updated values.
- CptInvariantUpdater(BayesIm) - Constructor for class edu.cmu.tetrad.bayes.CptInvariantUpdater
-
Constructor for CptInvariantUpdater.
- CptInvariantUpdater(BayesIm, Evidence) - Constructor for class edu.cmu.tetrad.bayes.CptInvariantUpdater
-
Constructs a new updater for the given Bayes net.
- CptMap - Interface in edu.cmu.tetrad.bayes
-
An interface representing a map of probabilities or counts for nodes in a Bayesian network.
- CptMapCounts - Class in edu.cmu.tetrad.bayes
-
Represents a conditional probability table (CPT) in a Bayes net.
- CptMapCounts(int, int) - Constructor for class edu.cmu.tetrad.bayes.CptMapCounts
-
Constructs a new probability map, a map from a unique integer index for a particular node to the probability of that node taking on that value, where NaN's are not stored.
- CptMapCounts(DataSet) - Constructor for class edu.cmu.tetrad.bayes.CptMapCounts
-
Constructs a new CptMap based on counts from a given dataset.
- CptMapProbs - Class in edu.cmu.tetrad.bayes
-
Represents a conditional probability table (CPT) in a Bayes net.
- CptMapProbs(double[][]) - Constructor for class edu.cmu.tetrad.bayes.CptMapProbs
-
Constructs a new probability map based on the given 2-dimensional array.
- CptMapProbs(int, int) - Constructor for class edu.cmu.tetrad.bayes.CptMapProbs
-
Constructs a new probability map, a map from a unique integer index for a particular node to the probability of that node taking on that value, where NaN's are not stored.
- CPU - Enum constant in enum class edu.cmu.tetrad.util.MillisecondTimes.Type
-
CPU time.
- cpuTimeMillis() - Static method in class edu.cmu.tetrad.util.MillisecondTimes
-
cpuTimeMillis.
- create(Class<? extends Algorithm>, IndependenceWrapper, ScoreWrapper) - Static method in class edu.cmu.tetrad.algcomparison.algorithm.AlgorithmFactory
-
Creates an algorithm.
- create(Class<? extends Algorithm>, IndependenceWrapper, ScoreWrapper, Graph) - Static method in class edu.cmu.tetrad.algcomparison.algorithm.AlgorithmFactory
-
Creates an algorithm.
- create(Class<? extends Algorithm>, Class<? extends IndependenceWrapper>, Class<? extends ScoreWrapper>) - Static method in class edu.cmu.tetrad.algcomparison.algorithm.AlgorithmFactory
-
Creates an algorithm.
- create(Class<? extends Algorithm>, Class<? extends IndependenceWrapper>, Class<? extends ScoreWrapper>, Graph) - Static method in class edu.cmu.tetrad.algcomparison.algorithm.AlgorithmFactory
-
Creates an algorithm.
- create(String, RandomGraph) - Static method in class edu.cmu.tetrad.algcomparison.simulation.SimulationUtils
-
create.
- create(List<String>) - Static method in class edu.cmu.tetrad.util.ParameterUtils
-
Create parameters with their default values.
- createCellTable(BayesIm) - Static method in class edu.cmu.tetrad.bayes.StoredCellProbs
-
createCellTable.
- createCellTable(MlBayesIm) - Method in class edu.cmu.tetrad.bayes.StoredCellProbsObs
-
createCellTable.
- createCellTable(MlBayesImObs) - Method in class edu.cmu.tetrad.bayes.StoredCellProbsObs
-
createCellTable.
- createContinuousVariables(String[]) - Static method in class edu.cmu.tetrad.data.DataUtils
-
createContinuousVariables.
- createData(Parameters, boolean) - Method in class edu.cmu.tetrad.algcomparison.simulation.BayesNetSimulation
-
Creates a data set and simulates data.
- createData(Parameters, boolean) - Method in class edu.cmu.tetrad.algcomparison.simulation.ConditionalGaussianSimulation
-
Creates a data set and simulates data.
- createData(Parameters, boolean) - Method in class edu.cmu.tetrad.algcomparison.simulation.GeneralSemSimulation
-
Creates data sets for simulation based on the given parameters and model reuse preference.
- createData(Parameters, boolean) - Method in class edu.cmu.tetrad.algcomparison.simulation.GeneralSemSimulationSpecial1
-
Creates a data set and simulates data.
- createData(Parameters, boolean) - Method in class edu.cmu.tetrad.algcomparison.simulation.LeeHastieSimulation
-
Creates a data set and simulates data.
- createData(Parameters, boolean) - Method in class edu.cmu.tetrad.algcomparison.simulation.LinearFisherModel
-
Creates a data set and simulates data.
- createData(Parameters, boolean) - Method in class edu.cmu.tetrad.algcomparison.simulation.LinearSineSimulation
-
Creates a data set and simulates data.
- createData(Parameters, boolean) - Method in class edu.cmu.tetrad.algcomparison.simulation.NLSemSimulation
-
Creates a data set and simulates data.
- createData(Parameters, boolean) - Method in class edu.cmu.tetrad.algcomparison.simulation.SemSimulation
-
Creates data sets for simulation based on the given parameters and model reuse preference.
- createData(Parameters, boolean) - Method in class edu.cmu.tetrad.algcomparison.simulation.SemThenDiscretize
-
Creates a data set and simulates data.
- createData(Parameters, boolean) - Method in interface edu.cmu.tetrad.algcomparison.simulation.Simulation
-
Creates a data set and simulates data.
- createData(Parameters, boolean) - Method in class edu.cmu.tetrad.algcomparison.simulation.SingleDatasetSimulation
-
Creates a new data model for the simulation.
- createData(Parameters, boolean) - Method in class edu.cmu.tetrad.algcomparison.simulation.StandardizedSemSimulation
-
Creates a data set and simulates data.
- createData(Parameters, boolean) - Method in class edu.cmu.tetrad.algcomparison.simulation.TimeSeriesSemSimulation
-
Creates a data set and simulates data.
- createData(Parameters, boolean) - Method in class edu.cmu.tetrad.data.simulation.LoadContinuousDataAndGraphs
-
Creates a data set and simulates data.
- createData(Parameters, boolean) - Method in class edu.cmu.tetrad.data.simulation.LoadContinuousDataAndSingleGraph
-
Creates a data set and simulates data.
- createData(Parameters, boolean) - Method in class edu.cmu.tetrad.data.simulation.LoadContinuousDataSmithSim
-
Creates a data set and simulates data.
- createData(Parameters, boolean) - Method in class edu.cmu.tetrad.data.simulation.LoadDataAndGraphs
-
Creates a data set and simulates data.
- createData(Parameters, boolean) - Method in class edu.cmu.tetrad.data.simulation.LoadDataFromFileWithoutGraph
-
Creates a data set and simulates data.
- createDataSamples(DataSet, Parameters) - Static method in class edu.cmu.tetrad.data.DataSampling
-
Create a list of dataset resampled from the given dataset.
- createDataSamples(DataSet, Parameters, RandomGenerator) - Static method in class edu.cmu.tetrad.data.DataSampling
-
Create a list of dataset resampled from the given dataset.
- createDisplayGraph(Graph, ResamplingEdgeEnsemble) - Static method in class edu.cmu.tetrad.util.GraphSampling
-
Create a graph for displaying and print out.
- createExpression(Expression...) - Method in interface edu.cmu.tetrad.calculator.expression.ExpressionDescriptor
-
Creates the actual expression that can be used to evaluate matters from the given expressions.
- createGraph(Parameters) - Method in class edu.cmu.tetrad.algcomparison.graph.Cyclic
-
createGraph.
- createGraph(Parameters) - Method in class edu.cmu.tetrad.algcomparison.graph.ErdosRenyi
-
createGraph.
- createGraph(Parameters) - Method in class edu.cmu.tetrad.algcomparison.graph.RandomForward
-
Creates a random graph by adding forward edges.
- createGraph(Parameters) - Method in interface edu.cmu.tetrad.algcomparison.graph.RandomGraph
-
createGraph.
- createGraph(Parameters) - Method in class edu.cmu.tetrad.algcomparison.graph.RandomSingleFactorMim
-
createGraph.
- createGraph(Parameters) - Method in class edu.cmu.tetrad.algcomparison.graph.RandomTwoFactorMim
-
createGraph.
- createGraph(Parameters) - Method in class edu.cmu.tetrad.algcomparison.graph.ScaleFree
-
createGraph.
- createGraph(Parameters) - Method in class edu.cmu.tetrad.algcomparison.graph.SingleGraph
-
createGraph.
- createGraphWithHighProbabilityEdges(List<Graph>) - Static method in class edu.cmu.tetrad.util.GraphSampling
-
Combine all the edges from the list of graphs onto one graph with the edge type that has the highest frequency probability.
- createGraphWithHighProbabilityEdges(List<Graph>, ResamplingEdgeEnsemble) - Static method in class edu.cmu.tetrad.util.GraphSampling
-
createGraphWithHighProbabilityEdges.
- createGraphWithoutNullEdges(Graph) - Static method in class edu.cmu.tetrad.util.GraphSampling
-
Create a graph from the given graph that contains no null edges.
- createLagData(DataSet, int) - Static method in class edu.cmu.tetrad.search.utils.TsUtils
-
Creates new time series dataset from the given one (fixed to deal with mixed datasets)
- createRandomCellTable() - Method in class edu.cmu.tetrad.bayes.MlBayesImObs
-
createRandomCellTable.
- createRandomCellTable(List<Node>) - Static method in class edu.cmu.tetrad.bayes.StoredCellProbs
-
createRandomCellTable.
- createShiftedData(DataSet, int[]) - Static method in class edu.cmu.tetrad.search.utils.TsUtils
-
createShiftedData.
- crossTab(int, int, int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.reveal.RevealEvaluator
-
This method computes the cross tablulation (table) of values of a gene and its possible parent.
- crossTab(int, int, int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.RevealEvaluator
-
This method computes the cross tablulation (table) of values of a gene and its possible parent.
- crossTabulation() - Method in class edu.cmu.tetrad.classify.ClassifierBayesUpdaterDiscrete
-
Computes the "confusion matrix" of coefs of the number of cases associated with each combination of estimated and observed values in the test dataset.
- crossTabulation() - Method in interface edu.cmu.tetrad.classify.ClassifierDiscrete
-
crossTabulation.
- crossTabulation() - Method in class edu.cmu.tetrad.classify.ClassifierMbDiscrete
-
crossTabulation.
- cStar(LinkedList<LinkedList<Cstar.Record>>) - Static method in class edu.cmu.tetrad.search.Cstar
-
Returns a list of records for making a CSTaR table.
- Cstar - Class in edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag
-
Cstar class.
- Cstar - Class in edu.cmu.tetrad.search
-
Implements the CStaR algorithm (Stekhoven et al., 2012), which finds a CPDAG of that data and then tries all orientations of the undirected edges about a variable in the CPDAG to estimate a minimum bound on the effect for a given edge.
- Cstar() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Cstar
-
Constructor for Cstar.
- Cstar(IndependenceWrapper, ScoreWrapper) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Cstar
-
Constructor for Cstar.
- Cstar(IndependenceWrapper, ScoreWrapper, Parameters) - Constructor for class edu.cmu.tetrad.search.Cstar
-
Constructor.
- CSTAR_CPDAG_ALGORITHM - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
CSTAR_CPDAG_ALGORITHM="cstarCpdagAlgorithm"
- Cstar.CpdagAlgorithm - Enum Class in edu.cmu.tetrad.search
-
An enumeration of the options available for determining the CPDAG used for the algorithm.
- Cstar.Record - Class in edu.cmu.tetrad.search
-
Represents a single record in the returned table for CSTaR.
- Cstar.SampleStyle - Enum Class in edu.cmu.tetrad.search
-
An enumeration of the methods for selecting samples from the full dataset.
- cu(double[], double[], double[]) - Static method in class edu.cmu.tetrad.search.Fask
-
Calculates the expected correlation between two arrays of double values where the condition is greater than 0.
- cumulativeProbability(double) - Method in class edu.cmu.tetrad.sem.EmpiricalCdf
-
Calculates the cumulative probability of a given point.
- cumulativeProbability(double, double) - Method in class edu.cmu.tetrad.sem.EmpiricalCdf
-
Deprecated.This method is deprecated and will be removed in a future release.
- currentRepositoryVersion() - Static method in class edu.cmu.tetrad.util.Version
-
currentRepositoryVersion.
- currentViewableVersion() - Static method in class edu.cmu.tetrad.util.Version
-
currentViewableVersion.
- CUTOFF_CONSTRAIN_SEARCH - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
CUTOFF_CONSTRAIN_SEARCH="cutoffConstrainSearch"
- CUTOFF_DATA_SEARCH - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
CUTOFF_DATA_SEARCH="cutoffDataSearch"
- CUTOFF_IND_TEST - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
CUTOFF_IND_TEST="cutoffIndTest"
- CutoffFinder - Class in edu.cmu.tetrad.util
-
Provides a static method for finding the cutoff value for a symmetric probability distribution function about the origin.
- Cyclic - Class in edu.cmu.tetrad.algcomparison.graph
-
Returns a cyclic graph build up from small cyclic graph components.
- Cyclic() - Constructor for class edu.cmu.tetrad.algcomparison.graph.Cyclic
-
Initializes a new instance of the Cyclic class.
- CYCLIC_CONSTRUCTED_FROM_SMALL_LOOPS - Static variable in class edu.cmu.tetrad.algcomparison.graph.GraphTypes
-
Constant
CYCLIC_CONSTRUCTED_FROM_SMALL_LOOPS="Cyclic (Constructed From Small Loops)"
D
- D() - Method in record class edu.cmu.tetrad.search.test.Kci.EigenReturn
-
Returns the value of the
D
record component. - Dag - Class in edu.cmu.tetrad.graph
-
Represents a directed acyclic graph--that is, a graph containing only directed edges, with no cycles.
- Dag() - Constructor for class edu.cmu.tetrad.graph.Dag
-
Constructs a new directed acyclic graph (DAG).
- Dag(Graph) - Constructor for class edu.cmu.tetrad.graph.Dag
-
Constructs a new directed acyclic graph from the given graph object.
- Dag(List<Node>) - Constructor for class edu.cmu.tetrad.graph.Dag
-
Constructor for Dag.
- dagFromCpdag(Graph) - Static method in class edu.cmu.tetrad.graph.GraphTransforms
-
Converts a completed partially directed acyclic graph (CPDAG) into a directed acyclic graph (DAG).
- dagFromCpdag(Graph, boolean) - Static method in class edu.cmu.tetrad.graph.GraphTransforms
-
Converts a completed partially directed acyclic graph (CPDAG) into a directed acyclic graph (DAG).
- dagFromCpdag(Graph, boolean, boolean) - Static method in class edu.cmu.tetrad.graph.GraphTransforms
-
Converts a completed partially directed acyclic graph (CPDAG) into a directed acyclic graph (DAG).
- dagFromCpdag(Graph, Knowledge) - Static method in class edu.cmu.tetrad.graph.GraphTransforms
-
dagFromCpdag.
- dagFromCpdag(Graph, Knowledge, boolean, boolean) - Static method in class edu.cmu.tetrad.graph.GraphTransforms
-
Returns a random DAG from the given CPDAG.
- DagInCpcagIterator - Class in edu.cmu.tetrad.search.utils
-
Given a CPDAG, lists all the DAGs in that DPCAG.
- DagInCpcagIterator(Graph) - Constructor for class edu.cmu.tetrad.search.utils.DagInCpcagIterator
-
The given CPDAG must be a CPDAG.
- DagInCpcagIterator(Graph, Knowledge) - Constructor for class edu.cmu.tetrad.search.utils.DagInCpcagIterator
-
The given CPDAG must be a CPDAG.
- DagInCpcagIterator(Graph, Knowledge, boolean, boolean) - Constructor for class edu.cmu.tetrad.search.utils.DagInCpcagIterator
-
The given CPDAG must be a CPDAG.
- DagIterator - Class in edu.cmu.tetrad.search.utils
-
Given a graph, lists all DAGs that result from directing the undirected edges in that graph every possible way.
- DagIterator(Graph) - Constructor for class edu.cmu.tetrad.search.utils.DagIterator
-
The given CPDAG must be a CPDAG.
- Dagma - Class in edu.cmu.tetrad.algcomparison.algorithm.continuous.dag
-
Implements the DAGMA algorithm.
- Dagma - Class in edu.cmu.tetrad.search
-
Implements the DAGMA algorithm.
- Dagma() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.Dagma
-
Constructor for Dagma.
- Dagma(DataSet) - Constructor for class edu.cmu.tetrad.search.Dagma
-
Constructor.
- DagScorer - Class in edu.cmu.tetrad.sem
-
Estimates a SemIm given a CovarianceMatrix and a SemPm.
- DagScorer - Interface in edu.cmu.tetrad.search.utils
-
Interface for a method that scores a DAG.
- DagScorer(DataSet) - Constructor for class edu.cmu.tetrad.sem.DagScorer
-
Constructs a new SemEstimator that uses the specified optimizer.
- DagScorer(ICovarianceMatrix) - Constructor for class edu.cmu.tetrad.sem.DagScorer
-
Constructs a new SemEstimator that uses the specified optimizer.
- DagSepsets - Class in edu.cmu.tetrad.search.utils
-
Determines sepsets, collider, and noncolliders by examining d-separation facts in a DAG.
- DagSepsets(Graph) - Constructor for class edu.cmu.tetrad.search.utils.DagSepsets
-
Constructs a new DagSepsets object for the given DAG.
- dagToCpdag(Graph) - Static method in class edu.cmu.tetrad.graph.GraphTransforms
-
Returns the completed partially directed acyclic graph (CPDAG) for a given directed acyclic graph (DAG).
- dagToMag(Graph) - Static method in class edu.cmu.tetrad.graph.GraphTransforms
-
Converts a Directed Acyclic Graph (DAG) to a Maximal Ancestral Graph (MAG) by adding arrows to the edges.
- dagToPag(Graph) - Static method in class edu.cmu.tetrad.graph.GraphTransforms
-
Converts a Directed Acyclic Graph (DAG) to a Partial Ancestral Graph (PAG) using the DagToPag algorithm.
- DagToPag - Class in edu.cmu.tetrad.search.utils
-
Converts a DAG (Directed acyclic graph) into the PAG (partial ancestral graph) which it is in the equivalence class of.
- DagToPag(Graph) - Constructor for class edu.cmu.tetrad.search.utils.DagToPag
-
Constructs a new FCI search for the given independence test and background knowledge.
- DATA_TYPE - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
DATA_TYPE="dataType"
- DataBox - Interface in edu.cmu.tetrad.data
-
Stores a 2D array of data.
- DataConvertUtils - Class in edu.cmu.tetrad.util
-
Dec 15, 2018 11:10:30 AM
- DataFilter - Interface in edu.cmu.tetrad.data
-
Interface implemented by classes whose purpose is to generate modifications of data sets.
- DataForCalibrationRfci - Class in edu.cmu.tetrad.calibration
-
DataForCalibrationRfci class.
- DataGraphSearch - Class in edu.pitt.csb.stability
-
Created by ajsedgewick on 9/4/15.
- DataGraphSearch(double...) - Constructor for class edu.pitt.csb.stability.DataGraphSearch
-
Constructor for DataGraphSearch.
- DataGraphUtils - Class in edu.cmu.tetrad.data
-
Sundry graph utils that need to be located in the data package to avoid package cycles.
- DataModel - Interface in edu.cmu.tetrad.data
-
Interface implemented by classes, instantiations of which can serve as data models in Tetrad.
- DataModelList - Class in edu.cmu.tetrad.data
-
Stores a list of data models and keeps track of which one is selected.
- DataModelList() - Constructor for class edu.cmu.tetrad.data.DataModelList
-
Constructor for DataModelList.
- DataModelList(DataModelList) - Constructor for class edu.cmu.tetrad.data.DataModelList
-
Constructor for DataModelList.
- DataSampling - Class in edu.cmu.tetrad.data
-
A utility for resampling dataset.
- DataSet - Interface in edu.cmu.tetrad.data
-
Implements a rectangular data set, in the sense of being a dataset with a fixed number of columns and a fixed number of rows, the length of each column being constant.
- DataSetProbs - Class in edu.cmu.tetrad.bayes
-
Estimates maximum likelihood probabilities directly from data on the fly.
- DataSetProbs(DataSet) - Constructor for class edu.cmu.tetrad.bayes.DataSetProbs
-
Creates a cell count table for the given data set.
- DataTable<N,
V> - Interface in edu.pitt.isp.sverchkov.data -
Data table implementation.
- dataTableFromFile(File) - Static method in class edu.pitt.isp.sverchkov.data.DataTools
-
Reads a data table from a file.
- DataTableImpl<N,
V> - Class in edu.pitt.isp.sverchkov.data -
Data table implementation.
- DataTableImpl(List<? extends N>) - Constructor for class edu.pitt.isp.sverchkov.data.DataTableImpl
-
Constructor for DataTableImpl.
- DataTools - Class in edu.pitt.isp.sverchkov.data
-
Data tools.
- DataTransforms - Class in edu.cmu.tetrad.data
-
DataTransforms class.
- dataType() - Element in annotation interface edu.cmu.tetrad.annotation.Algorithm
-
Description of the algorithm.
- dataType() - Element in annotation interface edu.cmu.tetrad.annotation.Score
-
The data types that the score can be applied to.
- dataType() - Element in annotation interface edu.cmu.tetrad.annotation.TestOfIndependence
-
Type of the test.
- DataType - Enum Class in edu.cmu.tetrad.data
-
The type of the data set--continuous if all continuous variables, discrete if all discrete variables; otherwise, mixed.
- DataUtility - Class in edu.cmu.tetrad.util
-
Fast data loader for continuous or discrete data.
- DataUtils - Class in edu.cmu.tetrad.data
-
Some static utility methods for dealing with data sets.
- DataWriter - Class in edu.cmu.tetrad.data
-
Provides static methods for saving data to files.
- Dci - Class in edu.cmu.tetrad.search.work_in_progress
-
Implements the DCI (Distributed Causal Inference) algorithm for learning causal structure over a set of variable from multiple datasets that each may only measure proper overlapping subsets of that sets, or datasets with some variables in common and others not.
- Dci(List<IndependenceTest>) - Constructor for class edu.cmu.tetrad.search.work_in_progress.Dci
-
Constructor for Dci.
- Dci(List<IndependenceTest>, ResolveSepsets.Method) - Constructor for class edu.cmu.tetrad.search.work_in_progress.Dci
-
Constructor for Dci.
- dd - Enum constant in enum class edu.cmu.tetrad.graph.Edge.Property
-
Definitely direct.
- decomposition() - Method in class edu.cmu.tetrad.search.utils.GraphoidAxioms
-
Checks if decomposition holds, e.g., X ⊥⊥ (Y ∪ W) |Z ==> (X ⊥⊥ Y |Z) ∧ (X ⊥⊥ W |Z)
- deepCopy(DataSet) - Static method in class edu.pitt.csb.mgm.MixedUtils
-
Makes a deep copy of a dataset (Nodes copied as well).
- defaultCategory(int) - Static method in class edu.cmu.tetrad.data.DataUtils
-
defaultCategory.
- defaultConfiguration(Graph, Knowledge) - Static method in class edu.cmu.tetrad.search.utils.R0R4StrategyTestBased
-
Returns a default configuration of the FciOrientDataExaminationStrategy object.
- defaultConfiguration(IndependenceTest, Knowledge) - Static method in class edu.cmu.tetrad.search.utils.R0R4StrategyTestBased
-
Returns a default configuration of the FciOrientDataExaminationStrategy object.
- defaultConfiguration(TeyssierScorer, Knowledge, boolean) - Static method in class edu.cmu.tetrad.search.utils.R0R4StrategyScoreBased
-
Returns a default configuration of the FciOrientDataExaminationStrategy.
- DefaultEvent(String, String) - Constructor for class edu.cmu.tetrad.util.DefaultTetradLoggerConfig.DefaultEvent
-
Constructs the event.
- defaultLayout(Graph) - Static method in class edu.cmu.tetrad.graph.LayoutUtil
-
Arranges the nodes in the graph in a circle if there are 20 or fewer nodes, otherwise arranges them in a square.
- DefaultSetEndpointStrategy - Class in edu.cmu.tetrad.search.utils
-
The DefaultSetEndpointStrategy class implements the SetEndpointStrategy interface and provides a default strategy for setting the endpoint of an edge in a graph.
- DefaultSetEndpointStrategy() - Constructor for class edu.cmu.tetrad.search.utils.DefaultSetEndpointStrategy
-
Creates a new instance of DefaultSetEndpointStrategy.
- DefaultTetradLoggerConfig - Class in edu.cmu.tetrad.util
-
Logger configuration.
- DefaultTetradLoggerConfig(String...) - Constructor for class edu.cmu.tetrad.util.DefaultTetradLoggerConfig
-
Constructs the config for the given event ids.
- DefaultTetradLoggerConfig(List<TetradLoggerConfig.Event>) - Constructor for class edu.cmu.tetrad.util.DefaultTetradLoggerConfig
-
Constructs the config given the events in it.
- DefaultTetradLoggerConfig.DefaultEvent - Class in edu.cmu.tetrad.util
-
A default implementation of the event.
- DefiniteDirectedPathPrecision - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- DefiniteDirectedPathPrecision() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.DefiniteDirectedPathPrecision
-
Initializes a new instance of the DefiniteDirectedPathPrecision class.
- DefiniteDirectedPathRecall - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- DefiniteDirectedPathRecall() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.DefiniteDirectedPathRecall
-
Initializes a new instance of the DefiniteDirectedPathRecall class.
- definiteNonDescendent(Node, Node) - Method in class edu.cmu.tetrad.graph.Paths
-
added by ekorber, 2004/06/12
- DEFLATION - Static variable in class edu.cmu.tetrad.search.FastIca
-
The algorithm type where the components are extracted one at a time.
- defVisible(Edge) - Method in class edu.cmu.tetrad.graph.Paths
-
Returns true just in case the given edge is definitely visible.
- DegenerateGaussianBicScore - Class in edu.cmu.tetrad.algcomparison.score
-
Wrapper for degenerate Gaussian BIC score
- DegenerateGaussianBicScore() - Constructor for class edu.cmu.tetrad.algcomparison.score.DegenerateGaussianBicScore
-
Initializes a new instance of the DegenerateGaussianBicScore class.
- DegenerateGaussianLRT - Class in edu.cmu.tetrad.algcomparison.independence
-
Wrapper for DG LRT.
- DegenerateGaussianLRT() - Constructor for class edu.cmu.tetrad.algcomparison.independence.DegenerateGaussianLRT
-
Initializes a new instance of the DegenerateGaussianLRT class.
- DegenerateGaussianScore - Class in edu.cmu.tetrad.search.score
-
=This implements the degenerate Gaussian BIC score for FGES.
- DegenerateGaussianScore(DataSet, boolean) - Constructor for class edu.cmu.tetrad.search.score.DegenerateGaussianScore
-
Constructs the score using a dataset.
- degree(Graph) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Calculates the maximum degree of a graph.
- DELIMITER - Static variable in class edu.pitt.isp.sverchkov.data.DataTools
-
Constant
DELIMITER=", "
- DELIMITER_REGEX - Static variable in class edu.pitt.isp.sverchkov.data.DataTools
-
Constant
DELIMITER_REGEX=" *, *"
- DelimiterType - Class in edu.cmu.tetrad.data
-
Type-safe enum of delimiter types for parsing data.
- DelimiterUtils - Class in edu.cmu.tetrad.util
-
Jun 20, 2017 12:09:05 PM
- DeltaSextadTest - Class in edu.cmu.tetrad.search.utils
-
Implements a test for simultaneously zero sextads in the style of Bollen, K.
- DeltaSextadTest(DataSet) - Constructor for class edu.cmu.tetrad.search.utils.DeltaSextadTest
-
Constructs a test using a given data set.
- DeltaSextadTest(ICovarianceMatrix) - Constructor for class edu.cmu.tetrad.search.utils.DeltaSextadTest
-
Constructs a test using the given covariance matrix.
- DeltaTetradTest - Class in edu.cmu.tetrad.search.utils
-
Implements a test for simultaneously zero tetrads in Bollen, K.
- DeltaTetradTest(DataSet) - Constructor for class edu.cmu.tetrad.search.utils.DeltaTetradTest
-
Constructs a test using a given data set.
- DeltaTetradTest(ICovarianceMatrix) - Constructor for class edu.cmu.tetrad.search.utils.DeltaTetradTest
-
Constructs a test using the given covariance matrix.
- demean(double[][], Vector) - Static method in class edu.cmu.tetrad.data.CovarianceMatrixOnTheFly
-
demean.
- demix() - Method in class edu.cmu.tetrad.search.work_in_progress.Demixer
-
Runs the E-M algorithm iteratively until the weights array converges.
- Demixer - Class in edu.cmu.tetrad.search.work_in_progress
-
Uses expectation-maximization to sort a a data set with data sampled from two or more multivariate Gaussian distributions into its component data sets.
- Demixer(DataSet, int) - Constructor for class edu.cmu.tetrad.search.work_in_progress.Demixer
-
Constructor.
- DemixerMMLKun - Class in edu.cmu.tetrad.search.work_in_progress
-
Created by user on 2/27/18.
- DemixerMMLKun() - Constructor for class edu.cmu.tetrad.search.work_in_progress.DemixerMMLKun
-
Constructor for DemixerMMLKun.
- density(double) - Method in class edu.cmu.tetrad.sem.EmpiricalCdf
-
Calculates the probability density function (PDF) of a given point.
- DensityEst - Class in edu.cmu.tetrad.algcomparison.statistic
-
The adjacency precision.
- DensityEst() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.DensityEst
-
Initializes a new instance of the DensityEst class.
- DensityTrue - Class in edu.cmu.tetrad.algcomparison.statistic
-
The adjacency precision.
- DensityTrue() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.DensityTrue
-
Initializes a new instance of the DensityTrue class.
- dependenceFactMsg(Node, Node, Set<Node>, double) - Static method in class edu.cmu.tetrad.search.utils.LogUtilsSearch
-
dependenceFactMsg.
- dependent - Enum constant in enum class edu.pitt.dbmi.algo.bayesian.constraint.inference.BCInference.OP
-
The operation is dependent.
- DEPENDENT - Enum constant in enum class edu.pitt.dbmi.algo.bayesian.constraint.inference.BCCausalInference.OP
-
The operation is dependent.
- depth - Variable in class edu.cmu.tetrad.calibration.DataForCalibrationRfci
-
Constant
depth=5
- DEPTH - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
DEPTH="depth"
- description() - Element in annotation interface edu.cmu.tetrad.annotation.Score
-
The description of the score.
- description() - Element in annotation interface edu.cmu.tetrad.annotation.TestOfIndependence
-
Description of the test.
- deserializeArchivedVersions() - Method in class edu.cmu.tetrad.util.TetradSerializableUtils
-
Deserializes examplars stored in archives in getArchiveDirectory().
- deserializeCurrentDirectory() - Method in class edu.cmu.tetrad.util.TetradSerializableUtils
-
Deserializes all files in the given directory, as a test to make sure they can all be deserialized.
- det() - Method in class edu.cmu.tetrad.util.Matrix
-
det.
- determinant(double[][]) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
determinant.
- determines(List<Node>, Node) - Method in class edu.cmu.tetrad.search.IndTestIod
-
Determines whether the variables in z determine x.
- determines(List<Node>, Node) - Method in class edu.cmu.tetrad.search.score.BdeuScore
-
Determines whether a set of nodes z determines a specific node y.
- determines(List<Node>, Node) - Method in class edu.cmu.tetrad.search.score.EbicScore
-
Returns true iff the score determines the edge between x and y.
- determines(List<Node>, Node) - Method in class edu.cmu.tetrad.search.score.GicScores
-
Returns true iff the score determines the edge between x and y.
- determines(List<Node>, Node) - Method in class edu.cmu.tetrad.search.score.ImagesScore
-
Returns true iff the score determines the edge between x and y.
- determines(List<Node>, Node) - Method in class edu.cmu.tetrad.search.score.IndTestScore
-
Returns true iff the score determines the edge between x and y.
- determines(List<Node>, Node) - Method in class edu.cmu.tetrad.search.score.MvpScore
-
Returns true iff the score determines the edge between x and y.
- determines(List<Node>, Node) - Method in class edu.cmu.tetrad.search.score.PoissonPriorScore
-
Returns true iff the score determines the edge between x and y.
- determines(List<Node>, Node) - Method in interface edu.cmu.tetrad.search.score.Score
-
Returns true iff the score determines the edge between x and y.
- determines(List<Node>, Node) - Method in class edu.cmu.tetrad.search.score.SemBicScore
-
Returns true is the variables in z determine the variable y.
- determines(List<Node>, Node) - Method in class edu.cmu.tetrad.search.score.ZsbScore
-
Returns true iff the score determines the edge between x and y.
- determines(List<Node>, Node) - Method in class edu.cmu.tetrad.search.test.IndTestChiSquare
-
Determines whether variable x is independent of variable y given a list of conditioning nodes.
- determines(List<Node>, Node) - Method in class edu.cmu.tetrad.search.test.IndTestConditionalGaussianLrt
-
Determines whether a given list of nodes (z) determines a node (y).
- determines(List<Node>, Node) - Method in class edu.cmu.tetrad.search.test.IndTestFisherZ
-
Determines if a given Node x is determined by a list of Nodes z.
- determines(List<Node>, Node) - Method in class edu.cmu.tetrad.search.test.IndTestFisherZConcatenateResiduals
-
Determines whether the z nodes determine the x node.
- determines(List<Node>, Node) - Method in class edu.cmu.tetrad.search.test.IndTestFisherZFisherPValue
-
Determines if a given list of conditioning nodes (z) determines the value of a specific node (x).
- determines(List<Node>, Node) - Method in class edu.cmu.tetrad.search.test.IndTestHsic
-
Determines whether variable x is independent of variable y given a list of conditioning variables z.
- determines(List<Node>, Node) - Method in class edu.cmu.tetrad.search.test.IndTestIndependenceFacts
-
Determines if the given list of nodes (z) determines the specified node (y).
- determines(List<Node>, Node) - Method in class edu.cmu.tetrad.search.test.IndTestMulti
-
Determines whether variable x is independent of variable y given a list of conditioning variables z.
- determines(List<Node>, Node) - Method in class edu.cmu.tetrad.search.test.IndTestMvpLrt
-
Determines whether two nodes are independent given a set of conditioning nodes.
- determines(List<Node>, Node) - Method in class edu.cmu.tetrad.search.test.IndTestRegression
-
Determines if a variable xVar can be determined by a list of conditioning variables zList.
- determines(List<Node>, Node) - Method in class edu.cmu.tetrad.search.test.IndTestTrekSep
-
Determines the independence between a set of variables z and a variable x.
- determines(List<Node>, Node) - Method in class edu.cmu.tetrad.search.test.MsepTest
-
Determines if a node is m-separated from a set of conditioning nodes.
- determines(List<Node>, Node) - Method in class edu.cmu.tetrad.search.test.ScoreIndTest
-
Determines the result of an independence test between a set of variables and a target variable.
- determines(List<Node>, Node) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestCramerT
-
Determines whether the given variables are conditionally independent.
- determines(List<Node>, Node) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestMixedMultipleTTest
-
Determines if a given set of nodes z determines the node y.
- determines(List<Node>, Node) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestMnlrLr
-
Determines the independence relation between a list of conditioning nodes and a target node.
- determines(List<Node>, Node) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestMultinomialLogisticRegression
-
Determines if Node y is determined by the given list of Nodes z.
- determines(List<Node>, Node) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestPositiveCorr
-
Determines if there exists a causal relationship between the nodes in z and node x.
- determines(List<Node>, Node) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestSepsetDci
-
Determines if a given Node is present in a List of Nodes.
- determines(List<Node>, Node) - Method in class edu.cmu.tetrad.search.work_in_progress.ISBDeuScore
-
Determines whether a given node y is determined by a list of nodes z.
- determines(List<Node>, Node) - Method in class edu.cmu.tetrad.search.work_in_progress.ISBicScore
-
Determines if the given list of nodes can determine the specified node.
- determines(List<Node>, Node) - Method in interface edu.cmu.tetrad.search.work_in_progress.ISScore
-
Determines whether the given list of nodes has a specific relationship with the specified node.
- determines(List<Node>, Node) - Method in class edu.cmu.tetrad.search.work_in_progress.SemBicScoreDeterministic
-
Returns true iff the score determines the edge between x and y.
- determines(List<Node>, Node) - Method in class edu.pitt.csb.mgm.IndTestMultinomialLogisticRegressionWald
-
Determines the independence between a set of variables and a target variable.
- determines(List, Node) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestFisherZPercentIndependent
-
Determines the independence between a list of conditioning variables (z) and a target variable (x).
- determines(Set<Node>, Node) - Method in interface edu.cmu.tetrad.search.IndependenceTest
-
Returns true if y is determined the variable in z.
- determines(Set<Node>, Node) - Method in class edu.cmu.tetrad.search.test.IndTestChiSquare
-
Determines whether variable x is independent of a set of variables _z.
- determines(Set<Node>, Node) - Method in class edu.cmu.tetrad.search.test.IndTestGSquare
-
Determines whether variable x is independent of a set of variables _z.
- determines(Set<Node>, Node) - Method in class edu.cmu.tetrad.search.test.IndTestProbabilistic
-
Determines whether a given set of nodes, z, determines another node, y.
- determines(Set<Node>, Node) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestFisherZRecursive
-
Returns true if y is determined the variable in z.
- determines(Set<Node>, Node) - Method in class edu.cmu.tetrad.search.work_in_progress.ProbabilisticMapIndependence
-
Returns true if y is determined the variable in z.
- DETERMINISM_THRESHOLD - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
DETERMINISM_THRESHOLD="determinismThreshold"
- determinismDetected(Set<Node>, Node) - Static method in class edu.cmu.tetrad.search.utils.LogUtilsSearch
-
determinismDetected.
- diag() - Method in class edu.cmu.tetrad.util.Matrix
-
diag.
- diag() - Method in class edu.cmu.tetrad.util.Vector
-
diag.
- dieToss(int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
dieToss.
- differByPerturbation(int, int, int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.ideker.ItkPredictorSearch
-
This method determines whether the levels for a given gene differ between two perturbations p0 and p1 (rows of the perturbation matrix).
- difference(DataSet, int) - Static method in class edu.cmu.tetrad.search.utils.TsUtils
-
Calculates the dth difference of the given data.
- DIFFERENT_GRAPHS - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
DIFFERENT_GRAPHS="differentGraphs"
- differExpressions(int, int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.ideker.ItkPredictorSearch
-
differExpressions.
- Digraph - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.biolingua
-
Simple implementation of a directed Graph edges are just represented by float values (a zero == no edge) stored in a matrix.
- Digraph(Digraph) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.biolingua.Digraph
-
Copy constructor.
- Digraph(String) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.biolingua.Digraph
-
Creates a OldDigraph reading it from file
fname
. - Digraph(String, int) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.biolingua.Digraph
-
Creates a OldDigraph with
gName
name, andn
nodes. - DijkstraEdge(Node, int) - Constructor for class edu.cmu.tetrad.search.FciOrientDijkstra.DijkstraEdge
-
Creates a new DijkstraEdge.
- DijkstraEdge(Node, int) - Constructor for class edu.cmu.tetrad.search.utils.R5R9Dijkstra.DijkstraEdge
-
Represents an edge connecting two nodes in Dijkstra's algorithm.
- directedEdge(Node, Node) - Static method in class edu.cmu.tetrad.graph.Edges
-
Constructs a new directed edge from nodeA to nodeB (-->).
- directedPaths(Node, Node, int) - Method in class edu.cmu.tetrad.graph.Paths
-
Finds all directed paths from node1 to node2 with a maximum length.
- DirectLingam - Class in edu.cmu.tetrad.algcomparison.algorithm.continuous.dag
-
Direct LiNGAM.
- DirectLingam - Class in edu.cmu.tetrad.search
-
Implements the Direct-LiNGAM algorithm.
- DirectLingam() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.DirectLingam
-
Constructor for DirectLingam.
- DirectLingam(ScoreWrapper) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.DirectLingam
-
Constructor for DirectLingam.
- DirectLingam(DataSet, Score) - Constructor for class edu.cmu.tetrad.search.DirectLingam
-
Constructor.
- directProduct(double[][], double[][]) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
Computes the direct (Kronecker) outerProduct.
- DirichletBayesIm - Class in edu.cmu.tetrad.bayes
-
Stores Dirichlet pseudocounts for the distributions of each variable conditional on particular combinations of its parent values and, together with Bayes Pm and Dag, provides methods to manipulate these tables.
- DirichletBayesIm(DirichletBayesIm) - Constructor for class edu.cmu.tetrad.bayes.DirichletBayesIm
-
Copy constructor.
- DirichletDataSetProbs - Class in edu.cmu.tetrad.bayes
-
Estimates probabilities directly from data on the fly using maximum likelihood method.
- DirichletDataSetProbs(DataSet, double) - Constructor for class edu.cmu.tetrad.bayes.DirichletDataSetProbs
-
Creates a cell count table for the given data set.
- DirichletEstimator - Class in edu.cmu.tetrad.bayes
-
Estimates a DirichletBayesIm from a DirichletBayesIm (the prior) and a data set.
- DirichletEstimator() - Constructor for class edu.cmu.tetrad.bayes.DirichletEstimator
-
Creates a new instance of DirichletEstimator.
- disallowComplement(int, int) - Method in class edu.cmu.tetrad.bayes.Proposition
-
Without changing the status of the specified category, disallows all other categories for the given variable.
- Discrete - Class in edu.cmu.tetrad.util.dist
-
Wraps a chi square distribution for purposes of drawing random samples.
- Discrete - Enum constant in enum class edu.cmu.tetrad.data.DataType
-
Discrete.
- Discrete - Enum constant in enum class edu.cmu.tetrad.study.performance.ComparisonParameters.DataType
-
Constant for discrete data.
- DISCRETE - Enum constant in enum class edu.cmu.tetrad.search.utils.BpcTestType
-
Discrete.
- DISCRETE_LRT - Enum constant in enum class edu.cmu.tetrad.search.utils.BpcTestType
-
Discrete LRT.
- DISCRETE_VARIATIONAL - Enum constant in enum class edu.cmu.tetrad.search.utils.BpcTestType
-
Discrete Variational.
- DiscreteBicScore - Class in edu.cmu.tetrad.algcomparison.score
-
Wrapper for Discrete BIC test.
- DiscreteBicScore - Class in edu.cmu.tetrad.search.score
-
Calculates the discrete BIC score.
- DiscreteBicScore() - Constructor for class edu.cmu.tetrad.algcomparison.score.DiscreteBicScore
-
Initializes a new instance of the DiscreteBicScore class.
- DiscreteBicScore(DataSet) - Constructor for class edu.cmu.tetrad.search.score.DiscreteBicScore
-
Constructs the score using a dataset.
- DiscreteBicScoreAdTree - Class in edu.cmu.tetrad.search.score
-
Calculates the discrete BIC score.
- DiscreteBicScoreAdTree(DataSet) - Constructor for class edu.cmu.tetrad.search.score.DiscreteBicScoreAdTree
-
Constructs the score using a dataset.
- DiscreteBicTest - Class in edu.cmu.tetrad.algcomparison.independence
-
Wrapper for Fisher Z test.
- DiscreteBicTest() - Constructor for class edu.cmu.tetrad.algcomparison.independence.DiscreteBicTest
-
Initializes a new instance of the DiscreteBicTest class.
- DiscreteDiscretizationSpec - Class in edu.cmu.tetrad.data
-
Specifies how a column (continuous or discrete) should be discretized.
- DiscreteDiscretizationSpec(int[], List<String>) - Constructor for class edu.cmu.tetrad.data.DiscreteDiscretizationSpec
-
Constructor for DiscreteDiscretizationSpec.
- DiscreteScore - Interface in edu.cmu.tetrad.search.score
-
Gives an interface that can be used by various discrete scores.
- discreteSerializableInstance() - Static method in class edu.cmu.tetrad.data.DataUtils
-
A discrete data set used to construct some other serializable instances.
- DiscreteVariable - Class in edu.cmu.tetrad.data
-
Represents a discrete variable as a range of integer-valued categories 0, 1, ..., m - 1, where m is the number of categories for the variable.
- DiscreteVariable(DiscreteVariable) - Constructor for class edu.cmu.tetrad.data.DiscreteVariable
-
Copy constructor.
- DiscreteVariable(String) - Constructor for class edu.cmu.tetrad.data.DiscreteVariable
-
Builds a discrete variable with the given name and an empty list of categories.
- DiscreteVariable(String, int) - Constructor for class edu.cmu.tetrad.data.DiscreteVariable
-
Builds a qualitative variable with the given name and number of categories.
- DiscreteVariable(String, List<String>) - Constructor for class edu.cmu.tetrad.data.DiscreteVariable
-
Builds a qualitative variable with the given name and array of possible categories.
- DiscreteVariableType - Class in edu.cmu.tetrad.data
-
Type-safe enum of discrete variable types.
- DiscretizationSpec - Interface in edu.cmu.tetrad.data
-
A continuous or discrete discretization spec (see).
- discretize() - Method in class edu.cmu.tetrad.data.Discretizer
-
discretize.
- discretize(double[], double[], String, List<String>) - Static method in class edu.cmu.tetrad.data.Discretizer
-
Discretizes the continuous data in the given column using the specified cutoffs and category names.
- discretize(DataSet, int, boolean) - Static method in class edu.cmu.tetrad.data.DataTransforms
-
discretize.
- DISCRETIZE - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
DISCRETIZE="discretize"
- Discretizer - Class in edu.cmu.tetrad.data
-
Discretizes individual columns of discrete or continuous data.
- Discretizer(DataSet) - Constructor for class edu.cmu.tetrad.data.Discretizer
-
Constructs a new discretizer that discretizes every variable as binary, using evenly distributed values.
- Discretizer(DataSet, Map<Node, DiscretizationSpec>) - Constructor for class edu.cmu.tetrad.data.Discretizer
-
Constructor for Discretizer.
- Discretizer.Discretization - Class in edu.cmu.tetrad.data
-
A discretization specification for a continuous variable.
- DiscriminatingPath - Class in edu.cmu.tetrad.search.utils
-
Represents a discriminating path in a graph.
- DiscriminatingPath(Node, Node, Node, Node, LinkedList<Node>, boolean) - Constructor for class edu.cmu.tetrad.search.utils.DiscriminatingPath
-
Represents a discriminating path construct in a graph.
- DishModel - Class in edu.cmu.tetrad.study.gene.tetrad.gene.history
-
Models the manner in which gene models are initialized differentially depending on the dishes that the cells are in.
- DishModel(int, double) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.history.DishModel
-
Constructor for DishModel.
- display(SortedSet<ItkPredictorSearch.Gene>) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.ideker.ItkPredictorSearch
-
display.
- DisplayNameHandler - Class in edu.cmu.tetrad.study.gene.tetrad.gene.graph
-
Translates display names of lagged variables (e.g.
- displayParents() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.AbstractNbComponent
-
Displays the parents.
- dissimilarity(Vector, Vector) - Method in interface edu.cmu.tetrad.cluster.metrics.Dissimilarity
-
dissimilarity.
- dissimilarity(Vector, Vector) - Method in class edu.cmu.tetrad.cluster.metrics.SquaredErrorLoss
-
Calculates the dissimilarity between two vectors using the Euclidean dissimilarity metric.
- Dissimilarity - Interface in edu.cmu.tetrad.cluster.metrics
-
Interface for a dissilimarity metric.
- DIST - Enum constant in enum class edu.cmu.tetrad.sem.ParamType
-
Represents a free parameter type for structural equation modeling (SEM) models.
- distance(LinkedList<Double>, double) - Method in class edu.cmu.tetrad.search.Ida
-
Returns the distance between the effects and the true effect.
- distances(Graph, Graph) - Method in class edu.cmu.tetrad.simulation.Gdistance
-
distances.
- distances(FciOrientDijkstra.Graph, Node, Node, Map<Node, Node>, boolean, boolean) - Static method in class edu.cmu.tetrad.search.FciOrientDijkstra
-
Finds shortest distances from a x node to all other nodes in a graph.
- distances(FciOrientDijkstra.Graph, Node, Map<Node, Node>) - Static method in class edu.cmu.tetrad.search.FciOrientDijkstra
-
Finds shortest distances from a start node to all other nodes in a graph.
- distances(R5R9Dijkstra.Graph, Node, Node) - Static method in class edu.cmu.tetrad.search.utils.R5R9Dijkstra
-
Finds shortest distances from a x node to all other nodes in a graph, subject to the following constraints.
- distinct(Node...) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Determines whether three
Node
objects are distinct. - Distribution - Interface in edu.cmu.tetrad.util.dist
-
Interface for a statistical distribution from which random values can be drawn.
- district(Node) - Method in class edu.cmu.tetrad.graph.Paths
-
Retrieves the set of nodes that belong to the same district as the given node.
- district(Node, Graph) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Calculates the district of a given node in a graph.
- DMSearch - Class in edu.cmu.tetrad.search.work_in_progress
-
Implements the DM search.
- DMSearch() - Constructor for class edu.cmu.tetrad.search.work_in_progress.DMSearch
-
Constructor for DMSearch.
- DMSearch.LatentStructure - Class in edu.cmu.tetrad.search.work_in_progress
-
Structure to hold latent structure.
- DO_COLLIDER_ORIENTATION - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
DO_COLLIDER_ORIENTATION="doColliderOrientation"
- DO_DDP_EDGE_REMOVAL_STEP - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
DO_DDP_EDGE_REMOVAL_STEP="doDdpEdgeRemovalStep"
- doDiscriminatingPathOrientation(DiscriminatingPath, Graph, Set<Node>) - Method in interface edu.cmu.tetrad.search.utils.R0R4Strategy
-
Does a discriminating path orientation based on an examination of the data.
- doDiscriminatingPathOrientation(DiscriminatingPath, Graph, Set<Node>) - Method in class edu.cmu.tetrad.search.utils.R0R4StrategyScoreBased
-
Does a discriminating path orientation based on the Discriminating Path Rule.
- doDiscriminatingPathOrientation(DiscriminatingPath, Graph, Set<Node>) - Method in class edu.cmu.tetrad.search.utils.R0R4StrategyTestBased
-
Does a discriminating path orientation.
- dof - Variable in class edu.cmu.tetrad.bayes.BayesProperties.LikelihoodRet
-
The degrees of freedom.
- doLayout() - Method in class edu.cmu.tetrad.graph.LayoutUtil.FruchtermanReingoldLayout
-
Lays out the graph.
- doLayout() - Method in class edu.cmu.tetrad.graph.LayoutUtil.KamadaKawaiLayout
-
Lays out the graph.
- DOMAIN - Enum constant in enum class edu.cmu.tetrad.graph.NodeVariableType
-
The node variable type not intervened on.
- doRequiredOrientations(FciOrient, Graph, List<Node>, Knowledge, boolean) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Orient required edges in PAG.
- dot(Vector) - Method in class edu.cmu.tetrad.util.Vector
-
dot.
- dotProduct(Vector) - Method in class edu.cmu.tetrad.util.Vector
-
dotProduct.
- DOUBLE_REMOVE - Enum constant in enum class edu.cmu.tetrad.search.work_in_progress.HbsmsBeam.Move.Type
-
Remove two edges.
- DoubleDataBox - Class in edu.cmu.tetrad.data
-
Stores a 2D array of double data.
- DoubleDataBox(double[][]) - Constructor for class edu.cmu.tetrad.data.DoubleDataBox
-
Constructs a new data box using the given 2D double data array as data.
- DoubleDataBox(int, int) - Constructor for class edu.cmu.tetrad.data.DoubleDataBox
-
Constructs an 2D double array consisting entirely of missing values (Double.NaN).
- dsep(Node, Node) - Method in class edu.cmu.tetrad.graph.Paths
-
Returns D-SEP(x, y) for a maximal ancestral graph G (or inducing path graph G, as in Causation, Prediction and Search).
- dsep(Node, Node, Graph) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Returns D-SEP(x, y) for a MAG G.
- dsep0(Node, Node, Graph) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Returns D-SEP(x, y) for a MAG G (or inducing path graph G, as in Causation, Prediction and Search).
- dsep2(Node, Node, Graph) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Returns D-SEP(x, y) for a MAG G.
- dsepReachability(Node, Node, Graph) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Returns D-SEP(x, y) for a MAG G.
E
- E - Static variable in class edu.cmu.tetrad.calculator.expression.ConstantExpression
-
Constant expression for e.
- E(double[], double[], double[]) - Static method in class edu.cmu.tetrad.search.Fask
-
Calculates E(xy) for positive values of z.
- E(double[], double[], double[], double, double) - Static method in class edu.cmu.tetrad.util.StatUtils
-
E.
- Eb - Class in edu.cmu.tetrad.algcomparison.algorithm.pairwise
-
EB.
- Eb() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.pairwise.Eb
-
Constructor for Eb.
- Eb(Algorithm) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.pairwise.Eb
-
Constructor for Eb.
- EB - Enum constant in enum class edu.cmu.tetrad.search.Lofs.Rule
-
The EB rule.
- EBIC_GAMMA - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
EBIC_GAMMA="ebicGamma"
- EbicScore - Class in edu.cmu.tetrad.algcomparison.score
-
Wrapper for linear, Gaussian Extended BIC score (Chen and Chen).
- EbicScore - Class in edu.cmu.tetrad.search.score
-
Implements the extended BIC (EBIC) score.
- EbicScore() - Constructor for class edu.cmu.tetrad.algcomparison.score.EbicScore
-
Initializes a new instance of the EbicScore class.
- EbicScore(DataSet, boolean) - Constructor for class edu.cmu.tetrad.search.score.EbicScore
-
Constructs the score using a covariance matrix.
- EbicScore(ICovarianceMatrix) - Constructor for class edu.cmu.tetrad.search.score.EbicScore
-
Constructs the score using a covariance matrix.
- Edge - Class in edu.cmu.tetrad.graph
-
Represents an edge node1 *-# node2 where * and # are endpoints of type Endpoint--that is, Endpoint.TAIL, Endpoint.ARROW, or Endpoint.CIRCLE.
- Edge(Edge) - Constructor for class edu.cmu.tetrad.graph.Edge
-
Constructor for Edge.
- Edge(Node, Node, Endpoint, Endpoint) - Constructor for class edu.cmu.tetrad.graph.Edge
-
Constructs a new edge by specifying the nodes it connects and the endpoint types.
- Edge.Property - Enum Class in edu.cmu.tetrad.graph
-
A property of an edge.
- EdgeListGraph - Class in edu.cmu.tetrad.graph
-
Stores a graph a list of lists of edges adjacent to each node in the graph, with an additional list storing all of the edges in the graph.
- EdgeListGraph() - Constructor for class edu.cmu.tetrad.graph.EdgeListGraph
-
Constructs a new (empty) EdgeListGraph.
- EdgeListGraph(EdgeListGraph) - Constructor for class edu.cmu.tetrad.graph.EdgeListGraph
-
Constructor for EdgeListGraph.
- EdgeListGraph(Graph) - Constructor for class edu.cmu.tetrad.graph.EdgeListGraph
-
Constructs a EdgeListGraph using the nodes and edges of the given graph.
- EdgeListGraph(List<Node>) - Constructor for class edu.cmu.tetrad.graph.EdgeListGraph
-
Constructs a new graph, with no edges, using the given variable names.
- edgeMisclassificationCounts(Graph, Graph, boolean) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Computes the misclassification counts for each edge in the given graphs.
- edgeMisclassifications(double[][], NumberFormat) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Generates a textual representation of the edge misclassifications based on the provided counts and number format.
- edgeMisclassifications(int[][]) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Calculates the misclassifications of edges based on the given counts.
- edgeMisclassifications(Graph, Graph) - Static method in class edu.cmu.tetrad.graph.MisclassificationUtils
-
edgeMisclassifications.
- edgeOrientedMsg(String, Edge) - Static method in class edu.cmu.tetrad.search.utils.LogUtilsSearch
-
edgeOrientedMsg.
- Edges - Class in edu.cmu.tetrad.graph
-
This factory class produces edges of the types commonly used for Tetrad-style graphs.
- EdgeStatHeader - Static variable in class edu.pitt.csb.mgm.MixedUtils
-
Constant
EdgeStatHeader="TD\tTU\tFL\tFD\tFU\tFPD\tFPU\tFND\tFNU\"{trunked}
- EdgesToString() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.biolingua.Digraph
-
Returns a string representation of the set of edges in this graph
- EdgesToString() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.BasicGraph
-
Returns a string representation of the set of edges in this graph
- EdgeTypeProbability - Class in edu.cmu.tetrad.graph
-
Apr 13, 2017 3:56:46 PM
- EdgeTypeProbability() - Constructor for class edu.cmu.tetrad.graph.EdgeTypeProbability
-
Constructor for EdgeTypeProbability.
- EdgeTypeProbability(EdgeTypeProbability.EdgeType, double) - Constructor for class edu.cmu.tetrad.graph.EdgeTypeProbability
-
Constructor for EdgeTypeProbability.
- EdgeTypeProbability(EdgeTypeProbability.EdgeType, List<Edge.Property>, double) - Constructor for class edu.cmu.tetrad.graph.EdgeTypeProbability
-
Constructor for EdgeTypeProbability.
- EdgeTypeProbability.EdgeType - Enum Class in edu.cmu.tetrad.graph
-
An enumeration of the different types of edges.
- edu.cmu.tetrad.algcomparison - package edu.cmu.tetrad.algcomparison
- edu.cmu.tetrad.algcomparison.algorithm - package edu.cmu.tetrad.algcomparison.algorithm
- edu.cmu.tetrad.algcomparison.algorithm.cluster - package edu.cmu.tetrad.algcomparison.algorithm.cluster
- edu.cmu.tetrad.algcomparison.algorithm.continuous.dag - package edu.cmu.tetrad.algcomparison.algorithm.continuous.dag
- edu.cmu.tetrad.algcomparison.algorithm.mixed - package edu.cmu.tetrad.algcomparison.algorithm.mixed
- edu.cmu.tetrad.algcomparison.algorithm.multi - package edu.cmu.tetrad.algcomparison.algorithm.multi
- edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag - package edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag
- edu.cmu.tetrad.algcomparison.algorithm.oracle.pag - package edu.cmu.tetrad.algcomparison.algorithm.oracle.pag
- edu.cmu.tetrad.algcomparison.algorithm.other - package edu.cmu.tetrad.algcomparison.algorithm.other
- edu.cmu.tetrad.algcomparison.algorithm.pairwise - package edu.cmu.tetrad.algcomparison.algorithm.pairwise
- edu.cmu.tetrad.algcomparison.examples - package edu.cmu.tetrad.algcomparison.examples
- edu.cmu.tetrad.algcomparison.graph - package edu.cmu.tetrad.algcomparison.graph
- edu.cmu.tetrad.algcomparison.independence - package edu.cmu.tetrad.algcomparison.independence
- edu.cmu.tetrad.algcomparison.score - package edu.cmu.tetrad.algcomparison.score
- edu.cmu.tetrad.algcomparison.simulation - package edu.cmu.tetrad.algcomparison.simulation
- edu.cmu.tetrad.algcomparison.statistic - package edu.cmu.tetrad.algcomparison.statistic
- edu.cmu.tetrad.algcomparison.statistic.utils - package edu.cmu.tetrad.algcomparison.statistic.utils
- edu.cmu.tetrad.algcomparison.utils - package edu.cmu.tetrad.algcomparison.utils
- edu.cmu.tetrad.annotation - package edu.cmu.tetrad.annotation
- edu.cmu.tetrad.bayes - package edu.cmu.tetrad.bayes
- edu.cmu.tetrad.calculator - package edu.cmu.tetrad.calculator
- edu.cmu.tetrad.calculator.expression - package edu.cmu.tetrad.calculator.expression
- edu.cmu.tetrad.calculator.parser - package edu.cmu.tetrad.calculator.parser
- edu.cmu.tetrad.calibration - package edu.cmu.tetrad.calibration
- edu.cmu.tetrad.classify - package edu.cmu.tetrad.classify
- edu.cmu.tetrad.cluster - package edu.cmu.tetrad.cluster
- edu.cmu.tetrad.cluster.metrics - package edu.cmu.tetrad.cluster.metrics
- edu.cmu.tetrad.data - package edu.cmu.tetrad.data
- edu.cmu.tetrad.data.simulation - package edu.cmu.tetrad.data.simulation
- edu.cmu.tetrad.graph - package edu.cmu.tetrad.graph
- edu.cmu.tetrad.regression - package edu.cmu.tetrad.regression
- edu.cmu.tetrad.search - package edu.cmu.tetrad.search
-
Contains classes for searching for (mostly structural) causal models given data.
- edu.cmu.tetrad.search.score - package edu.cmu.tetrad.search.score
-
Contains classes for various sorts of scores for running score-based algorithms.
- edu.cmu.tetrad.search.test - package edu.cmu.tetrad.search.test
-
Contains classes for running conditional independence tests for various sorts of data.
- edu.cmu.tetrad.search.utils - package edu.cmu.tetrad.search.utils
-
Contains some utility classes for search algorithms.
- edu.cmu.tetrad.search.work_in_progress - package edu.cmu.tetrad.search.work_in_progress
-
Contains some classes that aren't ready for prime time.
- edu.cmu.tetrad.sem - package edu.cmu.tetrad.sem
- edu.cmu.tetrad.simulation - package edu.cmu.tetrad.simulation
- edu.cmu.tetrad.stat - package edu.cmu.tetrad.stat
- edu.cmu.tetrad.stat.correlation - package edu.cmu.tetrad.stat.correlation
- edu.cmu.tetrad.study - package edu.cmu.tetrad.study
- edu.cmu.tetrad.study.examples.conditions - package edu.cmu.tetrad.study.examples.conditions
- edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.akutsu - package edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.akutsu
- edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.biolingua - package edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.biolingua
- edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.ideker - package edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.ideker
- edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.reveal - package edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.reveal
- edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin - package edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin
- edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util - package edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util
- edu.cmu.tetrad.study.gene.tetrad.gene.graph - package edu.cmu.tetrad.study.gene.tetrad.gene.graph
-
Contains an editable display graph for (small) lag graphs.
- edu.cmu.tetrad.study.gene.tetrad.gene.history - package edu.cmu.tetrad.study.gene.tetrad.gene.history
-
Implements a time-series simulation engine suitable for time-series gene expression studies.
- edu.cmu.tetrad.study.gene.tetrad.gene.simexp - package edu.cmu.tetrad.study.gene.tetrad.gene.simexp
-
Implements a collection of manual simulation experiments.
- edu.cmu.tetrad.study.gene.tetrad.gene.simulation - package edu.cmu.tetrad.study.gene.tetrad.gene.simulation
-
Contains classes for generating simulations of expression levels over a collection of genes.
- edu.cmu.tetrad.study.gene.tetrad.gene.util - package edu.cmu.tetrad.study.gene.tetrad.gene.util
-
Contains some utility classes needed for the edu.cmu.tetrad.gene.* packages.
- edu.cmu.tetrad.study.gene.tetradapp.model - package edu.cmu.tetrad.study.gene.tetradapp.model
- edu.cmu.tetrad.study.performance - package edu.cmu.tetrad.study.performance
- edu.cmu.tetrad.util - package edu.cmu.tetrad.util
- edu.cmu.tetrad.util.dist - package edu.cmu.tetrad.util.dist
- edu.pitt.csb.mgm - package edu.pitt.csb.mgm
- edu.pitt.csb.stability - package edu.pitt.csb.stability
- edu.pitt.dbmi.algo.bayesian.constraint.inference - package edu.pitt.dbmi.algo.bayesian.constraint.inference
- edu.pitt.dbmi.algo.bayesian.constraint.search - package edu.pitt.dbmi.algo.bayesian.constraint.search
- edu.pitt.dbmi.algo.resampling - package edu.pitt.dbmi.algo.resampling
- edu.pitt.isp.sverchkov.data - package edu.pitt.isp.sverchkov.data
- EffectiveSampleSizeSettable - Interface in edu.cmu.tetrad.search
-
Gives an interface for classes where the effective sample size can be set by the user.
- EigenDecomposition - Class in edu.pitt.csb.mgm
-
Calculates the eigen decomposition of a real matrix.
- EigenDecomposition(double[], double[]) - Constructor for class edu.pitt.csb.mgm.EigenDecomposition
-
Calculates the eigen decomposition of the symmetric tridiagonal matrix.
- EigenDecomposition(double[], double[], double) - Constructor for class edu.pitt.csb.mgm.EigenDecomposition
-
Deprecated.in 3.1 (to be removed in 4.0) due to unused parameter
- EigenDecomposition(RealMatrix) - Constructor for class edu.pitt.csb.mgm.EigenDecomposition
-
Calculates the eigen decomposition of the given real matrix.
- EigenDecomposition(RealMatrix, double) - Constructor for class edu.pitt.csb.mgm.EigenDecomposition
-
Deprecated.in 3.1 (to be removed in 4.0) due to unused parameter
- EigenReturn(SimpleMatrix, SimpleMatrix, List<Double>) - Constructor for record class edu.cmu.tetrad.search.test.Kci.EigenReturn
-
Creates an instance of a
EigenReturn
record class. - Elapsed - Enum constant in enum class edu.cmu.tetrad.study.performance.Comparison.TableColumn
-
The elapsed time.
- Elapsed - Enum constant in enum class edu.cmu.tetrad.study.performance.Comparison2.TableColumn
-
Constant
Elapsed
- ElapsedCpuTime - Class in edu.cmu.tetrad.algcomparison.statistic
-
Records the elapsed time of the algorithm in seconds.
- ElapsedCpuTime() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.ElapsedCpuTime
-
Initializes a new instance of the ElapsedCpuTime class.
- EmBayesEstimator - Class in edu.cmu.tetrad.bayes
-
Estimates parameters of the given Bayes net from the given data using maximum likelihood method.
- EmBayesEstimator(BayesIm, DataSet) - Constructor for class edu.cmu.tetrad.bayes.EmBayesEstimator
-
Constructor for EmBayesEstimator.
- EmBayesEstimator(BayesPm, DataSet) - Constructor for class edu.cmu.tetrad.bayes.EmBayesEstimator
-
Provides methods for estimating a Bayes IM from an existing BayesIM and a discrete dataset using EM (Expectation Maximization).
- EmBayesProperties - Class in edu.cmu.tetrad.bayes
-
Calculates some scores for Bayes nets as a whole.
- EmBayesProperties(DataSet, Graph) - Constructor for class edu.cmu.tetrad.bayes.EmBayesProperties
-
Constructor for EmBayesProperties.
- EmBayesProperties.Estimator - Interface in edu.cmu.tetrad.bayes
-
Interface for an estimator.
- EmpiricalCdf - Class in edu.cmu.tetrad.sem
-
Only the cumulativeProbability, density, setShift methods are implemented.
- EmpiricalCdf(List<Double>) - Constructor for class edu.cmu.tetrad.sem.EmpiricalCdf
-
Constructor for EmpiricalCdf.
- EmpiricalDistributionForExpression - Class in edu.cmu.tetrad.sem
-
Returns a sample empirical distribution for a particular expression.
- EmpiricalDistributionForExpression(GeneralizedSemPm, Node, Context) - Constructor for class edu.cmu.tetrad.sem.EmpiricalDistributionForExpression
-
Constructor for EmpiricalDistributionForExpression.
- empiricalHSIC(Matrix, Matrix, int) - Method in class edu.cmu.tetrad.search.test.IndTestHsic
-
Empirical unconditional Hilbert-Schmidt Dependence Measure for X and Y
- empiricalHSICincompleteCholesky(Matrix, Matrix, int) - Method in class edu.cmu.tetrad.search.test.IndTestHsic
-
Empirical unconditional Hilbert-Schmidt Dependence Measure for X and Y using incomplete Cholesky decomposition to approximate Gram matrices
- empiricalHSICincompleteCholesky(Matrix, Matrix, Matrix, int) - Method in class edu.cmu.tetrad.search.test.IndTestHsic
-
Empirical unconditional Hilbert-Schmidt Dependence Measure for X and Y given Z using incomplete Cholesky decomposition to approximate Gram matrices
- EmptyConfig(boolean) - Constructor for class edu.cmu.tetrad.util.TetradLogger.EmptyConfig
-
Constructor for EmptyConfig.
- emptyGraph(int) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Creates an empty graph with the specified number of nodes.
- Endpoint - Enum Class in edu.cmu.tetrad.graph
-
A enumeration of the endpoint types that are permitted in Tetrad-style graphs: null (-), arrow (->), circle (-o), start (-*), and null (no endpoint).
- endpointMisclassification(Graph, Graph) - Static method in class edu.cmu.tetrad.graph.MisclassificationUtils
-
endpointMisclassification.
- endpointMisclassification(List<Node>, Graph, Graph) - Static method in class edu.cmu.tetrad.study.performance.PerformanceTests
-
endpointMisclassification.
- ENSURE_MARKOV - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
ENSURE_MARKOV="ensureMarkov"
- ensureColumns(int, List<String>) - Method in class edu.cmu.tetrad.data.BoxDataSet
-
Ensures that the dataset has at least
columns
columns. - ensureColumns(int, List<String>) - Method in interface edu.cmu.tetrad.data.DataSet
-
Ensures that the dataset has at least
columns
columns. - ensureColumns(int, List<String>) - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
Ensures that the dataset has at least
columns
columns. - EnsureMarkov - Class in edu.cmu.tetrad.search.utils
-
A helper class to encapsulate logic for ensuring a Markov property for subsequent testing after an initial local Markov graph has been found.
- EnsureMarkov(Graph, IndependenceTest) - Constructor for class edu.cmu.tetrad.search.utils.EnsureMarkov
-
Constructs an EnsureMarkov class for a given Markov dag.
- ensureRows(int) - Method in class edu.cmu.tetrad.data.BoxDataSet
-
Ensures that the dataset has at least
rows
rows. - ensureRows(int) - Method in interface edu.cmu.tetrad.data.DataSet
-
Ensures that the dataset has at least
rows
rows. - ensureRows(int) - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
Ensures that the dataset has at least
rows
rows. - ensureSymmetry() - Method in class edu.cmu.tetrad.search.utils.GraphoidAxioms
-
Sets symmetry as assumed--i.e., ensures that X ⊥⊥ Y | Z ==> Y ⊥⊥ X | Z.
- ensureTriviality() - Method in class edu.cmu.tetrad.search.utils.GraphoidAxioms
-
Sets whether triviality as assumed.
- entropy - Enum constant in enum class edu.cmu.tetrad.search.Lofs.Score
-
The entropy.
- entropy(int[]) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.reveal.RevealEvaluator
-
This method computes the entropy of a binary signal stored in an int array.
- entropy(int[]) - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.LTestReveal
-
entropy.
- entropy(int[]) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.RevealEvaluator
-
This method computes the entropy of a binary signal stored in an int array.
- entropy(int, double[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
entropy.
- entropy(int, int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.reveal.RevealEvaluator
-
This method implements the same definition of entropy as above but this specialized version is intended to be used by the mutualInformation method (viz).
- entropy(int, int) - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.LTestReveal
-
entropy.
- entropy(int, int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.RevealEvaluator
-
This method implements the same definition of entropy as above but this specialized version is intended to be used by the mutualInformation method (viz).
- EOF - Enum constant in enum class edu.cmu.tetrad.calculator.parser.Token
-
End of file.
- EQ - Enum constant in enum class edu.cmu.tetrad.sem.ParamComparison
-
An enum representing the "EQ" comparison type for a parameter in SEM estimation.
- EQ - Enum constant in enum class edu.cmu.tetrad.sem.ParamConstraintType
-
The EQ represents a parameter constraint type EQ (equal).
- equalCounts(Node, int) - Method in class edu.cmu.tetrad.data.Discretizer
-
Sets the given node to discretized using evenly distributed values using the given number of categories.
- equalIntervals(Node, int) - Method in class edu.cmu.tetrad.data.Discretizer
-
Sets the given node to discretized using evenly spaced intervals using the given number of categories.
- equals(double[][], double[][]) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
Tests two matrices for equality.
- equals(double[][], double[][], double) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
Tests to see whether two matrices are equal within the given tolerance.
- equals(double[], double[]) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
Tests two vectors for equality.
- equals(double[], double[], double) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
Tests to see whether two vectors are equal within the given tolerance.
- equals(ScoredGraph) - Method in class edu.cmu.tetrad.search.score.ScoredGraph
-
Returns true if the scoreed graph and this scored graph are equal.
- equals(Matrix, double) - Method in class edu.cmu.tetrad.util.Matrix
-
equals.
- equals(Object) - Method in class edu.cmu.tetrad.annotation.AnnotatedClass
- equals(Object) - Method in interface edu.cmu.tetrad.bayes.BayesIm
-
Returns true iff this Bayes net is equal to the given Bayes net.
- equals(Object) - Method in class edu.cmu.tetrad.bayes.BayesPm
- equals(Object) - Method in class edu.cmu.tetrad.bayes.DirichletBayesIm
-
Returns true iff this Bayes net is equal to the given Bayes net.
- equals(Object) - Method in class edu.cmu.tetrad.bayes.Evidence
- equals(Object) - Method in class edu.cmu.tetrad.bayes.Manipulation
- equals(Object) - Method in class edu.cmu.tetrad.bayes.MlBayesIm
-
Determines whether the specified object is equal to this Bayes net.
- equals(Object) - Method in class edu.cmu.tetrad.bayes.MlBayesImObs
-
Returns true iff this Bayes net is equal to the given Bayes net.
- equals(Object) - Method in class edu.cmu.tetrad.bayes.Proposition
- equals(Object) - Method in class edu.cmu.tetrad.bayes.UpdatedBayesIm
-
Returns true iff this Bayes net is equal to the given Bayes net.
- equals(Object) - Method in class edu.cmu.tetrad.data.BoxDataSet
-
Checks if the given object is equal to this dataset.
- equals(Object) - Method in class edu.cmu.tetrad.data.Clusters
- equals(Object) - Method in class edu.cmu.tetrad.data.ContinuousVariable
-
Tests whether this variable is equal to the given variable.
- equals(Object) - Method in class edu.cmu.tetrad.data.DataModelList
- equals(Object) - Method in interface edu.cmu.tetrad.data.DataSet
-
Checks if the given object is equal to this dataset.
- equals(Object) - Method in class edu.cmu.tetrad.data.DiscreteVariable
-
Tests whether this variable is equal to the given variable.
- equals(Object) - Method in class edu.cmu.tetrad.data.Knowledge
-
Compares this Knowledge object with the specified object for equality.
- equals(Object) - Method in class edu.cmu.tetrad.data.KnowledgeEdge
- equals(Object) - Method in class edu.cmu.tetrad.data.KnowledgeGroup
- equals(Object) - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
Checks if the given object is equal to this dataset.
- equals(Object) - Method in class edu.cmu.tetrad.graph.Dag
-
Compares this
Graph
object with the specified object for equality. - equals(Object) - Method in class edu.cmu.tetrad.graph.Edge
- equals(Object) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
Determines whether this graph is equal to some other graph, in the sense that they contain the same nodes and the sets of edges defined over these nodes in the two graphs are isomorphic typewise.
- equals(Object) - Method in interface edu.cmu.tetrad.graph.Graph
-
Determines whether this graph is equal to some other graph, in the sense that they contain the same nodes and the sets of edges defined over these nodes in the two graphs are isomorphic typewise.
- equals(Object) - Method in class edu.cmu.tetrad.graph.GraphNode
-
Tests whether this variable is equal to the given variable.
- equals(Object) - Method in class edu.cmu.tetrad.graph.IndependenceFact
- equals(Object) - Method in interface edu.cmu.tetrad.graph.Node
-
Tests whether this variable is equal to the given variable.
- equals(Object) - Method in class edu.cmu.tetrad.graph.NodePair
- equals(Object) - Method in class edu.cmu.tetrad.graph.OrderedPair
- equals(Object) - Method in class edu.cmu.tetrad.graph.SemGraph
-
Determines whether this graph is equal to some other graph, in the sense that they contain the same nodes and the sets of edges defined over these nodes in the two graphs are isomorphic typewise.
- equals(Object) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Compares this Graph object with the specified object for equality.
- equals(Object) - Method in class edu.cmu.tetrad.graph.Triple
- equals(Object) - Method in record class edu.cmu.tetrad.search.MarkovCheck.MarkovCheckRecord
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in record class edu.cmu.tetrad.search.score.SemBicScore.CovAndCoefs
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in record class edu.cmu.tetrad.search.test.Kci.EigenReturn
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in class edu.cmu.tetrad.search.utils.GraphoidAxioms.GraphoidIndFact
-
Returns whether this object is equal to another.
- equals(Object) - Method in class edu.cmu.tetrad.search.utils.PossibleMConnectingPath
- equals(Object) - Method in class edu.cmu.tetrad.search.utils.SepsetMap
- equals(Object) - Method in class edu.cmu.tetrad.search.utils.Sextad
- equals(Object) - Method in class edu.cmu.tetrad.search.utils.Tetrad
- equals(Object) - Method in class edu.cmu.tetrad.search.work_in_progress.DMSearch
- equals(Object) - Method in class edu.cmu.tetrad.search.work_in_progress.GraphChange
- equals(Object) - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsGes.GraphWithPValue
-
equals.
- equals(Object) - Method in class edu.cmu.tetrad.search.work_in_progress.SepsetMapDci
- equals(Object) - Method in class edu.cmu.tetrad.search.work_in_progress.Sextad
- equals(Object) - Method in class edu.cmu.tetrad.sem.ParameterPair
-
Checks if this ParameterPair object is equal to the specified object.
- equals(Object) - Method in class edu.cmu.tetrad.sem.SemEvidence
-
This method checks if the given object is equal to the current instance of SemEvidence.
- equals(Object) - Method in class edu.cmu.tetrad.sem.SemManipulation
-
Compares the current instance with the specified object for equality.
- equals(Object) - Method in class edu.cmu.tetrad.sem.SemProposition
-
Compares this SemProposition object with the specified object for equality.
- equals(Object) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.IndexedParent
- equals(Object) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.LaggedFactor
- equals(Object) - Method in class edu.cmu.tetrad.util.PointXy
- equals(Object) - Method in class edu.cmu.tetrad.util.Vector
- equals(Object) - Method in class edu.cmu.tetrad.util.Version
- Equation - Class in edu.cmu.tetrad.calculator.expression
-
Represents an equation of the form Variable = Expression, where the Variable represents a column in some dataset.
- Equation(String, Expression, String) - Constructor for class edu.cmu.tetrad.calculator.expression.Equation
-
Constructor for Equation.
- EQUATION - Enum constant in enum class edu.cmu.tetrad.calculator.parser.Token
-
Equation.
- ERDOS_RENYI_DAG - Static variable in class edu.cmu.tetrad.algcomparison.graph.GraphTypes
-
Constant
ERDOS_RENYI_DAG="Erdos-Renyi DAG (Fixed Edge Probability"{trunked}
- ErdosRenyi - Class in edu.cmu.tetrad.algcomparison.graph
-
Creates a random graph by the Erdos-Renyi method (probabiliy of edge fixed, # edges not).
- ErdosRenyi() - Constructor for class edu.cmu.tetrad.algcomparison.graph.ErdosRenyi
-
Initializes a new instance of the ErdosRenyi class.
- erf(double) - Static method in class edu.cmu.tetrad.util.StatUtils
-
Calculates the error function for a double
- error(String) - Method in class edu.cmu.tetrad.util.TetradLogger
-
Logs an error, this will log the message regardless of any configuration information.
- ERROR - Enum constant in enum class edu.cmu.tetrad.graph.NodeType
-
Constant
ERROR
- errorEval(Graph, Graph) - Static method in class edu.cmu.tetrad.simulation.HsimUtils
-
errorEval.
- ERRORS_NORMAL - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
ERRORS_NORMAL="errorsNormal"
- estimate() - Method in class edu.cmu.tetrad.sem.SemEstimator
-
Runs the estimator on the data and SemPm passed in through the constructor.
- estimate() - Method in class edu.cmu.tetrad.sem.SemEstimatorGibbs
-
Runs the estimator on the data and SemPm passed in through the constructor.
- estimate(double[][], double[][], double) - Static method in class edu.cmu.tetrad.search.utils.EstimateRank
-
Estimate rank from data.
- estimate(int[], int[], double[][], int, double) - Static method in class edu.cmu.tetrad.search.utils.EstimateRank
-
Estimate rank from covariance matrix.
- estimate(BayesPm, DataSet) - Method in interface edu.cmu.tetrad.bayes.EmBayesProperties.Estimator
-
estimate.
- estimate(BayesPm, DataSet) - Method in class edu.cmu.tetrad.bayes.MlBayesEstimator
-
Estimates parameters of the given Bayes net from the given data using maximum likelihood method.
- estimate(BayesPm, DataSet) - Method in class edu.cmu.tetrad.bayes.MlBayesEstimatorOld
-
33 Estimates a Bayes IM using the variables, graph, and parameters in the given Bayes PM and the data columns in the given data set.
- estimate(DirichletBayesIm, DataSet) - Static method in class edu.cmu.tetrad.bayes.DirichletEstimator
-
estimate.
- estimate(GeneralizedSemPm, DataSet) - Method in class edu.cmu.tetrad.sem.GeneralizedSemEstimator
-
Maximizes likelihood equation by equation.
- EstimateRank - Class in edu.cmu.tetrad.search.utils
-
Estimates the rank of a matrix.
- estimateW(DataSet, int, double, double) - Static method in class edu.cmu.tetrad.search.IcaLingD
-
Estimates the W matrix using FastICA.
- estimateW(DataSet, int, double, double, boolean) - Static method in class edu.cmu.tetrad.search.IcaLingD
-
Estimates the W matrix using FastICA.
- eval(double, double) - Method in interface edu.cmu.tetrad.search.utils.Kernel
-
Evaluates the kernel at two points in the input space
- eval(double, double) - Method in class edu.cmu.tetrad.search.utils.KernelGaussian
-
Evaluates the kernel at two points in the input space
- evalEdges(Graph, Set<Node>, Set<Node>) - Static method in class edu.cmu.tetrad.simulation.HsimUtils
-
evalEdges.
- evaluate(double[]) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.Polynomial
-
Evaluates the term.
- evaluate(double[]) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.PolynomialTerm
-
Evaluates the term.
- evaluate(Context) - Method in class edu.cmu.tetrad.calculator.expression.ConstantExpression
-
Evaluates the expression using the given context
- evaluate(Context) - Method in class edu.cmu.tetrad.calculator.expression.EvaluationExpression
-
Evaluates the expression using the given context
- evaluate(Context) - Method in interface edu.cmu.tetrad.calculator.expression.Expression
-
Evaluates the expression using the given context
- evaluate(Context) - Method in class edu.cmu.tetrad.calculator.expression.VariableExpression
-
Evaluates the expression using the given context
- evaluateGeneric(Context) - Method in class edu.cmu.tetrad.calculator.expression.VariableExpression
-
evaluateGeneric.
- EvaluationExpression - Class in edu.cmu.tetrad.calculator.expression
-
An equation expression.
- EvaluationExpression(VariableExpression, String) - Constructor for class edu.cmu.tetrad.calculator.expression.EvaluationExpression
-
Constructor for EvaluationExpression.
- EVENLY_DISTRIBUTED_INTERVALS - Static variable in class edu.cmu.tetrad.data.ContinuousDiscretizationSpec
-
Constant
EVENLY_DISTRIBUTED_INTERVALS=2
- EVENLY_DISTRIBUTED_VALUES - Static variable in class edu.cmu.tetrad.data.ContinuousDiscretizationSpec
-
The types of discretization
- evenSplitVector(double, int) - Static method in class edu.pitt.csb.mgm.MixedUtils
-
evenSplitVector.
- Evidence - Class in edu.cmu.tetrad.bayes
-
Stores information for a variable source about evidence we have for each variable as well as whether each variable has been manipulated.
- Evidence(Evidence) - Constructor for class edu.cmu.tetrad.bayes.Evidence
-
Copy constructor.
- Evidence(Evidence, VariableSource) - Constructor for class edu.cmu.tetrad.bayes.Evidence
-
Constructor for Evidence.
- Evidence(Proposition) - Constructor for class edu.cmu.tetrad.bayes.Evidence
-
Wraps the proposition.
- ExampleCompareFromFiles - Class in edu.cmu.tetrad.algcomparison.examples
-
An example script to load in data sets and graphs from files and analyze them.
- ExampleCompareFromFiles - Class in edu.cmu.tetrad.study.examples.conditions
-
An example script to load in data sets and graphs from files and analyze them.
- ExampleCompareSimulation - Class in edu.cmu.tetrad.algcomparison.examples
-
An example script to simulate data and run a comparison analysis on it.
- ExampleCompareSimulation - Class in edu.cmu.tetrad.study.examples.conditions
-
An example script to simulate data and run a comparison analysis on it.
- ExampleCompareSimulation2 - Class in edu.cmu.tetrad.algcomparison.examples
-
An example script to simulate data and run a comparison analysis on it.
- ExampleCompareSimulationDiscrete - Class in edu.cmu.tetrad.study.examples.conditions
-
An example script to simulate data and run a comparison analysis on it.
- ExampleCompareSimulationTimeSeries - Class in edu.cmu.tetrad.algcomparison.examples
-
An example script to simulate time series data and run a comparison analysis on it.
- ExampleFirstInflection - Class in edu.cmu.tetrad.study.examples.conditions
-
An example script to simulate data and run a comparison analysis on it.
- ExampleMixedSearch - Class in edu.pitt.csb.mgm
-
Created by ajsedgewick on 8/18/15.
- ExampleNonlinearSave - Class in edu.cmu.tetrad.algcomparison.examples
-
An example script to save out data files and graphs from a simulation.
- ExampleSave - Class in edu.cmu.tetrad.algcomparison.examples
-
An example script to save out data files and graphs from a simulation.
- ExampleSave - Class in edu.cmu.tetrad.study.examples.conditions
-
An example script to save out data files and graphs from a simulation.
- ExampleStars - Class in edu.cmu.tetrad.study.examples.conditions
-
An example script to simulate data and run a comparison analysis on it.
- exhaustiveSearch(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.reveal.RevealSearch
-
This method computes m/e values for all single regulators, pairs and triples at a given time lag.
- exhaustiveSearch(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.RevealSearch
-
This method computes m/e values for all single regulators, pairs and triples at a given time lag.
- exhaustiveSearch(int, int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.RevealSearch
-
This method computes m/e values for all single regulators, pairs and triples between two time lags (inclusively).
- existsCombination() - Method in class edu.cmu.tetrad.bayes.Proposition
-
existsCombination.
- existsCommonAncestor(Graph, Edge) - Static method in class edu.cmu.tetrad.algcomparison.statistic.CommonAncestorTruePositiveBidirected
-
Returns true if there is a common ancestor of X and Y in the graph.
- existsCommonAncestor(Graph, Edge) - Static method in class edu.cmu.tetrad.algcomparison.statistic.NumCommonMeasuredAncestorBidirected
-
existsCommonAncestor.
- existsDirectedCycle() - Method in class edu.cmu.tetrad.graph.Paths
-
existsDirectedCycle.
- existsDirectedPath(Node, Node) - Method in class edu.cmu.tetrad.graph.Paths
-
Checks if a directed path exists between two nodes in a graph.
- existsDirectedPath(Node, Node, int) - Method in class edu.cmu.tetrad.graph.Paths
-
Checks if a directed path exists between two nodes within a certain depth.
- existsDirectedPath(Node, Node, Pair<Node, Node>) - Method in class edu.cmu.tetrad.graph.Paths
-
Checks if a directed path exists between two nodes in a graph, ignoring a specified edge.
- existsDirectedPathFromTo(Graph, Node, Node) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumDirectedEdgeNoMeasureAncestors
-
existsDirectedPathFromTo.
- existsEdge(String, LaggedFactor) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ActiveLagGraph
-
Determines whether the edge to 'factor' at time lag 0 from 'laggedFactor' exists in the graph.
- existsEdge(String, LaggedFactor) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ManualLagGraph
-
Determines whether the edge to 'factor' at time lag 0 from 'laggedFactor' exists in the graph.
- existsEdge(String, LaggedFactor) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BasicLagGraph
-
Determines whether the edge to 'factor' at time lag 0 from 'laggedFactor' exists in the graph.
- existsEdge(String, LaggedFactor) - Method in interface edu.cmu.tetrad.study.gene.tetrad.gene.history.LagGraph
-
Determines whether the edge to 'factor' at time lag 0 from 'laggedFactor' exists in the graph.
- existsEdgeCoef(Node, Node) - Method in class edu.cmu.tetrad.sem.SemIm
-
existsEdgeCoef.
- existsFactor(String) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ActiveLagGraph
-
Determines whether the given factor exists in the graph.
- existsFactor(String) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ManualLagGraph
-
Determines whether the given factor exists in the graph.
- existsFactor(String) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BasicLagGraph
-
Determines whether the given factor exists in the graph.
- existsFactor(String) - Method in interface edu.cmu.tetrad.study.gene.tetrad.gene.history.LagGraph
-
Determines whether the given factor exists in the graph.
- existsIn(Graph) - Method in class edu.cmu.tetrad.search.utils.DiscriminatingPath
-
Checks this discriminating path construct to make sure it is a discriminating path in the given graph.
- existsInducingPath(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.graph.Paths
-
Determines whether an inducing path exists between two nodes in a graph.
- existsInducingPathDFS(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.graph.Paths
-
Determines whether an inducing path exists between node1 and node2, given a set O of observed nodes and a set sem of conditioned nodes.
- existsInducingPathInto(Node, Node, Graph, Knowledge) - Static method in class edu.cmu.tetrad.search.utils.TsDagToPag
-
existsInducingPathInto.
- existsInducingPathVisit(Node, Node, Node, Node, Set<Node>, LinkedList<Node>) - Method in class edu.cmu.tetrad.graph.Paths
-
Determines whether an inducing path exists between two nodes in a graph.
- existsInducingPathVisitts(Graph, Node, Node, Node, Node, LinkedList<Node>, Knowledge) - Static method in class edu.cmu.tetrad.search.utils.TsDagToPag
-
existsInducingPathVisitts.
- existsLatentCommonAncestor(Graph, Edge) - Static method in class edu.cmu.tetrad.algcomparison.statistic.LatentCommonAncestorTruePositiveBidirected
-
existsLatentCommonAncestor.
- existsMissingValue() - Method in class edu.cmu.tetrad.data.BoxDataSet
-
existsMissingValue.
- existsMissingValue() - Method in interface edu.cmu.tetrad.data.DataSet
-
existsMissingValue.
- existsMissingValue() - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
existsMissingValue.
- existsSemidirectedPath(Node, Node) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
Determines whether one node is an ancestor of another.
- existsSemidirectedPath(Node, Node) - Method in interface edu.cmu.tetrad.graph.Graph
-
Determines whether there is a semidirected path from node1 to node2.
- existsSemiDirectedPath(Node, Node) - Method in class edu.cmu.tetrad.graph.Paths
-
existsSemiDirectedPath.
- existsSemiDirectedPath(Node, Set<Node>) - Method in class edu.cmu.tetrad.graph.Paths
-
existsSemiDirectedPath.
- existsTrek(Node, Node) - Method in class edu.cmu.tetrad.graph.Paths
-
Determines whether a trek exists between two nodes in the graph.
- exp - Enum constant in enum class edu.cmu.tetrad.search.Lofs.Score
-
The exp.
- EXP - Static variable in class edu.cmu.tetrad.search.FastIca
-
The other function type that can be used to approximate negative entropy.
- expandTemplate(String, GeneralizedSemPm, Node) - Method in class edu.cmu.tetrad.sem.TemplateExpander
-
Returns the expanded template, which needs to be checked to make sure it can be used.
- experiment(String, int, int, int, double, double, boolean, boolean, double, double, String, int) - Method in class edu.cmu.tetrad.study.RBExperiments
-
Performs an experiment to estimate the structure and parameters of a Bayesian network using various methods.
- Experimental - Interface in edu.cmu.tetrad.util
-
Tags a file as experimental so it's not listed in the configuration.
- Experimental - Annotation Interface in edu.cmu.tetrad.annotation
-
Oct 17, 2017 11:40:50 AM
- ExploreComparison - Class in edu.cmu.tetrad.study.performance
-
Runs algorithm on data set (simulation is OK), printing out error statistics.
- ExploreIndepTests - Class in edu.pitt.csb.mgm
-
Created by ajsedgewick on 9/10/15.
- Exponential - Class in edu.cmu.tetrad.util.dist
-
Wraps a chi square distribution for purposes of drawing random samples.
- Exponential(double) - Constructor for class edu.cmu.tetrad.util.dist.Exponential
-
Constructor for Exponential.
- Expression - Interface in edu.cmu.tetrad.calculator.expression
-
Represents a mathematical expression.
- ExpressionDescriptor - Interface in edu.cmu.tetrad.calculator.expression
-
Represents a definition for some expression.
- ExpressionDescriptor.Position - Enum Class in edu.cmu.tetrad.calculator.expression
-
An enum of positions that an expression can occur in.
- ExpressionInitializationException - Exception Class in edu.cmu.tetrad.calculator.expression
-
Thrown if the expression can't be parsed, for instance, if it has the wrong number of arguments.
- ExpressionInitializationException(String) - Constructor for exception class edu.cmu.tetrad.calculator.expression.ExpressionInitializationException
-
Constructor for ExpressionInitializationException.
- ExpressionLexer - Class in edu.cmu.tetrad.calculator.parser
-
Parses the tokens of an expression.
- ExpressionLexer(CharSequence) - Constructor for class edu.cmu.tetrad.calculator.parser.ExpressionLexer
-
Constructor for ExpressionLexer.
- ExpressionManager - Class in edu.cmu.tetrad.calculator.expression
-
Manager for expressions, this includes all implementations of expression descriptors for the calculator.
- ExpressionParser - Class in edu.cmu.tetrad.calculator.parser
-
Parses a string into a tree-like expression.
- ExpressionParser() - Constructor for class edu.cmu.tetrad.calculator.parser.ExpressionParser
-
Constructrs a parser that has no allowable parameters.
- ExpressionParser(Collection<String>, ExpressionParser.RestrictionType) - Constructor for class edu.cmu.tetrad.calculator.parser.ExpressionParser
-
Constructs the parser given a collection of allowable parameters.
- ExpressionParser.RestrictionType - Enum Class in edu.cmu.tetrad.calculator.parser
-
The type of restriction on parameters.
- ExpressionSignature - Interface in edu.cmu.tetrad.calculator.expression
-
Represents the signature of the expression, for example sqrt(number).
- expScore(double[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
expScore.
- expUnstandardized - Enum constant in enum class edu.cmu.tetrad.search.Lofs.Score
-
The exp unstandardized.
- expUnstandardizedInverted - Enum constant in enum class edu.cmu.tetrad.search.Lofs.Score
-
The exp unstandardized inverted.
- EXTERNAL_GRAPH - Enum constant in enum class edu.cmu.tetrad.search.FaskOrig.AdjacencyMethod
-
Use an external graph.
- ExternalAlgorithm - Class in edu.cmu.tetrad.algcomparison.algorithm
-
Tags an an algorithm that loads up external graphs for inclusion in reports.
- ExternalAlgorithm() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.ExternalAlgorithm
-
Constructor for ExternalAlgorithm.
- EXTRA_EDGE_REMOVAL_STEP - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
EXTRA_EDGE_REMOVAL_STEP="extraEdgeRemovalStep"
- ExtraCategoryInterpolator - Class in edu.cmu.tetrad.bayes
-
Returns a data set in variables for columns with missing values are augmented with an extra category that represents the missing values, with missing values being reported as belong this category.
- ExtraCategoryInterpolator() - Constructor for class edu.cmu.tetrad.bayes.ExtraCategoryInterpolator
-
Constructs a new instance of the algorithm.
- extractFactor_Display(String) - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.DisplayNameHandler
-
Parses the given string representing a lagged factor and return the part that represents the factor.
- extractLag_Display(String) - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.DisplayNameHandler
-
Extracts the lag from the lagged factor name string.
F
- F1Adj - Class in edu.cmu.tetrad.algcomparison.statistic
-
Calculates the F1 statistic for adjacencies.
- F1Adj() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.F1Adj
-
Constructs a new instance of the algorithm.
- F1All - Class in edu.cmu.tetrad.algcomparison.statistic
-
Calculates the F1 statistic for adjacencies.
- F1All() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.F1All
-
Constructs a new instance of the algorithm.
- F1Arrow - Class in edu.cmu.tetrad.algcomparison.statistic
-
Calculates the F1 statistic for arrowheads.
- F1Arrow() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.F1Arrow
-
Constructs a new instance of the algorithm.
- FactorAnalysis - Class in edu.cmu.tetrad.algcomparison.algorithm.other
-
Factor analysis.
- FactorAnalysis - Class in edu.cmu.tetrad.search
-
Implements the classical Factor Analysis algorithm.
- FactorAnalysis() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.other.FactorAnalysis
-
Constructs a new instance of the algorithm.
- FactorAnalysis(DataSet) - Constructor for class edu.cmu.tetrad.search.FactorAnalysis
-
Constructor.
- FactorAnalysis(ICovarianceMatrix) - Constructor for class edu.cmu.tetrad.search.FactorAnalysis
-
Constructor.
- FactoredBayesStructuralEM - Class in edu.cmu.tetrad.bayes
-
Implements the procedure Factored-Bayesian-SEM found on page 6 of "The Bayesian Structural EM Algorithm" by Nir Friedman.> 0
- FactoredBayesStructuralEM(DataSet, BayesPm) - Constructor for class edu.cmu.tetrad.bayes.FactoredBayesStructuralEM
-
Constructor for FactoredBayesStructuralEM.
- factorial(int) - Static method in class edu.cmu.tetrad.util.MathUtils
-
factorial.
- factorial(int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
factorial.
- FAITHFULNESS_ASSUMED - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
FAITHFULNESS_ASSUMED="faithfulnessAssumed"
- FalseNegativesAdjacencies - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- FalseNegativesAdjacencies() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.FalseNegativesAdjacencies
-
Constructs a new instance of the algorithm.
- FalsePositiveAdjacencies - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- FalsePositiveAdjacencies() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.FalsePositiveAdjacencies
-
Constructs a new instance of the algorithm.
- Fas - Class in edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag
-
Fast Adjacency Search (FAS)--i.e., the PC adjacency step, which is used in many algorithms.
- Fas - Class in edu.cmu.tetrad.search
-
Implements the Fast Adjacency Search (FAS), which is the adjacency search of the PC algorithm (see).
- Fas() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Fas
-
Constructor for Fas.
- Fas(IndependenceWrapper) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Fas
-
Constructor for Fas.
- Fas(IndependenceTest) - Constructor for class edu.cmu.tetrad.search.Fas
-
Constructor.
- FAS_RULE - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
FAS_RULE="fasRule"
- FAS_SEPSETS - Enum constant in enum class edu.cmu.tetrad.search.utils.PcCommon.ColliderDiscovery
-
FAS with sepsets reasoning.
- FAS_STABLE - Enum constant in enum class edu.cmu.tetrad.search.FaskOrig.AdjacencyMethod
-
Fast Adjacency Search (FAS) with the stable option.
- Fasd - Class in edu.cmu.tetrad.search
-
Adjusts FAS (see) for the deterministic case by refusing to removed edges based on conditional independence tests that are judged to be deterministic.
- Fasd(IndependenceTest) - Constructor for class edu.cmu.tetrad.search.Fasd
-
Constructs a new FastAdjacencySearch.
- FasDci - Class in edu.cmu.tetrad.search.work_in_progress
-
Implements a modified version of the the "fast adjacency search" for use in the Distributed Causal Inference (DCI) algorithm.
- FasDci(Graph, IndependenceTest) - Constructor for class edu.cmu.tetrad.search.work_in_progress.FasDci
-
Constructs a new FastAdjacencySearch for DCI.
- FasDci(Graph, IndependenceTest, ResolveSepsets.Method, List<Set<Node>>, List<IndependenceTest>, SepsetMapDci, SepsetMapDci) - Constructor for class edu.cmu.tetrad.search.work_in_progress.FasDci
-
Constructs a new FastAdjacencySearch for DCI with independence test pooling to resolve inconsistencies.
- FasFdr - Class in edu.cmu.tetrad.search.work_in_progress
-
Implements the "fast adjacency search" used in several causal algorithm in this package.
- FasFdr(IndependenceTest, int) - Constructor for class edu.cmu.tetrad.search.work_in_progress.FasFdr
-
Constructs a new FastAdjacencySearch.
- Fask - Class in edu.cmu.tetrad.algcomparison.algorithm.continuous.dag
-
FASK algorithm.
- Fask - Class in edu.cmu.tetrad.search
-
Implements the FASK (Fast Adjacency Skewness) algorithm, which makes decisions for adjacency and orientation using a combination of conditional independence testing, judgments of nonlinear adjacency, and pairwise orientation due to non-Gaussianity.
- Fask() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.Fask
-
Constructor for Fask.
- Fask(ScoreWrapper) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.Fask
-
Constructs a new Fask object with the given ScoreWrapper.
- Fask(DataSet, Score) - Constructor for class edu.cmu.tetrad.search.Fask
-
Constructs a new instance of the FaskOrig class with the given DataSet and Score objects.
- FASK_ADJACENCY_METHOD - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
FASK_ADJACENCY_METHOD="faskAdjacencyMethod"
- FASK_DELTA - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
FASK_DELTA="faskDelta"
- FASK_LEFT_RIGHT_RULE - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
FASK_LEFT_RIGHT_RULE="faskLeftRightRule"
- FASK_NONEMPIRICAL - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
FASK_NONEMPIRICAL="faskNonempirical"
- Fask.LeftRight - Enum Class in edu.cmu.tetrad.search
-
Enumerates the options left-right rules to use for FASK.
- FASK1 - Enum constant in enum class edu.cmu.tetrad.search.Fask.LeftRight
-
The original FASK left-right rule.
- FASK1 - Enum constant in enum class edu.cmu.tetrad.search.FaskOrig.LeftRight
-
The original FASK left-right rule.
- FASK2 - Enum constant in enum class edu.cmu.tetrad.search.Fask.LeftRight
-
The modified FASK left-right rule.
- FASK2 - Enum constant in enum class edu.cmu.tetrad.search.FaskOrig.LeftRight
-
The modified FASK left-right rule.
- FaskConcatenated - Class in edu.cmu.tetrad.algcomparison.algorithm.multi
-
Wraps the IMaGES algorithm for continuous variables.
- FaskConcatenated() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.multi.FaskConcatenated
-
Constructor for FaskConcatenated.
- FaskConcatenated(ScoreWrapper, IndependenceWrapper) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.multi.FaskConcatenated
-
Constructor for FaskConcatenated.
- faskLeftRightV1(double[], double[], boolean, double) - Static method in class edu.cmu.tetrad.search.FaskOrig
-
Calculates the left-right ratio using the Fask method version 1.
- faskLeftRightV2(double[], double[], boolean, double) - Static method in class edu.cmu.tetrad.search.FaskOrig
-
Calculates the left-right judgment for two arrays of double values.
- FaskLofsConcatenated - Class in edu.cmu.tetrad.algcomparison.algorithm.multi
-
Wraps the IMaGES algorithm for continuous variables.
- FaskLofsConcatenated(Lofs.Rule) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.multi.FaskLofsConcatenated
-
Constructor for FaskLofsConcatenated.
- FaskOrig - Class in edu.cmu.tetrad.algcomparison.algorithm.continuous.dag
-
The FaskOrig class is an implementation of the FASK-Orig algorithm for causal discovery.
- FaskOrig - Class in edu.cmu.tetrad.search
-
Implements the FASK (Fast Adjacency Skewness) algorithm, which makes decisions for adjacency and orientation using a combination of conditional independence testing, judgments of nonlinear adjacency, and pairwise orientation due to non-Gaussianity.
- FaskOrig() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.FaskOrig
-
Constructor for Fask.
- FaskOrig(IndependenceWrapper, ScoreWrapper) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.FaskOrig
-
Constructor for Fask.
- FaskOrig(DataSet, Score, IndependenceTest) - Constructor for class edu.cmu.tetrad.search.FaskOrig
-
Constructor.
- FaskOrig.AdjacencyMethod - Enum Class in edu.cmu.tetrad.search
-
Enumerates the alternatives to use for finding the initial adjacencies for FASK.
- FaskOrig.LeftRight - Enum Class in edu.cmu.tetrad.search
-
Enumerates the options left-right rules to use for FASK.
- FaskPw - Class in edu.cmu.tetrad.algcomparison.algorithm.pairwise
-
FASK-PW (pairwise).
- FaskPw() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.pairwise.FaskPw
-
Constructor for FaskPw.
- FaskPw(Algorithm) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.pairwise.FaskPw
-
Constructor for FaskPw.
- FaskVote - Class in edu.cmu.tetrad.algcomparison.algorithm.multi
-
Wraps the MultiFask algorithm for continuous variables.
- FaskVote - Class in edu.cmu.tetrad.search.work_in_progress
-
Runs IMaGES on a list of algorithms and then produces a graph over the ImaGES adjacencies where each edge orientation is voted on by running FASK on each dataset in turn and voting on edge orientation.
- FaskVote() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.multi.FaskVote
-
Constructor for FaskVote.
- FaskVote(IndependenceWrapper, ScoreWrapper) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.multi.FaskVote
-
Constructor for FaskVote.
- FaskVote(ScoreWrapper) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.multi.FaskVote
-
Constructor for FaskVote.
- FaskVote(List<DataSet>, ScoreWrapper, IndependenceWrapper) - Constructor for class edu.cmu.tetrad.search.work_in_progress.FaskVote
-
Constructor.
- FasLofs - Class in edu.cmu.tetrad.algcomparison.algorithm.multi
-
Wraps the IMaGES algorithm for continuous variables.
- FasLofs - Class in edu.cmu.tetrad.search.work_in_progress
-
Runs Fast Adjacency Search (FAS) and then orients each edge using the robust skew orientation algorithm.
- FasLofs(DataSet, Lofs.Rule) - Constructor for class edu.cmu.tetrad.search.work_in_progress.FasLofs
-
Constructor for FasLofs.
- FasLofs(Lofs.Rule) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.multi.FasLofs
-
Constructor for FasLofs.
- FAST_ICA_A - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
FAST_ICA_A="fastIcaA"
- FAST_ICA_MAX_ITER - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
FAST_ICA_MAX_ITER="fastIcaMaxIter"
- FAST_ICA_TOLERANCE - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
FAST_ICA_TOLERANCE="fastIcaTolerance"
- FastIca - Class in edu.cmu.tetrad.search
-
Translates a version of the FastICA algorithm used in R from Fortran into Java for use in Tetrad.
- FastIca(Matrix, int) - Constructor for class edu.cmu.tetrad.search.FastIca
-
Constructs an instance of the Fast ICA algorithm, taking as arguments the two arguments that cannot be defaulted: the data matrix itself and the number of components to be extracted.
- FastICA - Enum constant in enum class edu.cmu.tetrad.search.Lofs.Rule
-
The FastICA rule.
- FastIca.IcaResult - Class in edu.cmu.tetrad.search
-
A list containing the following components
- FBetaAdj - Class in edu.cmu.tetrad.algcomparison.statistic
-
Calculates the F1 statistic for adjacencies.
- FBetaAdj() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.FBetaAdj
-
Constructs a new instance of the algorithm.
- fCdf(double, double, double) - Static method in class edu.cmu.tetrad.util.ProbUtils
-
F CDF.
- Fci - Class in edu.cmu.tetrad.algcomparison.algorithm.oracle.pag
-
The Fast Causal Inference (FCI) algorithm.
- Fci - Class in edu.cmu.tetrad.search
-
Implements the Fast Causal Inference (FCI) algorithm due to Peter Spirtes, which addressed the case where latent common causes cannot be assumed not to exist with respect to the data set being analyzed.
- Fci() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Fci
-
Constructor.
- Fci(IndependenceWrapper) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Fci
-
Constructor.
- Fci(IndependenceTest) - Constructor for class edu.cmu.tetrad.search.Fci
-
Constructor.
- Fci(IndependenceTest, List<Node>) - Constructor for class edu.cmu.tetrad.search.Fci
-
Constructor.
- FCI - Enum constant in enum class edu.cmu.tetrad.study.performance.ComparisonParameters.Algorithm
-
Constant for the FCI algorithm.
- FciIod - Class in edu.cmu.tetrad.algcomparison.algorithm.multi
-
Runs FCI on multiple datasets using the IOD pooled dataset independence test.
- FciIod() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.multi.FciIod
-
Constructor for FciIod.
- FciIod(IndependenceWrapper) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.multi.FciIod
-
Constructor for FciIod.
- FciMax - Class in edu.cmu.tetrad.algcomparison.algorithm.oracle.pag
-
FCI-Max algorithm.
- FciMax - Class in edu.cmu.tetrad.search
-
Modifies FCI to do orientation of unshielded colliders (X*-*Y*-*Z with X and Z not adjacent) using the max-P rule (see the PC-Max algorithm).
- FciMax() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.FciMax
-
Constructor for FciMax.
- FciMax(IndependenceWrapper) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.FciMax
-
Constructor for FciMax.
- FciMax(IndependenceTest) - Constructor for class edu.cmu.tetrad.search.FciMax
-
Constructor.
- FciOrient - Class in edu.cmu.tetrad.search.utils
-
Performs the final orientation steps of the FCI algorithms, which is a useful tool to use in a variety of FCI-like algorithms.
- FciOrient(R0R4Strategy) - Constructor for class edu.cmu.tetrad.search.utils.FciOrient
-
Initializes a new instance of the FciOrient class with the specified R4Strategy.
- fciOrientbk(Knowledge, Graph, List<Node>) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Attempts to orient the edges in the graph based on the given knowledge.
- fciOrientbk(Knowledge, Graph, List<Node>) - Method in class edu.cmu.tetrad.search.utils.FciOrient
-
Orient the edges of a graph based on the given knowledge.
- FciOrientDijkstra - Class in edu.cmu.tetrad.search
-
A simple implementation of Dijkstra's algorithm for finding the shortest path in a graph.
- FciOrientDijkstra.DijkstraEdge - Class in edu.cmu.tetrad.search
-
Represents a node in Dijkstra's algorithm.
- FciOrientDijkstra.Graph - Class in edu.cmu.tetrad.search
-
Represents a graph for Dijkstra's algorithm.
- fdr - Enum constant in enum class edu.cmu.tetrad.search.utils.ResolveSepsets.Method
-
False discovery rate method
- fdr - Enum constant in enum class edu.cmu.tetrad.search.work_in_progress.ResolveSepsetsDci.Method
-
The fdr method.
- fdr(double, List<Double>) - Static method in class edu.cmu.tetrad.util.StatUtils
-
fdr.
- fdr(double, List<Double>, boolean, boolean) - Static method in class edu.cmu.tetrad.util.StatUtils
-
fdr.
- fdrCutoff(double, List<Double>, boolean) - Static method in class edu.cmu.tetrad.util.StatUtils
-
fdrCutoff.
- fdrCutoff(double, List<Double>, boolean, boolean) - Static method in class edu.cmu.tetrad.util.StatUtils
-
Calculates the cutoff value for p-values using the FDR method.
- fdrCutoff(double, List<Double>, int[], boolean, boolean) - Static method in class edu.cmu.tetrad.util.StatUtils
-
fdrCutoff.
- fdrQ(List<Double>, int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
fdrQ.
- Fges - Class in edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag
-
FGES (the heuristic version).
- Fges - Class in edu.cmu.tetrad.search
-
Implements the Fast Greedy Equivalence Search (FGES) algorithm.
- Fges() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Fges
-
Constructor for Fges.
- Fges(ScoreWrapper) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Fges
-
Constructor for Fges.
- Fges(Score) - Constructor for class edu.cmu.tetrad.search.Fges
-
Constructor.
- FGES - Enum constant in enum class edu.cmu.tetrad.search.Cstar.CpdagAlgorithm
-
The FGES algorithm.
- FGES - Enum constant in enum class edu.cmu.tetrad.search.FaskOrig.AdjacencyMethod
-
FGES with the BIC score.
- FGES - Enum constant in enum class edu.cmu.tetrad.study.performance.ComparisonParameters.Algorithm
-
Constant for the FGES algorithm.
- FgesConcatenated - Class in edu.cmu.tetrad.algcomparison.algorithm.multi
-
Requires that the parameter 'randomSelectionSize' be set to indicate how many datasets should be taken at a time (randomly).
- FgesConcatenated(ScoreWrapper) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.multi.FgesConcatenated
-
Constructor for FgesConcatenated.
- FgesConcatenated(ScoreWrapper, boolean) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.multi.FgesConcatenated
-
Constructor for FgesConcatenated.
- FgesConcatenated(ScoreWrapper, Algorithm) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.multi.FgesConcatenated
-
Constructor for FgesConcatenated.
- FgesMb - Class in edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag
-
FGES-MB (the heuristic version).
- FgesMb - Class in edu.cmu.tetrad.search
-
Implements the Fast Greedy Equivalence Search (FGES) algorithm.
- FgesMb() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.FgesMb
-
Constructor for FgesMb.
- FgesMb(ScoreWrapper) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.FgesMb
-
Constructor for FgesMb.
- FgesMb(Score) - Constructor for class edu.cmu.tetrad.search.FgesMb
-
Constructor.
- FgesMeasurement - Class in edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag
-
FGES (the heuristic version).
- FgesMeasurement(ScoreWrapper) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.FgesMeasurement
-
Constructor for FgesMeasurement.
- FgesOrienter - Class in edu.cmu.tetrad.search.utils
-
This Orients a given undirected graph such that the edges in the graph are a superset of the edges in the oriented graph, using FGES method.
- FgesOrienter(DataSet) - Constructor for class edu.cmu.tetrad.search.utils.FgesOrienter
-
The data set must either be all continuous or all discrete.
- FgesWrapper(double...) - Constructor for class edu.pitt.csb.stability.SearchWrappers.FgesWrapper
-
Constructor.
- Fgls - Enum constant in enum class edu.cmu.tetrad.sem.ScoreType
-
The FGLS score
- fifthMoment - Enum constant in enum class edu.cmu.tetrad.search.Lofs.Score
-
The fifth moment.
- FILE_OUT_PATH - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
FILE_OUT_PATH="fileOutPath"
- fillIn(Graph, Node[]) - Static method in class edu.cmu.tetrad.bayes.GraphTools
-
Apply Tarjan and Yannakakis (1984) fill in algorithm for graph triangulation.
- filter(DataSet) - Method in class edu.cmu.tetrad.bayes.ExtraCategoryInterpolator
-
Interpolates the given data set, producing a data set with no missing values.
- filter(DataSet) - Method in class edu.cmu.tetrad.bayes.ModeInterpolator
-
Interpolates the given data set, producing a data set with no missing values.
- filter(DataSet) - Method in class edu.cmu.tetrad.data.CaseExpander
-
Interpolates the given data set, producing a data set with no missing values.
- filter(DataSet) - Method in interface edu.cmu.tetrad.data.DataFilter
-
Interpolates the given data set, producing a data set with no missing values.
- filter(DataSet) - Method in class edu.cmu.tetrad.data.MeanInterpolator
-
Interpolates the given data set, producing a data set with no missing values.
- filterByAnnotation(List<AnnotatedClass<T>>, Class<? extends Annotation>) - Method in class edu.cmu.tetrad.annotation.AbstractAnnotations
-
Filter annotated classes by annotation type.
- filterByAnnotations(Class<? extends Annotation>, List<AnnotatedClass<T>>) - Static method in class edu.cmu.tetrad.annotation.AnnotatedClassUtils
-
Filters a list of annotated classes by the given annotation.
- filterOutByAnnotation(List<AnnotatedClass<T>>, Class<? extends Annotation>) - Method in class edu.cmu.tetrad.annotation.AbstractAnnotations
-
Filter out annotated classes by annotation type.
- filterOutExperimental(List<AnnotatedClass<Algorithm>>) - Method in class edu.cmu.tetrad.annotation.AlgorithmAnnotations
-
Filters out algorithms that are not for the given data type.
- filterOutExperimental(List<AnnotatedClass<Score>>) - Method in class edu.cmu.tetrad.annotation.ScoreAnnotations
-
filterOutExperimental.
- filterOutExperimental(List<AnnotatedClass<TestOfIndependence>>) - Method in class edu.cmu.tetrad.annotation.TestOfIndependenceAnnotations
-
filterOutExperimental.
- finalOrientation(Graph) - Method in class edu.cmu.tetrad.search.utils.FciOrient
-
Orients the graph (in place) according to rules in the graph (FCI step D).
- FIND_ONE_FACTOR_CLUSTERS - Enum constant in enum class edu.cmu.tetrad.search.utils.BpcAlgorithmType
-
FOFC algorithm
- FIND_TWO_FACTOR_CLUSTERS - Enum constant in enum class edu.cmu.tetrad.search.utils.BpcAlgorithmType
-
FTFC algorithm.
- findCliques(int[][], int) - Static method in class edu.cmu.tetrad.graph.Paths.AllCliquesAlgorithm
-
Find all cliques in a graph.
- findComponents() - Method in class edu.cmu.tetrad.search.FastIca
-
Runs the Fast ICA algorithm (following the R version) and returns the list of result items that the R version returns.
- findHittingSet(List<Set<GraphChange>>) - Static method in class edu.cmu.tetrad.search.work_in_progress.IonHittingSet
-
takes a List of HashSets of GraphChanges, and returns a List of GraphChanges.
- findMb(Node) - Method in class edu.cmu.tetrad.search.GrowShrink
-
Finds the Markov blanket (MB) for a given target node.
- findMb(Node) - Method in interface edu.cmu.tetrad.search.IMbSearch
-
Given the target, this returns all the nodes in the Markov Blanket.
- findMb(Node) - Method in class edu.cmu.tetrad.search.PcMb
-
Given the target, this returns all the nodes in the Markov Blanket.
- findMb(Node) - Method in class edu.cmu.tetrad.search.work_in_progress.Iamb
-
Given the target, this returns all the nodes in the Markov Blanket.
- findMb(Node) - Method in class edu.cmu.tetrad.search.work_in_progress.IambnPc
-
Given the target, this returns all the nodes in the Markov Blanket.
- findMb(Node) - Method in class edu.cmu.tetrad.search.work_in_progress.InterIamb
-
Given the target, this returns all the nodes in the Markov Blanket.
- findMb(Node) - Method in class edu.cmu.tetrad.search.work_in_progress.Mmmb
-
Given the target, this returns all the nodes in the Markov Blanket.
- findMConnectingPaths(Graph, Node, Node, Collection<Node>) - Static method in class edu.cmu.tetrad.search.utils.PossibleMConnectingPath
-
Finds all possible D-connection undirectedPaths as sub-graphs of the pag given at construction time from x to y given z.
- findMConnectingPathsOfLength(Graph, Node, Node, Collection<Node>, Integer) - Static method in class edu.cmu.tetrad.search.utils.PossibleMConnectingPath
-
Finds all possible D-connection undirectedPaths as sub-graphs of the pag given at construction time from x to y given z for a particular path length.
- findOptimalAssignment() - Method in class edu.cmu.tetrad.search.utils.HungarianAlgorithm
-
find an optimal assignment
- findTerm(int[]) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.Polynomial
-
Finds the first term matching the given profile.
- fine(String) - Method in class edu.cmu.tetrad.util.LogUtils
-
fine.
- finer(String) - Method in class edu.cmu.tetrad.util.LogUtils
-
finer.
- finest(String) - Method in class edu.cmu.tetrad.util.LogUtils
-
finest.
- FirstInflection - Class in edu.cmu.tetrad.algcomparison.algorithm
-
First inflection point.
- FirstInflection(Algorithm, String, double, double, double) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.FirstInflection
-
Constructor for FirstInflection.
- fisher - Enum constant in enum class edu.cmu.tetrad.search.utils.ResolveSepsets.Method
-
Fisher's method
- fisher - Enum constant in enum class edu.cmu.tetrad.search.work_in_progress.ResolveSepsetsDci.Method
-
The fisher method.
- FISHER_EPSILON - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
FISHER_EPSILON="fisherEpsilon"
- fisher2 - Enum constant in enum class edu.cmu.tetrad.search.utils.ResolveSepsets.Method
-
Fisher's method
- fisher2 - Enum constant in enum class edu.cmu.tetrad.search.work_in_progress.ResolveSepsetsDci.Method
-
The fisher method with only available p values.
- FisherZ - Class in edu.cmu.tetrad.algcomparison.independence
-
Wrapper for Fisher Z test.
- FisherZ - Enum constant in enum class edu.cmu.tetrad.study.performance.ComparisonParameters.IndependenceTestType
-
Constant for the FisherZ independence test.
- FisherZ() - Constructor for class edu.cmu.tetrad.algcomparison.independence.FisherZ
-
Constructs a new instance of the algorithm.
- FisherZScore - Class in edu.cmu.tetrad.algcomparison.score
-
Wrapper for Fisher Z test.
- FisherZScore() - Constructor for class edu.cmu.tetrad.algcomparison.score.FisherZScore
-
Constructs a new instance of the algorithm.
- fit(DataSet) - Method in class edu.cmu.tetrad.search.IcaLingam
-
Fits an ICA-LiNGAM model to the given dataset using a default method for estimating W.
- fit(DataSet) - Method in class edu.cmu.tetrad.search.IcaLingD
-
Fits a LiNG-D model to the given dataset using a default method for estimating W.
- FitConGraphResult(DoubleMatrix2D, double, int, int) - Constructor for class edu.cmu.tetrad.sem.Ricf.FitConGraphResult
-
The result.
- fixLatentErrorVariances() - Method in class edu.cmu.tetrad.sem.SemPm
-
fixLatentErrorVariances.
- fixLatents1(int, Graph) - Static method in class edu.cmu.tetrad.graph.RandomGraph
-
fixLatents1.
- fixLatents4(int, Graph) - Static method in class edu.cmu.tetrad.graph.RandomGraph
-
fixLatents4.
- fixOneLoadingPerLatent() - Method in class edu.cmu.tetrad.sem.SemPm
-
fixOneLoadingPerLatent.
- flatten(DoubleMatrix2D) - Static method in class edu.pitt.csb.mgm.Mgm
-
flatten.
- FloatDataBox - Class in edu.cmu.tetrad.data
-
Stores a 2D array of float data.
- FloatDataBox(float[][]) - Constructor for class edu.cmu.tetrad.data.FloatDataBox
-
Constructs a new data box using the given 2D float data array as data.
- flush() - Method in class edu.cmu.tetrad.util.TetradLogger
-
Flushes the writers.
- Fml - Enum constant in enum class edu.cmu.tetrad.sem.ScoreType
-
The FML score
- Fofc - Class in edu.cmu.tetrad.algcomparison.algorithm.cluster
-
Find One Factor Clusters.
- Fofc - Class in edu.cmu.tetrad.search
-
Implements the Find One Factor Clusters (FOFC) algorithm by Erich Kummerfeld, which uses reasoning about vanishing tetrads of algorithms to infer clusters of the measured variables in a dataset that each be explained by a single latent variable.
- Fofc() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.cluster.Fofc
-
Constructor for Fofc.
- Fofc(DataSet, BpcTestType, Fofc.Algorithm, double) - Constructor for class edu.cmu.tetrad.search.Fofc
-
Conctructor.
- Fofc(ICovarianceMatrix, BpcTestType, Fofc.Algorithm, double) - Constructor for class edu.cmu.tetrad.search.Fofc
-
Constructor.
- Fofc.Algorithm - Enum Class in edu.cmu.tetrad.search
-
Gives the options to be used in FOFC to sort through the various possibilities for forming clusters to find the best options.
- forbid_latent_common_causes - Enum constant in enum class edu.cmu.tetrad.annotation.AlgType
-
If an algorithm forbids latent common causes.
- FORBIDDEN - Static variable in class edu.cmu.tetrad.data.KnowledgeGroup
-
Constant
FORBIDDEN=2
- forbiddenEdgesIterator() - Method in class edu.cmu.tetrad.data.Knowledge
-
Iterator over the KnowledgeEdge's representing forbidden edges.
- forbiddenViolations(Graph, Knowledge) - Static method in class edu.cmu.tetrad.search.CheckKnowledge
-
Returns a sorted list of edges that violate the given knowledge.
- formatErrorsArray(double[], String) - Static method in class edu.cmu.tetrad.simulation.HsimUtils
-
formatErrorsArray.
- fPdf(double, double, double) - Static method in class edu.cmu.tetrad.util.ProbUtils
-
fPdf.
- fQuantile(double, double, double) - Static method in class edu.cmu.tetrad.util.ProbUtils
-
fQuantile.
- fracDepDep() - Method in record class edu.cmu.tetrad.search.MarkovCheck.MarkovCheckRecord
-
Returns the value of the
fracDepDep
record component. - fracDepInd() - Method in record class edu.cmu.tetrad.search.MarkovCheck.MarkovCheckRecord
-
Returns the value of the
fracDepInd
record component. - FractionDependentUnderAlternative - Class in edu.cmu.tetrad.algcomparison.statistic
-
Estimates whether the p-values under the null are Uniform usign the Markov Checker.
- FractionDependentUnderAlternative() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.FractionDependentUnderAlternative
-
Constructor for FractionDependentUnderAlternative.
- FractionDependentUnderAlternative(double) - Constructor for class edu.cmu.tetrad.algcomparison.statistic.FractionDependentUnderAlternative
-
Constructor for FractionDependentUnderAlternative.
- FractionDependentUnderNull - Class in edu.cmu.tetrad.algcomparison.statistic
-
Estimates whether the p-values under the null are Uniform usign the Markov Checker.
- FractionDependentUnderNull() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.FractionDependentUnderNull
-
Constructor for FractionDependentUnderNull.
- FractionDependentUnderNull(double) - Constructor for class edu.cmu.tetrad.algcomparison.statistic.FractionDependentUnderNull
-
Constructor for FractionDependentUnderNull.
- fRand(double, double) - Static method in class edu.cmu.tetrad.util.ProbUtils
-
F distribution random generator.
- fruchtermanReingoldLayout(Graph) - Static method in class edu.cmu.tetrad.graph.LayoutUtil
-
fruchtermanReingoldLayout.
- FruchtermanReingoldLayout(Graph) - Constructor for class edu.cmu.tetrad.graph.LayoutUtil.FruchtermanReingoldLayout
-
Constructs a new FruchtermanReingoldLayout for the given graph.
- Ftfc - Class in edu.cmu.tetrad.algcomparison.algorithm.cluster
-
FTFC.
- Ftfc - Class in edu.cmu.tetrad.search
-
Implements the Find Two Factor Clusters (FOFC) algorithm, which uses reasoning about vanishing tetrads of algorithms to infer clusters of the measured variables in a dataset that each be explained by a single latent variable.
- Ftfc() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.cluster.Ftfc
-
Constructor for Ftfc.
- Ftfc(DataSet, Ftfc.Algorithm, double) - Constructor for class edu.cmu.tetrad.search.Ftfc
-
Conctructor.
- Ftfc(ICovarianceMatrix, Ftfc.Algorithm, double) - Constructor for class edu.cmu.tetrad.search.Ftfc
-
Conctructor.
- Ftfc.Algorithm - Enum Class in edu.cmu.tetrad.search
-
Gives the options to be used in FOFC to sort through the various possibilities for forming clusters to find the best options.
- fullyConnect(Endpoint) - Method in class edu.cmu.tetrad.graph.Dag
-
Fully connects the given endpoint.
- fullyConnect(Endpoint) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
Removes all edges from the graph and fully connects it using #-# edges, where # is the given endpoint.
- fullyConnect(Endpoint) - Method in interface edu.cmu.tetrad.graph.Graph
-
Removes all edges from the graph and fully connects it using #-# edges, where # is the given endpoint.
- fullyConnect(Endpoint) - Method in class edu.cmu.tetrad.graph.LagGraph
-
Removes all edges from the graph and fully connects it using #-# edges, where # is the given endpoint.
- fullyConnect(Endpoint) - Method in class edu.cmu.tetrad.graph.SemGraph
-
Removes all edges from the graph and fully connects it using #-# edges, where # is the given endpoint.
- fullyConnect(Endpoint) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Fully connects the given endpoint to all other endpoints in the graph.
- Function - Interface in edu.cmu.tetrad.util
-
Interface for a single-argument, double-valued function that can be passed to mathematical routines.
- futureNodeVisit(Graph, Node, LinkedList<Node>, Set<Node>) - Static method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpc
-
futureNodeVisit.
- futureNodeVisit(Graph, Node, LinkedList<Node>, Set<Node>) - Static method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpcFast
-
futureNodeVisit.
- futureNodeVisit(Graph, Node, LinkedList<Node>, Set<Node>) - Static method in class edu.cmu.tetrad.search.work_in_progress.VcPc
-
futureNodeVisit.
- futureNodeVisit(Graph, Node, LinkedList<Node>, Set<Node>) - Static method in class edu.cmu.tetrad.search.work_in_progress.VcPcAlt
-
futureNodeVisit.
- futureNodeVisit(Graph, Node, LinkedList<Node>, Set<Node>) - Static method in class edu.cmu.tetrad.search.work_in_progress.VcPcFast
-
futureNodeVisit.
G
- g(double) - Static method in class edu.cmu.tetrad.search.FaskOrig
-
Calculates the logarithm of the hyperbolic cosine of the maximum of x and 0.
- G_SQUARE - Enum constant in enum class edu.cmu.tetrad.search.test.ChiSquareTest.TestType
-
The G-square test.
- gamma(double) - Static method in class edu.cmu.tetrad.util.StatUtils
-
GAMMA FUNCTION (From DStat, used by permission).
- Gamma - Class in edu.cmu.tetrad.util.dist
-
Wraps a chi square distribution for purposes of drawing random samples.
- gammaCdf(double, double) - Static method in class edu.cmu.tetrad.util.ProbUtils
-
compute complementary gamma cdf by its continued fraction expansion
- gammaPdf(double, double) - Static method in class edu.cmu.tetrad.util.ProbUtils
-
gammaPdf.
- gammaQuantile(double, double) - Static method in class edu.cmu.tetrad.util.ProbUtils
-
gammaQuantile.
- gammaRand(double) - Static method in class edu.cmu.tetrad.util.ProbUtils
-
Gamma random generator.
- GAP - Enum constant in enum class edu.cmu.tetrad.search.Fofc.Algorithm
-
The GAP algorithm.
- GAP - Enum constant in enum class edu.cmu.tetrad.search.Ftfc.Algorithm
-
The GAP algorithm.
- GAP - Enum constant in enum class edu.cmu.tetrad.search.utils.BpcTestType
-
GAP test, for FTFC.
- Gaussian - Annotation Interface in edu.cmu.tetrad.annotation
-
Data are normal distributed.
- GAUSSIAN - Enum constant in enum class edu.cmu.tetrad.search.test.Kci.KernelType
- GAUSSIAN_FACTOR - Enum constant in enum class edu.cmu.tetrad.search.utils.BpcTestType
-
Gaussian Factor.
- GAUSSIAN_PVALUE - Enum constant in enum class edu.cmu.tetrad.search.utils.BpcTestType
-
This one will work and does a good job for medium sized models.
- GAUSSIAN_SCORE - Enum constant in enum class edu.cmu.tetrad.search.utils.BpcTestType
-
This is very slow.
- GAUSSIAN_SCORE_ITERATE - Enum constant in enum class edu.cmu.tetrad.search.utils.BpcTestType
-
Even slower.
- GAUSSIAN_SCORE_MARKS - Enum constant in enum class edu.cmu.tetrad.search.utils.BpcTestType
-
This will work and does a good job for small models, no more than 4 latents.
- GaussianCategoricalIm(GeneralizedSemPm) - Static method in class edu.pitt.csb.mgm.MixedUtils
-
GaussianCategoricalIm.
- GaussianCategoricalIm(GeneralizedSemPm, boolean) - Static method in class edu.pitt.csb.mgm.MixedUtils
-
This method is needed to normalize edge parameters for an Instantiated Mixed Model Generates edge parameters for c-d and d-d edges from a single weight, abs(w), drawn by the normal IM constructor.
- GaussianCategoricalPm(Graph, String) - Static method in class edu.pitt.csb.mgm.MixedUtils
-
GaussianCategoricalPm.
- GaussianPower - Class in edu.cmu.tetrad.util.dist
-
GaussianPower class.
- GaussianPower(double) - Constructor for class edu.cmu.tetrad.util.dist.GaussianPower
-
Constructor for GaussianPower.
- GaussianTrinaryPm(Graph, HashMap<String, String>, int, String) - Static method in class edu.pitt.csb.mgm.MixedUtils
-
GaussianTrinaryPm.
- Gdistance - Class in edu.cmu.tetrad.simulation
-
Created by Erich on 7/3/2016.
- Gdistance(DataSet, double, double, double) - Constructor for class edu.cmu.tetrad.simulation.Gdistance
-
Constructor for Gdistance.
- GdistanceApply - Class in edu.cmu.tetrad.simulation
-
Created by Erich on 7/14/2016.
- GdistanceRandom - Class in edu.cmu.tetrad.simulation
-
Created by Erich on 8/6/2016.
- GdistanceRandom(DataSet) - Constructor for class edu.cmu.tetrad.simulation.GdistanceRandom
-
Constructor for GdistanceRandom.
- GdistanceRandomApply - Class in edu.cmu.tetrad.simulation
-
Created by Erich on 8/6/2016.
- GdistanceTest - Class in edu.cmu.tetrad.simulation
-
Created by Erich on 7/6/2016.
- GdistanceUtils - Class in edu.cmu.tetrad.simulation
-
Created by Erich on 8/11/2016.
- Gene(int) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.ideker.ItkPredictorSearch.Gene
-
Constructor for Gene.
- GeneHistory - Class in edu.cmu.tetrad.study.gene.tetrad.gene.history
-
Implements the basic machinery used by all history objects.
- GeneHistory(Initializer, UpdateFunction) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.history.GeneHistory
-
Constructs a new history with the given initializer and the given update function.
- GenePm - Class in edu.cmu.tetrad.study.gene.tetradapp.model
-
Implements a parametric gene model.
- GenePm(LagGraph) - Constructor for class edu.cmu.tetrad.study.gene.tetradapp.model.GenePm
-
Construct a new gene pm, wrapping the given lag graph.
- General - Annotation Interface in edu.cmu.tetrad.annotation
-
Data with variables of general distribution.
- GENERAL_SEM_ERROR_TEMPLATE - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
GENERAL_SEM_ERROR_TEMPLATE="generalSemErrorTemplate"
- GENERAL_SEM_FUNCTION_TEMPLATE_LATENT - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
GENERAL_SEM_FUNCTION_TEMPLATE_LATENT="generalSemFunctionTemplateLatent"
- GENERAL_SEM_FUNCTION_TEMPLATE_MEASURED - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
GENERAL_SEM_FUNCTION_TEMPLATE_MEASURED="generalSemFunctionTemplateMeasured"
- GENERAL_SEM_PARAMETER_TEMPLATE - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
GENERAL_SEM_PARAMETER_TEMPLATE="generalSemParameterTemplate"
- GENERAL_STRUCTURAL_EQUATION_MODEL - Static variable in class edu.cmu.tetrad.algcomparison.simulation.SimulationTypes
-
Constant
GENERAL_STRUCTURAL_EQUATION_MODEL="General Structural Equation Model"
- GeneralAndersonDarlingTest - Class in edu.cmu.tetrad.data
-
Implements the Anderson-Darling test against the given CDF, with P values calculated as in R's ad.test method (in package nortest).
- GeneralAndersonDarlingTest(List<Double>, RealDistribution) - Constructor for class edu.cmu.tetrad.data.GeneralAndersonDarlingTest
-
Constructs an Anderson-Darling test for the given column of data.
- GeneralizedSemEstimator - Class in edu.cmu.tetrad.sem
-
Estimates a Generalized SEM I'M given a Generalized SEM PM and a data set.
- GeneralizedSemEstimator() - Constructor for class edu.cmu.tetrad.sem.GeneralizedSemEstimator
-
Constructs a new GeneralizedSemEstimator.
- GeneralizedSemEstimator.MyContext - Class in edu.cmu.tetrad.sem
-
Context.
- GeneralizedSemIm - Class in edu.cmu.tetrad.sem
-
Represents a generalized SEM-instantiated model.
- GeneralizedSemIm(GeneralizedSemPm) - Constructor for class edu.cmu.tetrad.sem.GeneralizedSemIm
-
Constructs a new GeneralizedSemIm from the given GeneralizedSemPm by picking values for each of the freeParameters from their initial distributions.
- GeneralizedSemIm(GeneralizedSemPm, SemIm) - Constructor for class edu.cmu.tetrad.sem.GeneralizedSemIm
-
Initializes a GeneralizedSemIm object by applying values to free parameters from the given GeneralizedSemPm and SemIm.
- GeneralizedSemPm - Class in edu.cmu.tetrad.sem
-
Parametric model for a Generalized SEM model.
- GeneralizedSemPm(Graph) - Constructor for class edu.cmu.tetrad.sem.GeneralizedSemPm
-
Constructs a BayesPm from the given Graph, which must be convertible first into a ProtoSemGraph and then into a SemGraph.
- GeneralizedSemPm(SemGraph) - Constructor for class edu.cmu.tetrad.sem.GeneralizedSemPm
-
Constructs a new SemPm from the given SemGraph.
- GeneralizedSemPm(GeneralizedSemPm) - Constructor for class edu.cmu.tetrad.sem.GeneralizedSemPm
-
Initializes a new instance of the GeneralizedSemPm class by copying the properties of the provided GeneralizedSemPm object.
- GeneralizedSemPm(SemPm) - Constructor for class edu.cmu.tetrad.sem.GeneralizedSemPm
-
Constructs a new GeneralizedSemPm object based on the given SemPm object.
- GeneralSemSimulation - Class in edu.cmu.tetrad.algcomparison.simulation
-
The GeneralSemSimulation class represents a simulation using a generalized structural equation model (SEM).
- GeneralSemSimulation(RandomGraph) - Constructor for class edu.cmu.tetrad.algcomparison.simulation.GeneralSemSimulation
-
Constructs a GeneralSemSimulation object with the given RandomGraph object.
- GeneralSemSimulation(GeneralizedSemIm) - Constructor for class edu.cmu.tetrad.algcomparison.simulation.GeneralSemSimulation
-
Constructs a GeneralSemSimulation object with the given GeneralizedSemIm object.
- GeneralSemSimulation(GeneralizedSemPm) - Constructor for class edu.cmu.tetrad.algcomparison.simulation.GeneralSemSimulation
-
Initializes a GeneralSemSimulation with the given GeneralizedSemPm object.
- GeneralSemSimulationSpecial1 - Class in edu.cmu.tetrad.algcomparison.simulation
-
This was used for a simulation to test the FTFC and FOFC algorithm and contains some carefully selected functions to test nonlinearity and non-Gaussianity.
- GeneralSemSimulationSpecial1(RandomGraph) - Constructor for class edu.cmu.tetrad.algcomparison.simulation.GeneralSemSimulationSpecial1
-
Constructor for GeneralSemSimulationSpecial1.
- generate() - Method in class edu.cmu.tetrad.graph.RandomGraph.UniformGraphGenerator
-
Generates a random graph.
- generate(Graph) - Static method in class edu.cmu.tetrad.bayes.ModelGenerator
-
This method takes an acyclic graph as input and returns a list of graphs each of which is a modification of the original graph with either an edge deleted, added or reversed.
- generateCpdagDags(Graph, boolean) - Static method in class edu.cmu.tetrad.graph.GraphTransforms
-
Generates the list of DAGs in the given cpdag.
- generateLatentNames(int) - Static method in class edu.cmu.tetrad.search.utils.ClusterUtils
-
Generates a list of latent variable names.
- generateMbDags(Graph, boolean, IndependenceTest, int, Node) - Static method in class edu.cmu.tetrad.search.utils.MbUtils
-
Generates the list of MB DAGs consistent with the MB CPDAG returned by the previous search.
- generateMixedEdgeParams(double, int) - Static method in class edu.pitt.csb.mgm.MixedUtils
-
generateMixedEdgeParams.
- generateReportFromExternalAlgorithms(String, String, Algorithms, Statistics, Parameters) - Method in class edu.cmu.tetrad.algcomparison.Comparison
-
Generates a report from external algorithms.
- generateReportFromExternalAlgorithms(String, String, Algorithms, Statistics, Parameters, long, TimeUnit) - Method in class edu.cmu.tetrad.algcomparison.TimeoutComparison
-
generateReportFromExternalAlgorithms.
- generateReportFromExternalAlgorithms(String, String, String, Algorithms, Statistics, Parameters) - Method in class edu.cmu.tetrad.algcomparison.Comparison
-
Generates a report from external algorithms based on the given parameters.
- generateReportFromExternalAlgorithms(String, String, String, Algorithms, Statistics, Parameters, long, TimeUnit) - Method in class edu.cmu.tetrad.algcomparison.TimeoutComparison
-
generateReportFromExternalAlgorithms.
- generateResults(boolean) - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Generates all results, for both the Markov and dependency checks, for each node in the graph given the parents of that node.
- generateResults(boolean, boolean) - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Generates results based on the specified independence and clearing conditions.
- get(int) - Method in class edu.cmu.tetrad.data.DataModelList
- get(int) - Method in class edu.cmu.tetrad.search.utils.TeyssierScorer
-
Returns the node at index j in pi.
- get(int) - Method in class edu.cmu.tetrad.util.Vector
-
get.
- get(int, int) - Method in interface edu.cmu.tetrad.bayes.CptMap
-
Retrieves the value at the specified row and column in the CptMap.
- get(int, int) - Method in class edu.cmu.tetrad.bayes.CptMapCounts
-
Returns the probability of the node taking on the value specified by the given row and column.
- get(int, int) - Method in class edu.cmu.tetrad.bayes.CptMapProbs
-
Returns the probability of the node taking on the value specified by the given row and column.
- get(int, int) - Method in class edu.cmu.tetrad.data.ByteDataBox
-
get.
- get(int, int) - Method in interface edu.cmu.tetrad.data.DataBox
-
get.
- get(int, int) - Method in class edu.cmu.tetrad.data.DoubleDataBox
-
get.
- get(int, int) - Method in class edu.cmu.tetrad.data.FloatDataBox
-
get.
- get(int, int) - Method in class edu.cmu.tetrad.data.IntDataBox
-
get.
- get(int, int) - Method in class edu.cmu.tetrad.data.LongDataBox
-
get.
- get(int, int) - Method in class edu.cmu.tetrad.data.MixedDataBox
-
get.
- get(int, int) - Method in class edu.cmu.tetrad.data.ShortDataBox
-
get.
- get(int, int) - Method in class edu.cmu.tetrad.data.VerticalDoubleDataBox
-
get.
- get(int, int) - Method in class edu.cmu.tetrad.data.VerticalIntDataBox
-
get.
- get(int, int) - Method in class edu.cmu.tetrad.util.Matrix
-
get.
- get(Node) - Method in class edu.cmu.tetrad.search.utils.SepsetMap
-
Returns the parents of the node x.
- get(Node) - Method in class edu.cmu.tetrad.search.work_in_progress.SepsetMapDci
-
get.
- get(Node, Node) - Method in class edu.cmu.tetrad.search.utils.SepsetMap
-
Retrieves the sepset previously set for {a, b}, or null if no such set was previously set.
- get(Node, Node) - Method in class edu.cmu.tetrad.search.work_in_progress.SepsetMapDci
-
Retrieves the sepset previously set for {x, y}, or null if no such set was previously set.
- get(String) - Method in class edu.cmu.tetrad.util.AlgorithmDescriptions
-
Gets the description of the algorithm.
- get(String) - Method in class edu.cmu.tetrad.util.IndependenceTestDescriptions
-
get.
- get(String) - Method in class edu.cmu.tetrad.util.ParamDescriptions
-
get.
- get(String) - Method in class edu.cmu.tetrad.util.Parameters
-
Returns the object value of the given parameter, looking up its default in the ParamDescriptions map.
- get(String) - Method in class edu.cmu.tetrad.util.ScoreDescriptions
-
get.
- get(String, Object) - Method in class edu.cmu.tetrad.util.Parameters
-
Returns the object value of the given parameter, using the given default.
- getA() - Method in class edu.cmu.tetrad.search.utils.Bes.Arrow
-
Returns the first node.
- getA() - Method in class edu.cmu.tetrad.sem.ParameterPair
-
Method getNumObjects
- getA() - Method in class edu.cmu.tetrad.util.ChoiceGenerator
-
Getter for the field
a
. - getA() - Method in class edu.cmu.tetrad.util.dist.Split
-
Getter for the field
a
. - getA() - Method in class edu.cmu.tetrad.util.SelectionGenerator
-
Getter for the field
a
. - getA() - Method in class edu.cmu.tetrad.util.SublistGenerator
-
Getter for the field
a
. - getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.AdjacencyFn
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.AdjacencyFp
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.AdjacencyFpr
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.AdjacencyPrecision
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.AdjacencyRecall
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.AdjacencyTn
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.AdjacencyTp
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.AdjacencyTpr
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.AncestorF1
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.AncestorPrecision
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.AncestorRecall
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.AncestralPrecision
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.AncestralRecall
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.ArrowheadFn
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.ArrowheadFp
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.ArrowheadFpr
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.ArrowheadPrecision
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.ArrowheadPrecisionCommonEdges
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.ArrowheadRecall
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.ArrowheadRecallCommonEdges
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.ArrowheadTn
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.ArrowheadTp
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.AverageDegreeEst
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.AverageDegreeTrue
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.BicDiff
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.BicDiffPerRecord
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.BicEst
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.BicTrue
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.BidirectedEst
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.BidirectedFP
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.BidirectedLatentPrecision
-
Returns the abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.BidirectedPrecision
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.BidirectedRecall
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.BidirectedTP
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.BidirectedTrue
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.CommonAncestorFalseNegativeBidirected
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.CommonAncestorFalsePositiveBidirected
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.CommonAncestorTruePositiveBidirected
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.CommonMeasuredAncestorRecallBidirected
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.CorrectSkeleton
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.DefiniteDirectedPathPrecision
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.DefiniteDirectedPathRecall
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.DensityEst
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.DensityTrue
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.ElapsedCpuTime
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.F1Adj
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.F1All
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.F1Arrow
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.FalseNegativesAdjacencies
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.FalsePositiveAdjacencies
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.FBetaAdj
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.FractionDependentUnderAlternative
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.FractionDependentUnderNull
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.GraphExactlyRight
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.IdaAverageSquaredDistance
-
Retrieves the abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.IdaCheckAvgMaxSquaredDiffEstTrue
-
Returns the abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.IdaCheckAvgMinSquaredDiffEstTrue
-
Returns the abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.IdaCheckAvgSquaredDifference
-
Returns the abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.IdaMaximumSquaredDifference
-
Retrieves the abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.IdaMinimumSquaredDifference
-
Retrieves the abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.ImpliedArrowOrientationRatioEst
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.ImpliedArrowOrientationRatioEst2
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.ImpliedOrientationRatioEst
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.ImpliesLegalMag
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.KnowledgeSatisfied
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.LatentCommonAncestorFalseNegativeBidirected
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.LatentCommonAncestorFalsePositiveBidirected
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.LatentCommonAncestorRecallBidirected
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.LatentCommonAncestorTruePositiveBidirected
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.LegalPag
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.LocalGraphPrecision
-
This method returns the abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.LocalGraphRecall
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.MagCgScore
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.MagDgScore
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.MagSemScore
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckAdPasses
-
Returns the abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckAdPassesBestOf10
-
Returns the abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckAndersonDarlingP
-
Returns the abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckAndersonDarlingPBestOf10
-
Returns the abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckBinomialP
-
Returns the abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckBinomialPBestOf10
-
Returns the abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckKolmogorovSmirnoffP
-
Returns the abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckKolmogorovSmirnoffPBestOf10
-
Returns the abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckKsPasses
-
Returns the abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckKsPassesBestOf10
-
Returns the abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.MathewsCorrAdj
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.MathewsCorrArrow
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.Maximal
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.MaximalityCondition
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NoAlmostCyclicPathsCondition
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NoCyclicPathsCondition
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NodesInCyclesPrecision
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NodesInCyclesRecall
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NonancestorPrecision
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NonancestorRecall
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NoSemidirectedF1
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NoSemidirectedPrecision
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NoSemidirectedRecall
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumAmbiguousTriples
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumberArrowsEst
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumberArrowsNotInUnshieldedCollidersEst
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumberCollidersEst
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumberEdgesEst
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumberEdgesInCollidersEst
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumberEdgesInUnshieldedCollidersEst
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumberEdgesTrue
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumberOfEdgesEst
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumberOfEdgesTrue
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumberTailsEst
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumberUnshieldedCollidersEst
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumBidirectedBothNonancestorAncestor
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumBidirectedEdgesEst
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumBidirectedEdgesTrue
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumColoredDD
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumColoredNL
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumColoredPD
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumColoredPL
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCommonMeasuredAncestorBidirected
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCompatibleDefiniteDirectedEdgeAncestors
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCompatibleDirectedEdgeConfounded
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCompatibleDirectedEdgeNonAncestors
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCompatibleEdges
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCompatiblePossiblyDirectedEdgeAncestors
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCompatiblePossiblyDirectedEdgeNonAncestors
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCompatibleVisibleNonancestors
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCorrectBidirected
-
Retrieves the abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCorrectDDAncestors
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCorrectPDAncestors
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCorrectVisibleEdges
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCoveringAdjacenciesInPag
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumDefinitelyDirected
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumDefinitelyNotDirectedPaths
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumDirectedEdgeAncestors
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumDirectedEdgeBnaMeasuredCounfounded
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumDirectedEdgeNoMeasureAncestors
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumDirectedEdgeNotAncNotRev
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumDirectedEdgeReversed
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumDirectedEdges
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumDirectedPathsEst
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumDirectedPathsTrue
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumDirectedShouldBePartiallyDirected
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumEdgeInEstInTrue
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumGenuineAdjacenciesInPag
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumIncorrectDDAncestors
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumIncorrectPDAncestors
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumIncorrectVisibleAncestors
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumLatentCommonAncestorBidirected
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumNondirectedEdges
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumParametersEst
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumPartiallyOrientedEdges
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumPossiblyDirected
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumUndirectedEdges
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumVisibleEdgeEst
-
Returns the abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumVisibleEdges
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumVisibleEdgeTrue
-
Retrieves the abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.OrientationPrecision
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.OrientationRecall
-
Returns the abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.PagAdjacencyPrecision
-
Retrieves the abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.PagAdjacencyRecall
-
Retrieves the abbreviation for the given statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.ParameterColumn
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.PercentAmbiguous
-
Retrieves the abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.PercentBidirectedEdges
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.ProportionSemidirectedPathsNotReversedEst
-
Retrieves the abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.ProportionSemidirectedPathsNotReversedTrue
-
Returns the abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.PvalueDistanceToAlpha
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.PvalueUniformityUnderNull
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.SemidirectedPathF1
-
Retrieves the abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.SemidirectedPrecision
-
Returns the abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.SemidirectedRecall
-
Retrieves the abbreviation for the SemidirectedRecall statistic.
- getAbbreviation() - Method in interface edu.cmu.tetrad.algcomparison.statistic.Statistic
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.StructuralHammingDistance
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.TailPrecision
-
Retrieves the abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.TailRecall
-
Returns the abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.TrueDagFalseNegativesArrows
-
Retrieves the abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.TrueDagFalseNegativesTails
-
Retrieves the abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.TrueDagFalsePositiveArrow
-
Retrieves the abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.TrueDagFalsePositiveTails
-
Returns the abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.TrueDagPrecisionArrow
-
Retrieves the abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.TrueDagPrecisionTails
-
Returns the abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.TrueDagRecallArrows
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.TrueDagRecallTails
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.TrueDagTruePositiveArrow
-
Retrieves the abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.TrueDagTruePositiveDirectedPathNonancestor
-
Retrieves the abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.TrueDagTruePositiveTails
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.TwoCycleFalseNegative
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.TwoCycleFalsePositive
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.TwoCyclePrecision
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.TwoCycleRecall
-
The abbreviation for the statistic.
- getAbbreviation() - Method in class edu.cmu.tetrad.algcomparison.statistic.TwoCycleTruePositive
-
The abbreviation for the statistic.
- getAbsTotalEffects(Node, Node) - Method in class edu.cmu.tetrad.search.Ida
-
This method calculates the absolute total effects of node x on node y.
- getAcyclicTrimmedBHat(Matrix) - Method in class edu.cmu.tetrad.search.IcaLingam
-
Calculates and returns the trimmed BHat matrix in an acyclic form using the given matrix W.
- getAdjacencies() - Method in class edu.cmu.tetrad.search.Cpc
-
Returns the edges in the search graph as a set of undirected edges.
- getAdjacencies() - Method in class edu.cmu.tetrad.search.Pc
-
Returns The edges of the searched graph.
- getAdjacencies() - Method in class edu.cmu.tetrad.search.Pcd
-
Returns the set of adjacent edges in the graph.
- getAdjacencies() - Method in class edu.cmu.tetrad.search.SvarFges
-
Retrieves the adjacency graph.
- getAdjacencies() - Method in class edu.cmu.tetrad.search.utils.FgesOrienter
-
Getter for the field
adjacencies
. - getAdjacencies() - Method in class edu.cmu.tetrad.search.utils.PcCommon
-
Returns The edges in the search graph.
- getAdjacencies() - Method in class edu.cmu.tetrad.search.utils.TeyssierScorer
-
Returns a list of adjacent node pairs in the current graph.
- getAdjacencies() - Method in class edu.cmu.tetrad.search.work_in_progress.ISFges
-
Retrieves the preset adjacencies graph.
- getAdjacencies() - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpc
-
getAdjacencies.
- getAdjacencies() - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpcFast
-
getAdjacencies.
- getAdjacencies() - Method in class edu.cmu.tetrad.search.work_in_progress.VcPc
-
getAdjacencies.
- getAdjacencies() - Method in class edu.cmu.tetrad.search.work_in_progress.VcPcFast
-
getAdjacencies.
- getAdjacentNodes(Node) - Method in class edu.cmu.tetrad.graph.Dag
-
Retrieves the adjacent nodes of a given node in the graph.
- getAdjacentNodes(Node) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
getAdjacentNodes.
- getAdjacentNodes(Node) - Method in interface edu.cmu.tetrad.graph.Graph
-
getAdjacentNodes.
- getAdjacentNodes(Node) - Method in class edu.cmu.tetrad.graph.LagGraph
-
getAdjacentNodes.
- getAdjacentNodes(Node) - Method in class edu.cmu.tetrad.graph.SemGraph
-
getAdjacentNodes.
- getAdjacentNodes(Node) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Retrieves a list of adjacent nodes for the given node.
- getAdjacentNodes(Node) - Method in class edu.cmu.tetrad.search.utils.TeyssierScorer
-
Returns the nodes adjacent to v.
- getAdjCor() - Method in class edu.cmu.tetrad.graph.GraphUtils.GraphComparison
-
Returns the adjacency correct.
- getAdjFn() - Method in class edu.cmu.tetrad.graph.GraphUtils.GraphComparison
-
Returns the adjacency false negatives.
- getAdjFp() - Method in class edu.cmu.tetrad.graph.GraphUtils.GraphComparison
-
Returns the adjacency false positives.
- getAdjPrec() - Method in class edu.cmu.tetrad.graph.GraphUtils.GraphComparison
-
Returns the adjaency precision.
- getAdjPrecision() - Method in class edu.cmu.tetrad.simulation.PRAOerrors
-
getAdjPrecision.
- getAdjRec() - Method in class edu.cmu.tetrad.graph.GraphUtils.GraphComparison
-
Returns the adjacency recall.
- getAdjRecall() - Method in class edu.cmu.tetrad.simulation.PRAOerrors
-
getAdjRecall.
- getAhdCor() - Method in class edu.cmu.tetrad.graph.GraphUtils.GraphComparison
-
Returns the arrowhead correct.
- getAhdFn() - Method in class edu.cmu.tetrad.graph.GraphUtils.GraphComparison
-
Returns the arrowhead false negatives.
- getAhdFp() - Method in class edu.cmu.tetrad.graph.GraphUtils.GraphComparison
-
Returns the arrowhead false positives.
- getAhdPrec() - Method in class edu.cmu.tetrad.graph.GraphUtils.GraphComparison
-
Returns the arrowhead precision.
- getAhdRec() - Method in class edu.cmu.tetrad.graph.GraphUtils.GraphComparison
-
Returns the arrowhead recall.
- getAlgorithm() - Method in class edu.cmu.tetrad.study.performance.ComparisonParameters
-
Getter for the field
algorithm
. - getAlgorithmDescriptions() - Static method in enum class edu.cmu.tetrad.search.utils.BpcAlgorithmType
-
Returns the algorithm descriptions.
- getAlgorithmName() - Method in class edu.cmu.tetrad.search.GrowShrink
-
Returns "Grow Shrink".
- getAlgorithmName() - Method in interface edu.cmu.tetrad.search.IMbSearch
-
The name of the algorithm.
- getAlgorithmName() - Method in class edu.cmu.tetrad.search.PcMb
-
Returns "PC-MB."
- getAlgorithmName() - Method in class edu.cmu.tetrad.search.work_in_progress.Iamb
-
getAlgorithmName.
- getAlgorithmName() - Method in class edu.cmu.tetrad.search.work_in_progress.IambnPc
-
getAlgorithmName.
- getAlgorithmName() - Method in class edu.cmu.tetrad.search.work_in_progress.InterIamb
-
getAlgorithmName.
- getAlgorithmName() - Method in class edu.cmu.tetrad.search.work_in_progress.Mmmb
-
getAlgorithmName.
- getAlgorithmParameters(Algorithm) - Static method in class edu.cmu.tetrad.util.Params
-
getAlgorithmParameters.
- getAlgorithms() - Method in class edu.cmu.tetrad.algcomparison.algorithm.Algorithms
-
Returns the list of algorithm.
- getAllAttributes() - Method in class edu.cmu.tetrad.data.ContinuousVariable
-
getAllAttributes.
- getAllAttributes() - Method in class edu.cmu.tetrad.data.DiscreteVariable
-
getAllAttributes.
- getAllAttributes() - Method in class edu.cmu.tetrad.graph.Dag
-
getAllAttributes.
- getAllAttributes() - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
getAllAttributes.
- getAllAttributes() - Method in interface edu.cmu.tetrad.graph.Graph
-
getAllAttributes.
- getAllAttributes() - Method in class edu.cmu.tetrad.graph.GraphNode
-
getAllAttributes.
- getAllAttributes() - Method in class edu.cmu.tetrad.graph.LagGraph
-
getAllAttributes.
- getAllAttributes() - Method in interface edu.cmu.tetrad.graph.Node
-
getAllAttributes.
- getAllAttributes() - Method in class edu.cmu.tetrad.graph.SemGraph
-
getAllAttributes.
- getAllAttributes() - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Retrieves all the attributes stored in the object.
- getAllGraphsByDirectingUndirectedEdges(Graph) - Static method in class edu.cmu.tetrad.graph.GraphTransforms
-
Returns a list of all possible graphs obtained by directing undirected edges in the given graph.
- getAllowedColliders() - Method in class edu.cmu.tetrad.search.utils.R0R4StrategyTestBased
-
The Set of Triples representing the allowed colliders for the FciOrientDataExaminationStrategy.
- getAllParents(Graph, Set<Node>) - Static method in class edu.cmu.tetrad.simulation.HsimUtils
-
getAllParents.
- getAllRows(int) - Static method in class edu.cmu.tetrad.search.utils.GraphSearchUtils
-
Returns a list of rows 1...sampleSize.
- getAllSubsetsIndependenceFacts() - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Returns the set of independence facts used in the Markov check, for dseparation and dconnection separately.
- getAlpha() - Method in class edu.cmu.tetrad.regression.LogisticRegression
-
Getter for the field
alpha
. - getAlpha() - Method in interface edu.cmu.tetrad.search.IndependenceTest
-
Returns the significance level of the independence test.
- getAlpha() - Method in class edu.cmu.tetrad.search.IndTestIod
- getAlpha() - Method in class edu.cmu.tetrad.search.test.ChiSquareTest
-
Returns the model significance level being used for tests.
- getAlpha() - Method in class edu.cmu.tetrad.search.test.IndTestChiSquare
-
Returns the alpha significance level of the test.
- getAlpha() - Method in class edu.cmu.tetrad.search.test.IndTestConditionalCorrelation
-
Returns the model significance level.
- getAlpha() - Method in class edu.cmu.tetrad.search.test.IndTestConditionalGaussianLrt
-
Returns the significance level of the independence test.
- getAlpha() - Method in class edu.cmu.tetrad.search.test.IndTestDegenerateGaussianLrt
-
Returns the significance level of the independence test.
- getAlpha() - Method in class edu.cmu.tetrad.search.test.IndTestFisherZ
-
Gets the model significance level.
- getAlpha() - Method in class edu.cmu.tetrad.search.test.IndTestFisherZConcatenateResiduals
-
This method returns the alpha significance cutoff value used in the independence test.
- getAlpha() - Method in class edu.cmu.tetrad.search.test.IndTestFisherZFisherPValue
-
Gets the getModel significance level.
- getAlpha() - Method in class edu.cmu.tetrad.search.test.IndTestGSquare
-
Gets the getModel significance level.
- getAlpha() - Method in class edu.cmu.tetrad.search.test.IndTestHsic
-
Gets the getModel significance level.
- getAlpha() - Method in class edu.cmu.tetrad.search.test.IndTestIndependenceFacts
-
Returns the alpha value used for checking independence.
- getAlpha() - Method in class edu.cmu.tetrad.search.test.IndTestMulti
-
Gets the getModel significance level.
- getAlpha() - Method in class edu.cmu.tetrad.search.test.IndTestMvpLrt
-
Returns the significance level of the independence test.
- getAlpha() - Method in class edu.cmu.tetrad.search.test.IndTestProbabilistic
-
Returns the alpha parameter for the probabilistic test.
- getAlpha() - Method in class edu.cmu.tetrad.search.test.IndTestRegression
-
Gets the getModel significance level.
- getAlpha() - Method in class edu.cmu.tetrad.search.test.IndTestTrekSep
-
Gets the model significance level.
- getAlpha() - Method in class edu.cmu.tetrad.search.test.Kci
-
Returns the significance level of the independence test.
- getAlpha() - Method in class edu.cmu.tetrad.search.test.MsepTest
-
Returns an alpha level, 0.5.
- getAlpha() - Method in class edu.cmu.tetrad.search.test.ScoreIndTest
-
Returns the significance level of the independence test.
- getAlpha() - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsBeam
-
Getter for the field
alpha
. - getAlpha() - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsGes
-
Getter for the field
alpha
. - getAlpha() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestCramerT
-
Getter for the field
alpha
. - getAlpha() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestFisherZPercentIndependent
-
Gets the getModel significance level.
- getAlpha() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestFisherZRecursive
-
Gets the getModel significance level.
- getAlpha() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestMixedMultipleTTest
- getAlpha() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestMnlrLr
-
Returns the significance level of the independence test.
- getAlpha() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestMultinomialLogisticRegression
-
Retrieves the significance level of the independence test.
- getAlpha() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestPositiveCorr
-
Retrieves the alpha level of the Independence Test.
- getAlpha() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestSepsetDci
-
getAlpha.
- getAlpha() - Method in class edu.cmu.tetrad.search.work_in_progress.Kpc
-
Gets the getModel significance level.
- getAlpha() - Method in class edu.cmu.tetrad.search.work_in_progress.ProbabilisticMapIndependence
-
Returns the significance level of the independence test.
- getAlpha() - Method in class edu.cmu.tetrad.study.performance.ComparisonParameters
-
Getter for the field
alpha
. - getAlpha() - Method in class edu.pitt.csb.mgm.IndTestMultinomialLogisticRegressionWald
-
Getter for the field
alpha
. - getAmbiguousTriples() - Method in class edu.cmu.tetrad.graph.Dag
-
Returns a set of ambiguous triples.
- getAmbiguousTriples() - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
Getter for the field
ambiguousTriples
. - getAmbiguousTriples() - Method in interface edu.cmu.tetrad.graph.Graph
-
getAmbiguousTriples.
- getAmbiguousTriples() - Method in class edu.cmu.tetrad.graph.LagGraph
-
Getter for the field
ambiguousTriples
. - getAmbiguousTriples() - Method in class edu.cmu.tetrad.graph.SemGraph
-
Getter for the field
ambiguousTriples
. - getAmbiguousTriples() - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Retrieves the set of ambiguous triples.
- getAmbiguousTriples() - Method in class edu.cmu.tetrad.graph.Underlines
-
Getter for the field
ambiguousTriples
. - getAmbiguousTriples() - Method in class edu.cmu.tetrad.search.Cfci
-
Returns the ambiguous triples found in the search.
- getAmbiguousTriples() - Method in class edu.cmu.tetrad.search.Cpc
-
Returns the set of ambiguous triples found during the most recent run of the algorithm.
- getAmbiguousTriples() - Method in class edu.cmu.tetrad.search.PcMb
-
Returns the set of triples identified as ambiguous by the CPC algorithm during the most recent search.
- getAmbiguousTriples() - Method in class edu.cmu.tetrad.search.utils.PcCommon
-
Getter for the field
ambiguousTriples
. - getAmbiguousTriples() - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpc
-
Getter for the field
ambiguousTriples
. - getAmbiguousTriples() - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpcFast
-
Getter for the field
ambiguousTriples
. - getAmbiguousTriples() - Method in class edu.cmu.tetrad.search.work_in_progress.VcPc
-
Getter for the field
ambiguousTriples
. - getAmbiguousTriples() - Method in class edu.cmu.tetrad.search.work_in_progress.VcPcAlt
-
Getter for the field
ambiguousTriples
. - getAmbiguousTriples() - Method in class edu.cmu.tetrad.search.work_in_progress.VcPcFast
-
Getter for the field
ambiguousTriples
. - getAmbiguousTriples(Node) - Method in class edu.cmu.tetrad.search.Fas
-
Retrieves the list of ambiguous triples involving the given node.
- getAmbiguousTriples(Node) - Method in class edu.cmu.tetrad.search.Fasd
-
Retrieves a list of ambiguous triples for the given node.
- getAmbiguousTriples(Node) - Method in interface edu.cmu.tetrad.search.IFas
-
Returns the list of ambiguous triples found for a given node.
- getAmbiguousTriples(Node) - Method in class edu.cmu.tetrad.search.SvarFas
-
Retrieves the list of ambiguous triples involving the given node.
- getAmbiguousTriples(Node) - Method in class edu.cmu.tetrad.search.work_in_progress.FasFdr
-
Returns the list of ambiguous triples found for a given node.
- getAmbiguousTriplesFromGraph(Node, Graph) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Retrieves the list of ambiguous triples from the given graph for a given node.
- getAncestors(Node) - Method in class edu.cmu.tetrad.graph.Paths
-
Retrieves the ancestors of a specified `Node` in the graph.
- getAncestors(Node) - Method in class edu.cmu.tetrad.search.utils.TeyssierScorer
-
getAncestors.
- getAncestors(List<Node>) - Method in class edu.cmu.tetrad.graph.Paths
-
Returns a list of all ancestors of the given nodes.
- getAncestorsMap() - Method in class edu.cmu.tetrad.graph.Paths
-
Return a map from each node to its collection of ancestors.
- getAndersonDarlingA2(boolean) - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Returns the Anderson-Darling A^2 statistic for the given list of results.
- getAndersonDarlingA2(List<IndependenceResult>) - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Calculates the Anderson-Darling A2 value for a list of independence results.
- getAndersonDarlingA2Star(boolean) - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Returns the Anderson-Darling A^2* statistic for the given list of results.
- getAndersonDarlingP(boolean) - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Returns the Anderson-Darling p-value for the given list of results.
- getAndersonDarlingPValue(List<IndependenceResult>) - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Calculates the Anderson-Darling p-value for a given list of independence results.
- getAndersonDarlingTestAcceptsRejectsNodesForAllNodes(IndependenceTest, Graph, Double, Double) - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Calculates the Anderson-Darling test and classifies nodes as accepted or rejected based on the given threshold.
- getAndersonDarlingTestAcceptsRejectsNodesForAllNodesPlotData(IndependenceTest, Graph, Graph, Double, Double, Double) - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Get accepts and rejects nodes for all nodes from Anderson-Darling test and generate the plot data for confusion statistics.
- getAndersonDarlingTestAcceptsRejectsNodesForAllNodesPlotData2(IndependenceTest, Graph, Graph, Double, Double, Double) - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Get accepts and rejects nodes for all nodes from Anderson-Darling test and generate the plot data for confusion statistics.
- getAnnotatedClasses() - Method in class edu.cmu.tetrad.annotation.AbstractAnnotations
-
Get annotated classes.
- getAnnotatedClasses(String, Class<T>) - Static method in class edu.cmu.tetrad.annotation.AnnotatedClassUtils
-
Gets a list of annotated classes in the given package.
- getApacheData() - Method in class edu.cmu.tetrad.util.Matrix
-
Getter for the field
apacheData
. - getApparentlyNonadjacencies() - Method in class edu.cmu.tetrad.search.work_in_progress.VcFas
-
Getter for the field
apparentlyNonadjacencies
. - getApparentNonadjacencies() - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpc
-
getApparentNonadjacencies.
- getApparentNonadjacencies() - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpcFast
-
getApparentNonadjacencies.
- getApparentNonadjacencies() - Method in class edu.cmu.tetrad.search.work_in_progress.VcPc
-
getApparentNonadjacencies.
- getApparentNonadjacencies() - Method in class edu.cmu.tetrad.search.work_in_progress.VcPcFast
-
getApparentNonadjacencies.
- getArea(Function, double, double, int) - Static method in class edu.cmu.tetrad.util.Integrator
-
Finds the area under function f between x1 and x2 using Simpson's rule.
- getArgument(int) - Method in interface edu.cmu.tetrad.calculator.expression.ExpressionSignature
-
getArgument.
- getArrowsFn() - Method in class edu.cmu.tetrad.algcomparison.statistic.utils.TailConfusion
-
getArrowsFn.
- getArrowsFp() - Method in class edu.cmu.tetrad.algcomparison.statistic.utils.TailConfusion
-
getArrowsFp.
- getArrowsTn() - Method in class edu.cmu.tetrad.algcomparison.statistic.utils.TailConfusion
-
getArrowsTn.
- getArrowsTp() - Method in class edu.cmu.tetrad.algcomparison.statistic.utils.TailConfusion
-
getArrowsTp.
- getASquared() - Method in class edu.cmu.tetrad.data.AndersonDarlingTest
-
Constructs an Anderson-Darling test for the given column of data.
- getASquared() - Method in class edu.cmu.tetrad.data.GeneralAndersonDarlingTest
-
Getter for the field
aSquared
. - getASquared() - Method in class edu.cmu.tetrad.data.MultiGeneralAndersonDarlingTest
-
Getter for the field
aSquared
. - getaSquaredStar() - Method in class edu.cmu.tetrad.sem.GeneralizedSemEstimator
-
Returns the value of the field aSquaredStar.
- getASquaredStar() - Method in class edu.cmu.tetrad.data.AndersonDarlingTest
-
Constructs an Anderson-Darling test for the given column of data.
- getASquaredStar() - Method in class edu.cmu.tetrad.data.GeneralAndersonDarlingTest
-
Getter for the field
aSquaredStar
. - getASquaredStar() - Method in class edu.cmu.tetrad.data.MultiGeneralAndersonDarlingTest
-
Getter for the field
aSquaredStar
. - getAssociatedNode(Node, Graph) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Returns the associated node for the given error node in the specified graph.
- getAttribute(String) - Method in class edu.cmu.tetrad.data.ContinuousVariable
-
getAttribute.
- getAttribute(String) - Method in class edu.cmu.tetrad.data.DiscreteVariable
-
getAttribute.
- getAttribute(String) - Method in class edu.cmu.tetrad.graph.Dag
-
Retrieves the value associated with the given key in the attribute map.
- getAttribute(String) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
getAttribute.
- getAttribute(String) - Method in interface edu.cmu.tetrad.graph.Graph
-
getAttribute.
- getAttribute(String) - Method in class edu.cmu.tetrad.graph.GraphNode
-
getAttribute.
- getAttribute(String) - Method in class edu.cmu.tetrad.graph.LagGraph
-
getAttribute.
- getAttribute(String) - Method in interface edu.cmu.tetrad.graph.Node
-
getAttribute.
- getAttribute(String) - Method in class edu.cmu.tetrad.graph.SemGraph
-
getAttribute.
- getAttribute(String) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Retrieves the value associated with the specified key from the attributes map.
- getAuc() - Method in class edu.cmu.tetrad.util.RocCalculator
-
Calculates the area under the ROC curve using a very clever Ramsey idea.
- getAverageSquaredDistance(List<OrderedPair<Node>>) - Method in class edu.cmu.tetrad.search.IdaCheck
-
Returns the average of the squared distances between the true total effects and the IDA effect ranges the list of node pairs indicated.
- getAvgMaxSquaredDiffEstTrue(List<OrderedPair<Node>>) - Method in class edu.cmu.tetrad.search.IdaCheck
-
Returns the average of the squared differences between the maximum total effects and the true total effects for the list of node pairs indicated.
- getAvgMinSquaredDiffEstTrue(List<OrderedPair<Node>>) - Method in class edu.cmu.tetrad.search.IdaCheck
-
Returns the average of the squared differences between the minimum total effects and the true total effects for the list of node pairs indicated.
- getB() - Method in class edu.cmu.tetrad.search.FaskOrig
-
Returns the coefficient matrix for the search.
- getB() - Method in class edu.cmu.tetrad.search.utils.Bes.Arrow
-
Returns the second node.
- getB() - Method in class edu.cmu.tetrad.sem.ParameterPair
-
Method getNumObjects
- getB() - Method in class edu.cmu.tetrad.util.ChoiceGenerator
-
Getter for the field
b
. - getB() - Method in class edu.cmu.tetrad.util.dist.Split
-
Getter for the field
b
. - getBandwidth() - Method in interface edu.cmu.tetrad.search.utils.Kernel
-
Gets kernel bandwidth
- getBandwidth() - Method in class edu.cmu.tetrad.search.utils.KernelGaussian
-
getBandwidth.
- getBasalExpression() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BooleanGlassFunction
-
Getter for the field
basalExpression
. - getBayesIm() - Method in class edu.cmu.tetrad.bayes.ApproximateUpdater
-
Getter for the field
bayesIm
. - getBayesIm() - Method in interface edu.cmu.tetrad.bayes.BayesUpdater
-
Returns the evidence for the updater.
- getBayesIm() - Method in class edu.cmu.tetrad.bayes.CptInvariantUpdater
-
Getter for the field
bayesIm
. - getBayesIm() - Method in class edu.cmu.tetrad.bayes.Identifiability
-
The BayesIm that this updater bases its update on.
- getBayesIm() - Method in class edu.cmu.tetrad.bayes.JunctionTreeUpdater
-
Returns the evidence for the updater.
- getBayesIm() - Method in class edu.cmu.tetrad.bayes.RowSummingExactUpdater
-
The BayesIm that this updater bases its update on.
- getBayesIm() - Method in class edu.cmu.tetrad.classify.ClassifierBayesUpdaterDiscrete
-
Returns the Bayes IM being used.
- getBayesIm(Element) - Method in class edu.cmu.tetrad.bayes.BayesXmlParser
-
Returns the BayesIm object represented by the given element.
- getBayesIm(Element) - Method in class edu.cmu.tetrad.search.utils.BayesImParser
-
Takes an xml representation of a Bayes IM and reinstantiates the IM.
- getBayesImObs() - Method in class edu.cmu.tetrad.bayes.MlBayesImObs
-
Getter for the field
bayesImObs
. - getBayesIms() - Method in class edu.cmu.tetrad.algcomparison.simulation.BayesNetSimulation
-
Returns the list of Bayes IMs.
- getBayesImVars() - Method in class edu.cmu.tetrad.classify.ClassifierBayesUpdaterDiscrete
-
Returns the variables of the BayesIM.
- getBayesPm() - Method in interface edu.cmu.tetrad.bayes.BayesIm
-
Returns the underlying Bayes PM.
- getBayesPm() - Method in class edu.cmu.tetrad.bayes.DirichletBayesIm
-
Getter for the field
bayesPm
. - getBayesPm() - Method in class edu.cmu.tetrad.bayes.EmBayesProperties
-
Getter for the field
bayesPm
. - getBayesPm() - Method in class edu.cmu.tetrad.bayes.MlBayesIm
-
Getter for the field
bayesPm
. - getBayesPm() - Method in class edu.cmu.tetrad.bayes.MlBayesImObs
-
Getter for the field
bayesPm
. - getBayesPm() - Method in class edu.cmu.tetrad.bayes.UpdatedBayesIm
-
getBayesPm.
- getBeta() - Method in class edu.cmu.tetrad.algcomparison.statistic.FBetaAdj
-
Getter for the field
beta
. - getBeta() - Method in class edu.pitt.csb.mgm.Mgm.MGMParams
-
Returns beta.
- getBhat() - Method in class edu.cmu.tetrad.sem.Ricf.RicfResult
-
Returns the bhat matrix.
- getBHat() - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.IcaLingam
-
Retrieves the bHat matrix.
- getBic() - Method in class edu.cmu.tetrad.bayes.BayesProperties
-
Call after calling getLikelihoodP().
- getBic() - Method in class edu.cmu.tetrad.bayes.EmBayesProperties
-
Calculates the BIC (Bayes Information Criterion) score for a BayesPM with respect to a given discrete data set.
- getBic() - Method in class edu.cmu.tetrad.search.test.IndTestFisherZ
-
Returns the BIC score for this test.
- getBic() - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsBeam.Score
-
getBic.
- getBic() - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsGes.Score
-
Returns the BIC.
- getBics() - Method in class edu.cmu.tetrad.search.Boss
-
Returns the BIC scores.
- getBicScore() - Method in class edu.cmu.tetrad.sem.DagScorer
-
getBicScore.
- getBicScore() - Method in interface edu.cmu.tetrad.sem.ISemIm
-
getBicScore.
- getBicScore() - Method in interface edu.cmu.tetrad.sem.Scorer
-
getBicScore.
- getBicScore() - Method in class edu.cmu.tetrad.sem.SemIm
-
getBicScore.
- getBinomialPValue(boolean) - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Returns the Binomial p-value for the given list of results.
- getBinomialPValue(List<IndependenceResult>) - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Calculates the binomial p-value based on the list of visible pairs.
- getBMap(Graph) - Static method in class edu.cmu.tetrad.search.utils.AlmostCycleRemover
-
Returns a map of nodes to bidirected edges for them.
- getBoolean(String) - Method in class edu.cmu.tetrad.util.Parameters
-
Returns the boolean value of the given parameter, looking up its default in the ParamDescriptions map.
- getBoolean(String, boolean) - Method in class edu.cmu.tetrad.util.Parameters
-
Returns the boolean value of the given parameter, using the given default.
- getBooleanInfluenceRate() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BooleanGlassFunction
-
Getter for the field
booleanInfluenceRate
. - getBootstrapGraphs() - Method in class edu.cmu.tetrad.algcomparison.algorithm.AbstractBootstrapAlgorithm
-
Returns the bootstrap graphs.
- getBootstrapGraphs() - Method in interface edu.cmu.tetrad.algcomparison.algorithm.ReturnsBootstrapGraphs
-
Returns the bootstrap graphs.
- getBootstrappingParameters(Algorithm) - Static method in class edu.cmu.tetrad.util.Params
-
getBootstrappingParameters.
- getBootstrapSample(DataSet, int) - Static method in class edu.cmu.tetrad.data.DataTransforms
-
getBootstrapSample.
- getBootstrapSample(DataSet, int, RandomGenerator) - Static method in class edu.cmu.tetrad.data.DataTransforms
-
Get dataset sampled with replacement.
- getBootstrapSample(Matrix, int) - Static method in class edu.cmu.tetrad.data.DataTransforms
-
getBootstrapSample.
- getBreakpoints() - Method in class edu.cmu.tetrad.data.ContinuousDiscretizationSpec
-
Retrieves the array of breakpoints used for discretization.
- getBreakpoints() - Method in class edu.cmu.tetrad.data.SplitCasesSpec
-
Getter for the field
breakpoints
. - getBscD() - Method in class edu.pitt.dbmi.algo.bayesian.constraint.search.RfciBsc
-
Returns the BSC-D score.
- getBscI() - Method in class edu.pitt.dbmi.algo.bayesian.constraint.search.RfciBsc
-
Returns the BSC-I score.
- getBump() - Method in class edu.cmu.tetrad.search.utils.Bes.Arrow
-
Returns the bump.
- getC() - Method in class edu.cmu.tetrad.search.utils.ShiftSearch
-
Getter for the field
c
. - getCases() - Method in class edu.cmu.tetrad.search.work_in_progress.MixtureModel
-
Getter for the field
cases
. - getCategories() - Method in class edu.cmu.tetrad.data.ContinuousDiscretizationSpec
-
Retrieves the list of categories for the discretized data.
- getCategories() - Method in class edu.cmu.tetrad.data.DiscreteDiscretizationSpec
-
Getter for the field
categories
. - getCategories() - Method in class edu.cmu.tetrad.data.DiscreteVariable
-
Getter for the field
categories
. - getCategory(int) - Method in class edu.cmu.tetrad.data.DiscreteVariable
-
getCategory.
- getCategory(Node, int) - Method in class edu.cmu.tetrad.bayes.BayesPm
-
Returns the index'th value for the given node.
- getCategory(Node, int) - Method in class edu.cmu.tetrad.bayes.Evidence
-
getCategory.
- getCategoryIndex(Node, String) - Method in class edu.cmu.tetrad.bayes.BayesPm
-
Returns the index of the given category for the given node.
- getCategoryIndex(String, String) - Method in class edu.cmu.tetrad.bayes.Evidence
-
getCategoryIndex.
- getCategoryIndex(String, String) - Method in class edu.cmu.tetrad.bayes.Proposition
-
getCategoryIndex.
- getCauseNode() - Method in class edu.cmu.tetrad.search.Cstar.Record
-
Returns the cause node associated with this record.
- getCell(int) - Method in class edu.cmu.tetrad.search.utils.AdTree
-
Returns the cell in the table for the given index.
- getCellIndex(int...) - Method in class edu.cmu.tetrad.search.utils.AdTree
-
Returns the index of the cell in the table for the given coordinates.
- getCellIndex(int[]) - Method in class edu.cmu.tetrad.util.MultiDimIntTable
-
Returns the index in the table for the cell with the given coordinates.
- getCellNumber() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.MeasurementSimulator
-
While the simulate() method is being executed, returns the cell number of the cell currently being simulated in a particular dish, zero indexed.
- getCellProb(int[]) - Method in class edu.cmu.tetrad.bayes.BayesImProbs
-
Calculates the probability in the given cell from the conditional probabilities in the BayesIm.
- getCellProb(int[]) - Method in class edu.cmu.tetrad.bayes.CellTableProbs
-
Calculates the probability of a cell corresponding to the given variable values.
- getCellProb(int[]) - Method in class edu.cmu.tetrad.bayes.DataSetProbs
-
getCellProb.
- getCellProb(int[]) - Method in class edu.cmu.tetrad.bayes.DirichletDataSetProbs
-
getCellProb.
- getCellProb(int[]) - Method in class edu.cmu.tetrad.bayes.IntAveDataSetProbs
-
getCellProb.
- getCellProb(int[]) - Method in class edu.cmu.tetrad.bayes.StoredCellProbs
-
getCellProb.
- getCellProb(int[]) - Method in class edu.cmu.tetrad.bayes.StoredCellProbsObs
-
getCellProb.
- getCenteringFrame() - Static method in class edu.cmu.tetrad.util.JOptionUtils
-
getCenteringFrame.
- getCenterX() - Method in class edu.cmu.tetrad.data.ContinuousVariable
-
Getter for the field
centerX
. - getCenterX() - Method in class edu.cmu.tetrad.data.DiscreteVariable
-
Getter for the field
centerX
. - getCenterX() - Method in class edu.cmu.tetrad.graph.GraphNode
-
Getter for the field
centerX
. - getCenterX() - Method in interface edu.cmu.tetrad.graph.Node
-
Returns the x coordinate of the center of this node.
- getCenterY() - Method in class edu.cmu.tetrad.data.ContinuousVariable
-
Getter for the field
centerY
. - getCenterY() - Method in class edu.cmu.tetrad.data.DiscreteVariable
-
Getter for the field
centerY
. - getCenterY() - Method in class edu.cmu.tetrad.graph.GraphNode
-
Getter for the field
centerY
. - getCenterY() - Method in interface edu.cmu.tetrad.graph.Node
-
Returns the y coordinate of the center of this node.
- getCfi() - Method in interface edu.cmu.tetrad.sem.ISemIm
-
getCfi.
- getCfi() - Method in class edu.cmu.tetrad.sem.SemIm
-
getCfi.
- getChangedEdges() - Method in class edu.cmu.tetrad.search.utils.MeekRules
-
Returns a complete set of all the edges that were changed in the course of orientation, as a map from the previous edges in the graph to the new, changed edges for the same node pair.
- getChildren(int) - Method in class edu.cmu.tetrad.search.utils.TeyssierScorer
-
Returns the children of a node v.
- getChildren(Node) - Method in class edu.cmu.tetrad.graph.Dag
-
Retrieves the children of a specified Node in the graph.
- getChildren(Node) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
getChildren.
- getChildren(Node) - Method in interface edu.cmu.tetrad.graph.Graph
-
getChildren.
- getChildren(Node) - Method in class edu.cmu.tetrad.graph.LagGraph
-
getChildren.
- getChildren(Node) - Method in class edu.cmu.tetrad.graph.SemGraph
-
getChildren.
- getChildren(Node) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Returns a list of children nodes for the given node.
- getChildren(Node) - Method in class edu.cmu.tetrad.search.utils.TeyssierScorer
-
Returns the children of a node v.
- getChipChipVariability() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.MeasurementSimulator
-
Returns the chip to chip variability.
- getChipChipVariability() - Method in class edu.cmu.tetrad.study.gene.tetradapp.model.MeasurementSimulatorParams
-
getChipChipVariability.
- getChisq() - Method in class edu.cmu.tetrad.bayes.BayesProperties
-
Call after calling getLikelihoodP().
- getChiSquare() - Method in class edu.cmu.tetrad.search.test.IndTestChiSquare
-
Returns the chi Square value.
- getChiSquare() - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsBeam.Score
-
getChiSquare.
- getChiSquare() - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsGes.Score
-
Returns the chi square.
- getChiSquare() - Method in class edu.cmu.tetrad.sem.DagScorer
-
getChiSquare.
- getChiSquare() - Method in interface edu.cmu.tetrad.sem.ISemIm
-
getChiSquare.
- getChiSquare() - Method in interface edu.cmu.tetrad.sem.Scorer
-
getChiSquare.
- getChiSquare() - Method in class edu.cmu.tetrad.sem.SemIm
-
getChiSquare.
- getClassifications() - Method in class edu.cmu.tetrad.classify.ClassifierBayesUpdaterDiscrete
-
Returns the classification for the target variable.
- getCliques(Node[], Graph) - Static method in class edu.cmu.tetrad.bayes.GraphTools
-
Get cliques in a decomposable graph.
- getCliqueTree(Node[], Map<Node, Set<Node>>, Map<Node, Set<Node>>) - Static method in class edu.cmu.tetrad.bayes.GraphTools
-
getCliqueTree.
- getCluster(int) - Method in class edu.cmu.tetrad.cluster.KMeans
-
getCluster.
- getCluster(int) - Method in class edu.cmu.tetrad.data.Clusters
-
getCluster.
- getClustering() - Method in class edu.cmu.tetrad.search.Mimbuild
-
Returns the clustering of measured variables, each of which is explained by a single latent.
- getClustering() - Method in class edu.cmu.tetrad.search.MimbuildTrek
-
The clustering used.
- getClusterName(int) - Method in class edu.cmu.tetrad.data.Clusters
-
getClusterName.
- getClusters() - Method in interface edu.cmu.tetrad.cluster.ClusteringAlgorithm
-
getClusters.
- getClusters() - Method in class edu.cmu.tetrad.cluster.KMeans
-
Getter for the field
clusters
. - getClusters() - Method in class edu.cmu.tetrad.data.Clusters
-
Getter for the field
clusters
. - getClusters() - Method in class edu.cmu.tetrad.search.Fofc
-
The clusters that are output by the algorithm from the last call to search().
- getClusters() - Method in class edu.cmu.tetrad.search.Ftfc
-
Returns clusters output by the algorithm from the last call to search().
- getCoef() - Method in class edu.cmu.tetrad.regression.RegressionResult
-
getCoef.
- getCoef() - Method in class edu.cmu.tetrad.sem.StandardizedSemIm.ParameterRange
-
Getter for the field
coef
. - getCoefficient() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.PolynomialTerm
-
Returns the coefficient.
- getCoefficientMatrix() - Method in class edu.cmu.tetrad.sem.LargeScaleSimulation
-
getCoefficientMatrix.
- getCoefficientParameter(Node, Node) - Method in class edu.cmu.tetrad.sem.SemPm
-
getCoefficientParameter.
- getCoefficientRange(Node, Node) - Method in class edu.cmu.tetrad.sem.StandardizedSemIm
-
getCoefficientRange.
- getCoefs() - Method in class edu.cmu.tetrad.regression.LogisticRegression.Result
-
The array of regression coefficients.
- getCollapsedVarGraph() - Method in class edu.cmu.tetrad.search.utils.TsUtils.VarResult
-
Getter for the field
collapsedVarGraph
. - getColliderPath() - Method in class edu.cmu.tetrad.search.utils.DiscriminatingPath
-
Returns the collider subpath of the discriminating path.
- getColliders() - Method in class edu.cmu.tetrad.search.work_in_progress.GraphChange
-
Return colliders
- getCollidersFromGraph(Node, Graph) - Static method in class edu.cmu.tetrad.graph.GraphSaveLoadUtils
-
getCollidersFromGraph.
- getColliderTriples() - Method in class edu.cmu.tetrad.search.utils.PcCommon
-
Getter for the field
colliderTriples
. - getColliderTriples() - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpc
-
Getter for the field
colliderTriples
. - getColliderTriples() - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpcFast
-
Getter for the field
colliderTriples
. - getColliderTriples() - Method in class edu.cmu.tetrad.search.work_in_progress.VcPc
-
Getter for the field
colliderTriples
. - getColliderTriples() - Method in class edu.cmu.tetrad.search.work_in_progress.VcPcAlt
-
Getter for the field
colliderTriples
. - getColliderTriples() - Method in class edu.cmu.tetrad.search.work_in_progress.VcPcFast
-
Getter for the field
colliderTriples
. - getColPerm() - Method in class edu.cmu.tetrad.search.utils.PermutationMatrixPair
-
Getter for the field
colPerm
. - getColumn(int) - Method in class edu.cmu.tetrad.util.Matrix
-
getColumn.
- getColumn(Node) - Method in class edu.cmu.tetrad.data.BoxDataSet
-
getColumn.
- getColumn(Node) - Method in interface edu.cmu.tetrad.data.DataSet
-
getColumn.
- getColumn(Node) - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
getColumn.
- getColumnToTooltip() - Method in class edu.cmu.tetrad.data.BoxDataSet
-
Getter for the field
columnToTooltip
. - getColumnToTooltip() - Method in interface edu.cmu.tetrad.data.DataSet
-
Returns the map of column names to tooltips.
- getColumnToTooltip() - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
Getter for the field
columnToTooltip
. - getComparisonGraph() - Method in class edu.cmu.tetrad.algcomparison.Comparison
-
Returns the ComparisonGraph instance.
- getComparisonGraph() - Method in class edu.cmu.tetrad.algcomparison.TimeoutComparison
-
The type of graph the results are compared to.
- getComparisonGraph(Graph) - Method in interface edu.cmu.tetrad.algcomparison.algorithm.Algorithm
-
Returns that graph that the result should be compared to.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.cluster.Bpc
-
Returns the comparison graph for the given true directed graph.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.cluster.Fofc
-
This method returns a comparison graph that is obtained from the given true directed graph.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.cluster.Ftfc
-
Retrieves the comparison graph for the given true directed graph.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.Dagma
-
Retrieves the comparison graph for the given true directed graph.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.DirectLingam
-
Returns a comparison graph based on the given true directed graph.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.Fask
-
Returns a comparison graph based on the true directed graph, if there is one.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.FaskOrig
-
Returns a comparison graph based on the true directed graph, if there is one.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.IcaLingam
-
Returns a comparison graph based on the true directed graph, if there is one.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.IcaLingD
-
Retrieves the comparison graph of the provided true directed graph.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.FirstInflection
-
Returns that graph that the result should be compared to.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.mixed.Mgm
-
Returns the comparison graph for the given true directed graph.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FaskConcatenated
-
Returns that graph that the result should be compared to.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FaskLofsConcatenated
-
Returns that graph that the result should be compared to.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FaskVote
-
Returns that graph that the result should be compared to.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FasLofs
-
Returns that graph that the result should be compared to.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FciIod
-
Returns that graph that the result should be compared to.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FgesConcatenated
-
Returns that graph that the result should be compared to.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.Images
-
Returns a comparison graph based on the true directed graph, if there is one.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.ImagesBoss
-
Returns that graph that the result should be compared to.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Boss
-
Returns that graph that the result should be compared to.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.BossLingam
-
Returns that graph that the result should be compared to.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Cpc
-
Retrieves the comparison graph for the given true directed graph.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Cstar
-
Returns that graph that the result should be compared to.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Fas
-
Returns that graph that the result should be compared to.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Fges
-
Returns that graph that the result should be compared to.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.FgesMb
-
Returns that graph that the result should be compared to.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.FgesMeasurement
-
Returns that graph that the result should be compared to.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Grasp
-
Returns that graph that the result should be compared to.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Pc
-
Returns that graph that the result should be compared to.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Pcd
-
Returns that graph that the result should be compared to.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.PcMb
-
Returns that graph that the result should be compared to.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.RestrictedBoss
-
Returns that graph that the result should be compared to.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.SingleGraphAlg
-
Returns that graph that the result should be compared to.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Sp
-
Returns that graph that the result should be compared to.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Bfci
-
Retrieves the comparison graph generated by applying the DAG-to-PAG transformation to the given true directed graph.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.BossDumb
-
Retrieves a comparison graph by transforming a true directed graph into a partially directed graph (PAG).
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.BossPag
-
Retrieves a comparison graph by transforming a true directed graph into a partially directed graph (PAG).
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Ccd
-
Retrieves the comparison graph for the given true directed graph.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Cfci
-
Retrieves the comparison graph by converting the given true directed graph into a partially directed graph (PAG) using the DAG to PAG transformation.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Fci
-
Returns the comparison graph based on the true directed graph, if there is one.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.FciMax
-
Returns the comparison graph transformed from the true directed graph.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Gfci
-
Retrieves the comparison graph by transforming the true directed graph (if there is one) into a partially directed acyclic graph (PAG).
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.GraspFci
-
Retrieves a comparison graph by transforming a true directed graph into a partially directed graph (PAG).
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.LvLite
-
Retrieves a comparison graph by transforming a true directed graph into a partially directed graph (PAG).
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.PagSampleRfci
-
Returns the comparison graph based on the true directed graph.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Rfci
-
Returns a comparison graph based on the provided true directed graph.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.RfciBsc
-
Retrieves the comparison graph from the true directed graph, if there is one.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.SpFci
-
Returns the comparison graph created by converting a true directed graph into a partially directed acyclic graph (PAG).
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.SvarFci
-
Returns a comparison graph based on the given true directed graph.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.SvarGfci
-
Returns a comparison graph based on the given true directed graph.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.other.FactorAnalysis
-
Returns an undirected graph used for comparison.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.other.Glasso
-
Retrieves a comparison graph for the given true directed graph.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.Eb
-
Returns a comparison graph based on the true directed graph, if there is one.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.FaskPw
-
Returns a comparison graph based on the provided true directed graph.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.R1
-
Returns a comparison graph based on the provided true directed graph.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.R2
-
Returns a comparison graph for the given true directed graph.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.R3
-
Generates a comparison graph based on the provided true directed graph.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.Rskew
-
Returns a comparison graph based on the true directed graph.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.RskewE
-
Returns a comparison graph based on the provided true directed graph.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.Skew
-
Returns a comparison graph based on the true directed graph, if there is one.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.SkewE
-
Returns a comparison graph based on the provided true directed graph.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.Tanh
-
Returns a comparison graph for the given true directed graph, if there is one.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.StabilitySelection
-
Returns that graph that the result should be compared to.
- getComparisonGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.algorithm.StARS
-
Returns that graph that the result should be compared to.
- getComparisonGraph(Graph, Parameters) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Returns a comparison graph based on the specified parameters.
- getConditionalProb(Proposition, Proposition) - Method in class edu.cmu.tetrad.bayes.BayesImProbs
-
Calculates the conditional probability of an assertion given a condition.
- getConditionalProb(Proposition, Proposition) - Method in class edu.cmu.tetrad.bayes.CellTableProbs
-
Calculates the conditional probability of an assertion given a condition.
- getConditionalProb(Proposition, Proposition) - Method in class edu.cmu.tetrad.bayes.DataSetProbs
-
Calculates the conditional probability of an assertion given a condition in a Bayes information model (Bayes IM).
- getConditionalProb(Proposition, Proposition) - Method in class edu.cmu.tetrad.bayes.DirichletDataSetProbs
-
Calculates the conditional probability of an assertion given a condition in the context of a Bayes IM.
- getConditionalProb(Proposition, Proposition) - Method in class edu.cmu.tetrad.bayes.IntAveDataSetProbs
-
Calculates the conditional probability of an assertion given a condition.
- getConditionalProb(Proposition, Proposition) - Method in class edu.cmu.tetrad.bayes.StoredCellProbs
-
Calculates the conditional probability of an assertion given a condition.
- getConditionalProb(Proposition, Proposition) - Method in class edu.cmu.tetrad.bayes.StoredCellProbsObs
-
Calculates the conditional probability of an assertion given a condition.
- getConditionalProbabilities(int[], int[], int[], int[]) - Method in class edu.cmu.tetrad.bayes.JunctionTreeAlgorithm
-
Get the joint probability of the nodes given their parents.
- getConditionalProbabilities(int, int[], int[]) - Method in class edu.cmu.tetrad.bayes.JunctionTreeAlgorithm
-
Get the conditional probability of a node for all of its values.
- getConditionalProbability(int, int, int[], int[]) - Method in class edu.cmu.tetrad.bayes.JunctionTreeAlgorithm
-
getConditionalProbability.
- getConditioningNodes() - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Returns the nodes that are possible Z1,...,Zn for X _||_ Y | Z1,...,Zn.
- getConditions() - Method in class edu.cmu.tetrad.search.utils.PossibleMConnectingPath
-
Getter for the field
conditions
. - getConnectivity() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ActiveLagGraph
-
getConnectivity.
- getConnectivity() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ManualLagGraph
-
getConnectivity.
- getConnectivity() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BasicLagGraph
-
Returns (a copy of) the sorted map from factors to lagged factors which internally encodes the update graph.
- getConnectivity() - Method in interface edu.cmu.tetrad.study.gene.tetrad.gene.history.LagGraph
-
Returns (a copy of) the sorted map from factors to lagged factors which internally encodes the update graph.
- getConstantColumns(DataSet) - Static method in class edu.cmu.tetrad.data.DataTransforms
-
getConstantColumns.
- getContinousData(DataSet) - Static method in class edu.pitt.csb.mgm.MixedUtils
-
getContinousData.
- getContinuousData() - Method in class edu.cmu.tetrad.data.MixedDataBox
-
Getter for the field
continuousData
. - getContinuousData(String) - Method in class edu.cmu.tetrad.data.Histogram
-
A convenience method to return the data for a particular named continuous variable.
- getContinuousDataSet(DataModel) - Static method in class edu.cmu.tetrad.data.SimpleDataLoader
-
Returns the datamodel case to DataSet if it is continuous.
- getContinuousInds(List<Node>) - Static method in class edu.pitt.csb.mgm.MixedUtils
-
getContinuousInds.
- getCoordinates(int) - Method in class edu.cmu.tetrad.util.MultiDimIntTable
-
Returns the array representing the combination of parent values for this row.
- getCorrectResult() - Method in class edu.cmu.tetrad.study.performance.ComparisonResult
-
Getter for the field
correctResult
. - getCorrelationMatrix() - Method in class edu.cmu.tetrad.data.BoxDataSet
-
getCorrelationMatrix.
- getCorrelationMatrix() - Method in interface edu.cmu.tetrad.data.DataSet
-
If this is a continuous data set, returns the correlation matrix.
- getCorrelationMatrix() - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
getCorrelationMatrix.
- getCorrelationMatrix(DataSet) - Static method in class edu.cmu.tetrad.data.SimpleDataLoader
-
getCorrelationMatrix.
- getCorrespondingNodeIndex(int, BayesIm) - Method in interface edu.cmu.tetrad.bayes.BayesIm
-
Returns the index of the given node in the given BayesIm.
- getCorrespondingNodeIndex(int, BayesIm) - Method in class edu.cmu.tetrad.bayes.DirichletBayesIm
-
Returns the index of the given node in the given BayesIm.
- getCorrespondingNodeIndex(int, BayesIm) - Method in class edu.cmu.tetrad.bayes.MlBayesIm
-
Returns the corresponding node index in the given BayesIm based on the node index in this BayesIm.
- getCorrespondingNodeIndex(int, BayesIm) - Method in class edu.cmu.tetrad.bayes.MlBayesImObs
-
Returns the index of the given node in the given BayesIm.
- getCorrespondingNodeIndex(int, BayesIm) - Method in class edu.cmu.tetrad.bayes.UpdatedBayesIm
-
Returns the index of the given node in the given BayesIm.
- getCount(int) - Method in class edu.cmu.tetrad.search.utils.AdTree
-
Returns the count of the cell in the table for the given index.
- getCount(int[]) - Method in class edu.cmu.tetrad.search.utils.AdTree
-
Returns the count of the cell in the table for the given coordinates.
- getCounts() - Method in class edu.cmu.tetrad.graph.GraphUtils.GraphComparison
-
Returns the counts.
- getCov() - Method in interface edu.cmu.tetrad.search.IndependenceTest
-
Returns the covariance matrix.
- getCov() - Method in class edu.cmu.tetrad.search.test.IndTestFisherZ
-
Returns the correlation matrix being analyzed.
- getCov() - Method in class edu.cmu.tetrad.search.test.IndTestFisherZConcatenateResiduals
-
Returns the covariance matrix for the data sets.
- getCov() - Method in class edu.cmu.tetrad.search.test.IndTestFisherZFisherPValue
-
Returns the covariance matrix of the concatenated data.
- getCov() - Method in class edu.cmu.tetrad.search.test.IndTestTrekSep
-
Returns the covariance matrix.
- getCov() - Method in class edu.cmu.tetrad.search.test.Kci
-
Returns the covariance matrix.
- getCov() - Method in class edu.cmu.tetrad.search.test.ScoreIndTest
-
Returns the covariance matrix.
- getCov() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestFisherZPercentIndependent
-
Retrieves the covariance matrix.
- getCov() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestFisherZRecursive
-
getCov.
- getCov() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestPositiveCorr
-
getCov.
- getCov() - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpc
-
getCov.
- getCov() - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpcFast
-
getCov.
- getCov(List<Integer>, int[], int[], DataSet, Matrix) - Static method in class edu.cmu.tetrad.search.score.SemBicScore
-
Computes the covariance matrix for the given subset of rows and columns in the provided data set.
- getCovAndCoefs(int, int[], Matrix, ICovarianceMatrix, boolean, boolean) - Static method in class edu.cmu.tetrad.search.score.SemBicScore
-
Returns the covariance matrix of the regression of the ith variable on its parents and the regression coefficients.
- getCovAndCoefs(int, int[], Matrix, ICovarianceMatrix, boolean, List<Integer>) - Static method in class edu.cmu.tetrad.search.score.SemBicScore
-
Returns the covariance matrix of the regression of the ith variable on its parents and the regression
- getCovarianceMatrix() - Method in class edu.cmu.tetrad.data.BoxDataSet
-
getCovarianceMatrix.
- getCovarianceMatrix() - Method in interface edu.cmu.tetrad.data.DataSet
-
If this is a continuous data set, returns the covariance matrix.
- getCovarianceMatrix() - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
getCovarianceMatrix.
- getCovarianceMatrix() - Method in class edu.cmu.tetrad.search.Bpc
-
Returns the wrapped covariance matrix.
- getCovarianceMatrix() - Method in class edu.cmu.tetrad.search.work_in_progress.IGFci
-
Retrieves the current covariance matrix object used by the IGFci algorithm.
- getCovarianceMatrix(DataModel, boolean) - Static method in class edu.cmu.tetrad.data.SimpleDataLoader
-
Returns the model cast to ICovarianceMatrix if already a covariance matric, or else returns the covariance matrix for a dataset.
- getCovarianceMatrix(DataSet, boolean) - Static method in class edu.cmu.tetrad.data.SimpleDataLoader
-
getCovarianceMatrix.
- getCovarianceParameter(Node, Node) - Method in class edu.cmu.tetrad.sem.SemPm
-
getCovarianceParameter.
- getCovarianceRange(Node, Node) - Method in class edu.cmu.tetrad.sem.StandardizedSemIm
-
getCovarianceRange.
- getCovariances() - Method in class edu.cmu.tetrad.search.score.GicScores
-
Returns the sample size.
- getCovariances() - Method in class edu.cmu.tetrad.search.score.PoissonPriorScore
-
Returns the covariance matrix.
- getCovariances() - Method in class edu.cmu.tetrad.search.score.SemBicScore
-
Returns the covariance matrix.
- getCovariances() - Method in class edu.cmu.tetrad.search.score.ZsbScore
-
Returns the covariance matrix.
- getCovariances() - Method in class edu.cmu.tetrad.search.work_in_progress.SemBicScoreDeterministic
-
Getter for the field
covariances
. - getCovMatrix() - Method in interface edu.cmu.tetrad.search.utils.TetradTest
-
getCovMatrix.
- getCovMatrix() - Method in class edu.cmu.tetrad.search.utils.TetradTestContinuous
-
getCovMatrix.
- getCovMatrix() - Method in class edu.cmu.tetrad.search.utils.TetradTestDiscrete
-
getCovMatrix.
- getCovMatrix() - Method in class edu.cmu.tetrad.search.utils.TetradTestPopulation
-
getCovMatrix.
- getCovMatrix() - Method in class edu.cmu.tetrad.search.work_in_progress.IGFci
-
Retrieves the current covariance matrix object used by the IGFci algorithm.
- getCovMatrix() - Method in class edu.cmu.tetrad.sem.DagScorer
-
Getter for the field
covMatrix
. - getCovMatrix() - Method in interface edu.cmu.tetrad.sem.Scorer
-
getCovMatrix.
- getCovMatrix() - Method in class edu.cmu.tetrad.sem.SemEstimator
-
Getter for the field
covMatrix
. - getCpcTripleType(Node, Node, Node, IndependenceTest, int, Graph) - Static method in class edu.cmu.tetrad.search.utils.GraphSearchUtils
-
getCpcTripleType.
- getCpdag() - Method in class edu.cmu.tetrad.search.Dagma
-
Retrieves the value of the cpdag field.
- getCpdag() - Method in class edu.cmu.tetrad.search.PermutationSearch
-
Retrieves the value of cpdag.
- getCptMapType() - Method in interface edu.cmu.tetrad.bayes.BayesIm
-
Retrieves the CptMapType for this instance.
- getCptMapType() - Method in class edu.cmu.tetrad.bayes.MlBayesIm
-
A flag indicating whether to use CptMaps or not.
- getCurrentOffset() - Method in class edu.cmu.tetrad.calculator.parser.ExpressionLexer
-
Getter for the field
currentOffset
. - getCutoff(Function, double, double, double) - Static method in class edu.cmu.tetrad.util.CutoffFinder
-
Assumes f is a positive symmetric function between x1 and x2 about 0.
- getD() - Method in class edu.pitt.csb.mgm.EigenDecomposition
-
Gets the block diagonal matrix D of the decomposition.
- getDag() - Method in interface edu.cmu.tetrad.bayes.BayesIm
-
$Description
- getDag() - Method in class edu.cmu.tetrad.bayes.BayesPm
-
Returns the DAG.
- getDag() - Method in class edu.cmu.tetrad.bayes.DirichletBayesIm
-
getDag.
- getDag() - Method in class edu.cmu.tetrad.bayes.MlBayesIm
-
getDag.
- getDag() - Method in class edu.cmu.tetrad.bayes.MlBayesImObs
-
getDag.
- getDag() - Method in class edu.cmu.tetrad.bayes.UpdatedBayesIm
-
getDag.
- getDag() - Method in class edu.cmu.tetrad.graph.RandomGraph.UniformGraphGenerator
-
Returns the parent matrix for the graph.
- getDag() - Method in class edu.cmu.tetrad.search.score.GraphScore
-
Returns a copy of the DAG being searched over.
- getDag() - Method in class edu.cmu.tetrad.search.utils.DagSepsets
-
Returns the DAG being analyzed.
- getDag() - Method in class edu.cmu.tetrad.search.utils.SepsetsGreedy
-
Retrieves the Directed Acyclic Graph (DAG) produced by the Sepsets algorithm.
- getDag() - Method in class edu.cmu.tetrad.search.utils.SepsetsMaxP
-
Retrieves the Directed Acyclic Graph (DAG) produced by the Sepset algorithm.
- getDag() - Method in class edu.cmu.tetrad.search.utils.SepsetsMinP
-
Retrieves the Directed Acyclic Graph (DAG) produced by the Sepsets algorithm.
- getDag(Graph) - Method in class edu.cmu.tetrad.util.PagCache
-
Returns the Directed Acyclic Graph (DAG) corresponding to the given graph if it is a PAG that has previously been converted from a DAG.
- getDag(List<Node>) - Method in class edu.cmu.tetrad.graph.RandomGraph.UniformGraphGenerator
-
Returns the parent matrix for the graph.
- getDag(List<Node>, Graph, boolean) - Static method in class edu.cmu.tetrad.graph.Paths
-
Generates a directed acyclic graph (DAG) based on the given list of nodes using Raskutti and Uhler's method.
- getDagsInCpdagMeek(Graph, Knowledge) - Static method in class edu.cmu.tetrad.graph.GraphTransforms
-
Retrieves a list of directed acyclic graphs (DAGs) within the given completed partially directed acyclic graph (CPDAG) using the Meek rules.
- getData() - Method in class edu.cmu.tetrad.data.Discretizer.Discretization
-
Retrieves the data associated with the discretization.
- getData() - Method in class edu.cmu.tetrad.data.DoubleDataBox
-
Getter for the field
data
. - getData() - Method in class edu.cmu.tetrad.data.IntDataBox
-
Getter for the field
data
. - getData() - Method in class edu.cmu.tetrad.data.TimeSeriesData
-
getData.
- getData() - Method in class edu.cmu.tetrad.search.CompositeIndependenceTest
-
getData.
- getData() - Method in interface edu.cmu.tetrad.search.IndependenceTest
-
getData.
- getData() - Method in class edu.cmu.tetrad.search.IndTestIod
- getData() - Method in class edu.cmu.tetrad.search.score.PoissonPriorScore
-
Returns the data set.
- getData() - Method in class edu.cmu.tetrad.search.score.SemBicScore
-
Returns the data model.
- getData() - Method in class edu.cmu.tetrad.search.test.IndTestChiSquare
-
Returns the data being analyzed.
- getData() - Method in class edu.cmu.tetrad.search.test.IndTestConditionalCorrelation
-
Returns the data set being analyzed.
- getData() - Method in class edu.cmu.tetrad.search.test.IndTestConditionalGaussianLrt
-
Returns the data.
- getData() - Method in class edu.cmu.tetrad.search.test.IndTestDegenerateGaussianLrt
-
Returns the dataset being analyzed.
- getData() - Method in class edu.cmu.tetrad.search.test.IndTestFisherZ
-
Returns the data set being analyzed.
- getData() - Method in class edu.cmu.tetrad.search.test.IndTestFisherZConcatenateResiduals
-
Returns the concatenated data.
- getData() - Method in class edu.cmu.tetrad.search.test.IndTestFisherZFisherPValue
-
Returns the concatenated data.
- getData() - Method in class edu.cmu.tetrad.search.test.IndTestGSquare
-
Returns the data.
- getData() - Method in class edu.cmu.tetrad.search.test.IndTestHsic
-
Returns the data set being analyzed.
- getData() - Method in class edu.cmu.tetrad.search.test.IndTestIndependenceFacts
-
Returns the facts supplied in the constructor, which constutite a data model.
- getData() - Method in class edu.cmu.tetrad.search.test.IndTestMulti
-
Retrieves the data set.
- getData() - Method in class edu.cmu.tetrad.search.test.IndTestMvpLrt
-
Returns the data.
- getData() - Method in class edu.cmu.tetrad.search.test.IndTestProbabilistic
-
Returns the data model associated with this instance.
- getData() - Method in class edu.cmu.tetrad.search.test.IndTestRegression
-
Returns the data used.
- getData() - Method in class edu.cmu.tetrad.search.test.IndTestTrekSep
-
Gets the data set used for the independence test.
- getData() - Method in class edu.cmu.tetrad.search.test.Kci
-
Returns The data model for the independence test.
- getData() - Method in class edu.cmu.tetrad.search.test.MsepTest
-
Returns the data set used for the test.
- getData() - Method in class edu.cmu.tetrad.search.test.ScoreIndTest
-
Retrieves the data model associated with this object.
- getData() - Method in class edu.cmu.tetrad.search.work_in_progress.DMSearch
-
Getter for the field
data
. - getData() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestCramerT
-
Retrieves the dataset used in the independence test.
- getData() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestFisherZPercentIndependent
-
Retrieves the data set from the method.
- getData() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestFisherZRecursive
-
getData.
- getData() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestMixedMultipleTTest
-
Returne the original data for the method.
- getData() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestMnlrLr
-
Returns the dataset.
- getData() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestMultinomialLogisticRegression
-
Retrieves the original data used for the independence test.
- getData() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestPositiveCorr
-
Retrieve the data set used in the independence test.
- getData() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestSepsetDci
-
getData.
- getData() - Method in class edu.cmu.tetrad.search.work_in_progress.MixtureModel
-
Getter for the field
data
. - getData() - Method in class edu.cmu.tetrad.search.work_in_progress.ProbabilisticMapIndependence
-
getData.
- getData() - Method in class edu.pitt.csb.mgm.IndTestMultinomialLogisticRegressionWald
-
Retrieves the original dataset used for the independence test.
- getDataBox() - Method in class edu.cmu.tetrad.data.BoxDataSet
-
Getter for the field
dataBox
. - getDataFile() - Method in class edu.cmu.tetrad.study.performance.ComparisonParameters
-
Getter for the field
dataFile
. - getDataModel() - Method in class edu.cmu.tetrad.search.score.SemBicScore
-
Returns the data model.
- getDataModel(int) - Method in class edu.cmu.tetrad.algcomparison.simulation.BayesNetSimulation
-
Returns the number of data sets to simulate.
- getDataModel(int) - Method in class edu.cmu.tetrad.algcomparison.simulation.ConditionalGaussianSimulation
-
Returns the number of data sets to simulate.
- getDataModel(int) - Method in class edu.cmu.tetrad.algcomparison.simulation.GeneralSemSimulation
-
Returns the data model at the specified index.
- getDataModel(int) - Method in class edu.cmu.tetrad.algcomparison.simulation.GeneralSemSimulationSpecial1
-
Returns the number of data sets to simulate.
- getDataModel(int) - Method in class edu.cmu.tetrad.algcomparison.simulation.LeeHastieSimulation
-
Returns the number of data sets to simulate.
- getDataModel(int) - Method in class edu.cmu.tetrad.algcomparison.simulation.LinearFisherModel
-
Returns the number of data sets to simulate.
- getDataModel(int) - Method in class edu.cmu.tetrad.algcomparison.simulation.LinearSineSimulation
-
Returns the number of data sets to simulate.
- getDataModel(int) - Method in class edu.cmu.tetrad.algcomparison.simulation.NLSemSimulation
-
Returns the number of data sets to simulate.
- getDataModel(int) - Method in class edu.cmu.tetrad.algcomparison.simulation.SemSimulation
-
Returns the data model at the specified index.
- getDataModel(int) - Method in class edu.cmu.tetrad.algcomparison.simulation.SemThenDiscretize
-
Returns the number of data sets to simulate.
- getDataModel(int) - Method in interface edu.cmu.tetrad.algcomparison.simulation.Simulation
-
Returns the number of data sets to simulate.
- getDataModel(int) - Method in class edu.cmu.tetrad.algcomparison.simulation.SingleDatasetSimulation
-
Retrieves the data model at the specified index from this simulation.
- getDataModel(int) - Method in class edu.cmu.tetrad.algcomparison.simulation.StandardizedSemSimulation
-
Returns the number of data sets to simulate.
- getDataModel(int) - Method in class edu.cmu.tetrad.algcomparison.simulation.TimeSeriesSemSimulation
-
Returns the number of data sets to simulate.
- getDataModel(int) - Method in class edu.cmu.tetrad.data.simulation.LoadContinuousDataAndGraphs
-
Returns the number of data sets to simulate.
- getDataModel(int) - Method in class edu.cmu.tetrad.data.simulation.LoadContinuousDataAndSingleGraph
-
Returns the number of data sets to simulate.
- getDataModel(int) - Method in class edu.cmu.tetrad.data.simulation.LoadContinuousDataSmithSim
-
Returns the number of data sets to simulate.
- getDataModel(int) - Method in class edu.cmu.tetrad.data.simulation.LoadDataAndGraphs
-
Returns the number of data sets to simulate.
- getDataModel(int) - Method in class edu.cmu.tetrad.data.simulation.LoadDataFromFileWithoutGraph
-
Returns the number of data sets to simulate.
- getDataSet() - Method in class edu.cmu.tetrad.bayes.CellTableProbs
-
Getter for the field
dataSet
. - getDataSet() - Method in class edu.cmu.tetrad.bayes.DataSetProbs
-
Getter for the field
dataSet
. - getDataSet() - Method in class edu.cmu.tetrad.bayes.DirichletDataSetProbs
-
Getter for the field
dataSet
. - getDataSet() - Method in class edu.cmu.tetrad.bayes.FactoredBayesStructuralEM
-
Getter for the field
dataSet
. - getDataSet() - Method in class edu.cmu.tetrad.bayes.IntAveDataSetProbs
-
Getter for the field
dataSet
. - getDataSet() - Method in class edu.cmu.tetrad.data.Histogram
-
Getter for the field
dataSet
. - getDataSet() - Method in class edu.cmu.tetrad.search.score.BdeScore
-
Returns the DataSet associated with this method.
- getDataSet() - Method in class edu.cmu.tetrad.search.score.BdeuScore
-
Retrieves the dataset associated with this BdeuScore object.
- getDataSet() - Method in class edu.cmu.tetrad.search.score.DiscreteBicScore
-
Returns the dataset.
- getDataSet() - Method in class edu.cmu.tetrad.search.score.DiscreteBicScoreAdTree
-
Returns the dataset.
- getDataSet() - Method in interface edu.cmu.tetrad.search.score.DiscreteScore
-
Returns the dataset.
- getDataSet() - Method in class edu.cmu.tetrad.search.score.GicScores
-
Returns the dataset.
- getDataSet() - Method in class edu.cmu.tetrad.search.score.IndTestScore
-
Returns the data set.
- getDataSet() - Method in interface edu.cmu.tetrad.search.utils.TetradTest
-
getDataSet.
- getDataSet() - Method in class edu.cmu.tetrad.search.utils.TetradTestContinuous
-
Getter for the field
dataSet
. - getDataSet() - Method in class edu.cmu.tetrad.search.utils.TetradTestDiscrete
-
Getter for the field
dataSet
. - getDataSet() - Method in class edu.cmu.tetrad.search.utils.TetradTestPopulation
-
getDataSet.
- getDataSet() - Method in class edu.cmu.tetrad.search.work_in_progress.ISBDeuScore
-
Retrieves a DataSet object.
- getDataSet() - Method in class edu.cmu.tetrad.search.work_in_progress.ISBicScore
-
Retrieves the data set from the current context.
- getDataSet() - Method in interface edu.cmu.tetrad.search.work_in_progress.ISScore
-
Retrieves the dataset used in the scoring calculations.
- getDataSet() - Method in class edu.cmu.tetrad.search.work_in_progress.SemBicScoreDeterministic
-
getDataSet.
- getDataSet() - Method in class edu.cmu.tetrad.sem.DagScorer
-
Getter for the field
dataSet
. - getDataSet() - Method in interface edu.cmu.tetrad.sem.Scorer
-
getDataSet.
- getDataSet() - Method in class edu.cmu.tetrad.sem.SemEstimator
-
Getter for the field
dataSet
. - getDataSet() - Method in class edu.cmu.tetrad.sem.SemEstimatorGibbs
-
Getter for the field
dataSet
. - getDataSets() - Method in interface edu.cmu.tetrad.search.IndependenceTest
-
Returns the datasets for this test
- getDataSets() - Method in class edu.cmu.tetrad.search.test.IndTestFisherZ
-
Returns the (singleton) list of datasets being analyzed.
- getDataSets() - Method in class edu.cmu.tetrad.search.test.IndTestTrekSep
-
Returns the data sets used for the independence test.
- getDataSets() - Method in class edu.cmu.tetrad.search.test.Kci
-
Returns a list consisting of the dataset for this test.
- getDataSets() - Method in class edu.cmu.tetrad.search.test.ScoreIndTest
- getDataSets() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestFisherZPercentIndependent
-
Retrieves the list of data sets.
- getDataSets() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestFisherZRecursive
-
Returns the datasets for this test
- getDataSets() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestPositiveCorr
-
Retrieves the data sets used in the independence test.
- getDataType() - Method in interface edu.cmu.tetrad.algcomparison.algorithm.Algorithm
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.cluster.Bpc
-
Retrieves the data type of the algorithm's output.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.cluster.Fofc
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.cluster.Ftfc
-
Returns the type of the data set that the search algorithm requires.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.Dagma
-
Retrieves the data type of the algorithm's output.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.DirectLingam
-
Returns the data type of the algorithm, which can be Continuous, Discrete, Mixed, Graph, Covariance, or All.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.Fask
-
Retrieves the data type of the dataset.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.FaskOrig
-
Retrieves the data type of the dataset.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.IcaLingam
-
Returns the data type of the given method.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.IcaLingD
-
Retrieves the data type of the algorithm.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.FirstInflection
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.mixed.Mgm
-
Retrieves the data type required by the search algorithm.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FaskConcatenated
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FaskLofsConcatenated
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FaskVote
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FasLofs
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FciIod
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FgesConcatenated
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.Images
-
Returns the type of the data set.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.ImagesBoss
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Boss
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.BossLingam
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Cpc
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Cstar
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Fas
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Fges
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.FgesMb
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.FgesMeasurement
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Grasp
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Pc
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Pcd
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.PcMb
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.RestrictedBoss
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.SingleGraphAlg
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Sp
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Bfci
-
Retrieves the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.BossDumb
-
Retrieves the data type required by the search algorithm.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.BossPag
-
Retrieves the data type required by the search algorithm.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Ccd
-
Retrieves the data type that the search requires.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Cfci
-
Retrieves the data type required by the search algorithm.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Fci
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.FciMax
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Gfci
-
Retrieves the data type required for the search algorithm.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.GraspFci
-
Retrieves the data type required by the search algorithm.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.LvLite
-
Retrieves the data type required by the search algorithm.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.PagSampleRfci
-
Retrieves the data type associated with the method.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Rfci
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.RfciBsc
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.SpFci
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.SvarFci
-
Retrieves the data type required by the search algorithm.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.SvarGfci
-
Returns the data type that this method requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.other.FactorAnalysis
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.other.Glasso
-
Retrieves the data type required by the search algorithm.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.Eb
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.FaskPw
-
Retrieves the data type of the dataset.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.R1
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.R2
-
Returns the data type required for the search, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.R3
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.Rskew
-
Retrieves the data type required by the algorithm.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.RskewE
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.Skew
-
Retrieves the data type of the current algorithm.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.SkewE
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.Tanh
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.StabilitySelection
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.algorithm.StARS
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.independence.BasisFunctionBicTest
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.independence.BdeuTest
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.independence.CciTest
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.independence.ChiSquare
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.independence.ConditionalGaussianLRT
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.independence.DegenerateGaussianLRT
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.independence.DiscreteBicTest
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.independence.FisherZ
-
Retrieves the data type of the independence test.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.independence.GICScoreTests
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.independence.GSquare
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in interface edu.cmu.tetrad.algcomparison.independence.IndependenceWrapper
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.independence.Kci
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.independence.MagSemBicTest
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.independence.Mnlrlrt
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.independence.MSeparationTest
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.independence.MultinomialLogisticRegressionWald
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.independence.Mvplrt
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.independence.PoissonPriorTest
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.independence.PositiveCorr
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.independence.ProbabilisticTest
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.independence.SemBicDTest
-
Retrieves the data type of the test dataset.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.independence.SemBicTest
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.score.BasisFunctionBicScore
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.score.BdeuScore
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.score.ConditionalGaussianBicScore
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.score.DegenerateGaussianBicScore
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.score.DiscreteBicScore
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.score.EbicScore
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.score.FisherZScore
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.score.GicScores
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.score.MagDgBicScore
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.score.MSeparationScore
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.score.MVPBicScore
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.score.PoissonPriorScore
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.score.PositiveCorrScore
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in interface edu.cmu.tetrad.algcomparison.score.ScoreWrapper
-
Returns the data type that the search requires, whether continuous, discrete, or mixed.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.score.SemBicScore
-
Returns the data type of the current score.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.score.SemBicScoreDeterministic
-
Retrieves the data type of the ScoreWrapper implementation.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.score.ZhangShenBoundScore
-
Returns the data type of the score.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.simulation.BayesNetSimulation
-
Returns the data type of the data.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.simulation.ConditionalGaussianSimulation
-
Returns the data type of the data.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.simulation.GeneralSemSimulation
-
Returns the data type of the data set.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.simulation.GeneralSemSimulationSpecial1
-
Returns the data type of the data.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.simulation.LeeHastieSimulation
-
Returns the data type of the data.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.simulation.LinearFisherModel
-
Returns the data type of the data.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.simulation.LinearSineSimulation
-
Returns the data type of the data.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.simulation.NLSemSimulation
-
Returns the data type of the data.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.simulation.SemSimulation
-
Returns the data type of the data set.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.simulation.SemThenDiscretize
-
Returns the data type of the data.
- getDataType() - Method in interface edu.cmu.tetrad.algcomparison.simulation.Simulation
-
Returns the data type of the data.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.simulation.SingleDatasetSimulation
-
Retrieves the data type of the data set.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.simulation.StandardizedSemSimulation
-
Returns the data type of the data.
- getDataType() - Method in class edu.cmu.tetrad.algcomparison.simulation.TimeSeriesSemSimulation
-
Returns the data type of the data.
- getDataType() - Method in class edu.cmu.tetrad.data.simulation.LoadContinuousDataAndGraphs
-
Returns the data type of the data.
- getDataType() - Method in class edu.cmu.tetrad.data.simulation.LoadContinuousDataAndSingleGraph
-
Returns the data type of the data.
- getDataType() - Method in class edu.cmu.tetrad.data.simulation.LoadContinuousDataSmithSim
-
Returns the data type of the data.
- getDataType() - Method in class edu.cmu.tetrad.data.simulation.LoadDataAndGraphs
-
Returns the data type of the data.
- getDataType() - Method in class edu.cmu.tetrad.data.simulation.LoadDataFromFileWithoutGraph
-
Returns the data type of the data.
- getDataType() - Method in class edu.cmu.tetrad.study.performance.ComparisonParameters
-
Getter for the field
dataType
. - getDatum(int, int) - Method in class edu.cmu.tetrad.data.TimeSeriesData
-
getDatum.
- getDecayRate() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BooleanGlassFunction
-
Getter for the field
decayRate
. - getDefaultValue() - Method in class edu.cmu.tetrad.util.ParamDescription
-
Getter for the field
defaultValue
. - getDefiniteNonadjacencies() - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpc
-
getDefiniteNonadjacencies.
- getDefiniteNonadjacencies() - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpcFast
-
getDefiniteNonadjacencies.
- getDefiniteNonadjacencies() - Method in class edu.cmu.tetrad.search.work_in_progress.VcPc
-
getDefiniteNonadjacencies.
- getDefiniteNonadjacencies() - Method in class edu.cmu.tetrad.search.work_in_progress.VcPcFast
-
getDefiniteNonadjacencies.
- getDegree() - Method in class edu.cmu.tetrad.graph.Dag
-
getDegree.
- getDegree() - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
getDegree.
- getDegree() - Method in interface edu.cmu.tetrad.graph.Graph
-
getDegree.
- getDegree() - Method in class edu.cmu.tetrad.graph.LagGraph
-
getDegree.
- getDegree() - Method in class edu.cmu.tetrad.graph.SemGraph
-
getDegree.
- getDegree() - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Returns the degree of the graph.
- getDegree(Graph) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Returns the maximum degree of a graph.
- getDegree(Node) - Method in class edu.cmu.tetrad.graph.Dag
-
Returns the degree of a given node in the graph.
- getDegree(Node) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
getDegree.
- getDegree(Node) - Method in interface edu.cmu.tetrad.graph.Graph
-
getDegree.
- getDegree(Node) - Method in class edu.cmu.tetrad.graph.LagGraph
-
getDegree.
- getDegree(Node) - Method in class edu.cmu.tetrad.graph.SemGraph
-
getDegree.
- getDegree(Node) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Retrieves the degree of a given node in the graph.
- getDemixedData() - Method in class edu.cmu.tetrad.search.work_in_progress.MixtureModel
-
getDemixedData.
- getDepth() - Method in class edu.cmu.tetrad.search.Cpc
-
Returns the depth of the search--that is, the maximum number of variables conditioned on in any conditional independence test.
- getDepth() - Method in class edu.cmu.tetrad.search.FaskOrig
-
Getter for the field
depth
. - getDepth() - Method in class edu.cmu.tetrad.search.Pc
-
Returns the current depth of search--that is, the maximum number of conditioning nodes for any conditional independence checked.
- getDepth() - Method in class edu.cmu.tetrad.search.Pcd
-
Getter for the field
depth
. - getDepth() - Method in class edu.cmu.tetrad.search.PcMb
-
Returns the depth of the search--that is, the maximum number of variables conditioned on in any conditional independence test.
- getDepth() - Method in class edu.cmu.tetrad.search.SvarFci
-
Returns the depth of search--i.e., the maximum number of conditioning variables for tests.
- getDepth() - Method in class edu.cmu.tetrad.search.utils.FgesOrienter
-
Getter for the field
depth
. - getDepth() - Method in class edu.cmu.tetrad.search.utils.PcCommon
-
Getter for the field
depth
. - getDepth() - Method in class edu.cmu.tetrad.search.utils.PossibleMsepFci
-
Getter for the field
depth
. - getDepth() - Method in class edu.cmu.tetrad.search.utils.R0R4StrategyScoreBased
-
Retrieves the depth value of the FciOrientDataExaminationStrategyScoreBased object.
- getDepth() - Method in class edu.cmu.tetrad.search.work_in_progress.Dci
-
Getter for the field
depth
. - getDepth() - Method in class edu.cmu.tetrad.search.work_in_progress.FasDci
-
Getter for the field
depth
. - getDepth() - Method in class edu.cmu.tetrad.search.work_in_progress.FasLofs
-
Getter for the field
depth
. - getDepth() - Method in class edu.cmu.tetrad.search.work_in_progress.Kpc
-
Getter for the field
depth
. - getDepth() - Method in class edu.cmu.tetrad.search.work_in_progress.Mmhc
-
Getter for the field
depth
. - getDepth() - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpc
-
Getter for the field
depth
. - getDepth() - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpcFast
-
Getter for the field
depth
. - getDepth() - Method in class edu.cmu.tetrad.search.work_in_progress.VcFas
-
Getter for the field
depth
. - getDepth() - Method in class edu.cmu.tetrad.search.work_in_progress.VcPc
-
Getter for the field
depth
. - getDepth() - Method in class edu.cmu.tetrad.search.work_in_progress.VcPcAlt
-
Getter for the field
depth
. - getDepth() - Method in class edu.cmu.tetrad.search.work_in_progress.VcPcFast
-
Getter for the field
depth
. - getDescendants(Node) - Method in class edu.cmu.tetrad.graph.Paths
-
Returns a list of all descendants of the given node.
- getDescendants(List<Node>) - Method in class edu.cmu.tetrad.graph.Paths
-
Retrieves the descendants of the given list of nodes.
- getDescendantsMap() - Method in class edu.cmu.tetrad.graph.Paths
-
Return a map from each node to its collection of descendants.
- getDescription() - Method in interface edu.cmu.tetrad.algcomparison.algorithm.Algorithm
-
Returns a short, one-line description of this algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.cluster.Bpc
-
Returns a short, one-line description of this algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.cluster.Fofc
-
Returns a short, one-line description of this algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.cluster.Ftfc
-
Returns a short, one-line description of this algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.Dagma
-
Returns the description of the DAGMA algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.DirectLingam
-
Returns a short, one-line description of this algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.Fask
-
Returns a short, one-line description of the FASK algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.FaskOrig
-
Returns a short, one-line description of the FASK algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.IcaLingam
-
Returns the description of the ICA-LiNGAM algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.IcaLingD
-
Retrieves the description of the algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.FirstInflection
-
Returns a short, one-line description of this algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.mixed.Mgm
-
Returns a short, one-line description of this algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FaskConcatenated
-
Returns a short, one-line description of this algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FaskLofsConcatenated
-
Returns a short, one-line description of this algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FaskVote
-
Returns a short, one-line description of this algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FasLofs
-
Returns a short, one-line description of this algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FciIod
-
Returns a short, one-line description of this algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FgesConcatenated
-
Returns a short, one-line description of this algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.Images
-
Returns the description of this method.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.ImagesBoss
-
Returns a short, one-line description of this algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Boss
-
Returns a short, one-line description of this algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.BossLingam
-
Returns a short, one-line description of this algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Cpc
-
Returns a short, one-line description of this algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Cstar
-
Returns a short, one-line description of this algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Fas
-
Returns a short, one-line description of this algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Fges
-
Returns a short, one-line description of this algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.FgesMb
-
Returns a short, one-line description of this algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.FgesMeasurement
-
Returns a short, one-line description of this algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Grasp
-
Returns a short, one-line description of this algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Pc
-
Returns a short, one-line description of this algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Pcd
-
Returns a short, one-line description of this algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.PcMb
-
Returns a short, one-line description of this algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.RestrictedBoss
-
Returns a short, one-line description of this algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.SingleGraphAlg
-
Returns a short, one-line description of this algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Sp
-
Returns a short, one-line description of this algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Bfci
-
Returns a description of the BFCI (Best-order FCI) algorithm using the description of its independence test and score.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.BossDumb
-
Returns a short, one-line description of this algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.BossPag
-
Returns a short, one-line description of this algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Ccd
-
Returns a short, one-line description of this algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Cfci
-
Returns the description of the algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Fci
-
Returns a short, one-line description of this algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.FciMax
-
Returns a description of the algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Gfci
-
Returns a description of the GFCI (Greedy Fast Causal Inference) algorithm using the description of the independence test and score associated with it.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.GraspFci
-
Returns a short, one-line description of this algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.LvLite
-
Returns a short, one-line description of this algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.PagSampleRfci
-
Returns a description of the method.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Rfci
-
Returns a short, one-line description of this algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.RfciBsc
-
Returns a short, one-line description of this algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.SpFci
-
Returns a short, one-line description of this algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.SvarFci
-
Returns the description of the method.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.SvarGfci
-
Returns a description of this method.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.other.FactorAnalysis
-
Returns a short, one-line description of this algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.other.Glasso
-
Returns a short, one-line description of this algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.Eb
-
Returns a description of the algorithm's orientation method.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.FaskPw
-
Returns a description of the RSkew algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.R1
-
Returns a description of this method.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.R2
-
Returns the description of the algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.R3
-
Returns a description of the method.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.Rskew
-
Returns a description of the algorithm being used, including the initial graph if available.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.RskewE
-
Returns the description of the current algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.Skew
-
Returns a description of the method.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.SkewE
-
Returns a description of the algorithm used.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.Tanh
-
Returns a description of the method.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.StabilitySelection
-
Returns a short, one-line description of this algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.algorithm.StARS
-
Returns a short, one-line description of this algorithm.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.graph.Cyclic
-
Returns a short, one-line description of this graph type.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.graph.ErdosRenyi
-
Returns a short, one-line description of this graph type.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.graph.RandomForward
-
Returns a short, one-line description of this graph type.
- getDescription() - Method in interface edu.cmu.tetrad.algcomparison.graph.RandomGraph
-
Returns a short, one-line description of this graph type.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.graph.RandomSingleFactorMim
-
Returns a short, one-line description of this graph type.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.graph.RandomTwoFactorMim
-
Returns a short, one-line description of this graph type.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.graph.ScaleFree
-
Returns a short, one-line description of this graph type.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.graph.SingleGraph
-
Returns a short, one-line description of this graph type.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.independence.BasisFunctionBicTest
-
Returns a short description of the test.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.independence.BdeuTest
-
Returns a short of this independence test.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.independence.CciTest
-
Returns a short of this independence test.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.independence.ChiSquare
-
Returns a short description of the Chi Square Test.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.independence.ConditionalGaussianLRT
-
Returns a short of this independence test.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.independence.DegenerateGaussianLRT
-
Returns a short of this independence test.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.independence.DiscreteBicTest
-
Returns a short of this independence test.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.independence.FisherZ
-
Retrieves the description of the Fisher Z test.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.independence.GICScoreTests
-
Returns a short of this independence test.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.independence.GSquare
-
Returns a short of this independence test.
- getDescription() - Method in interface edu.cmu.tetrad.algcomparison.independence.IndependenceWrapper
-
Returns a short of this independence test.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.independence.Kci
-
Returns a short of this independence test.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.independence.MagSemBicTest
-
Returns a short of this independence test.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.independence.Mnlrlrt
-
Returns a short of this independence test.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.independence.MSeparationTest
-
Returns a short of this independence test.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.independence.MultinomialLogisticRegressionWald
-
Returns a short of this independence test.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.independence.Mvplrt
-
Returns a short of this independence test.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.independence.PoissonPriorTest
-
Returns a short description of the test.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.independence.PositiveCorr
-
Returns a short of this independence test.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.independence.ProbabilisticTest
-
Returns a short of this independence test.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.independence.SemBicDTest
-
Returns a short description of this IndependenceTest.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.independence.SemBicTest
-
Returns a short description of the test.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.score.BasisFunctionBicScore
-
Returns a short of this independence test.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.score.BdeuScore
-
Returns a short of this independence test.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.score.ConditionalGaussianBicScore
-
Returns a short of this independence test.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.score.DegenerateGaussianBicScore
-
Returns a short of this independence test.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.score.DiscreteBicScore
-
Returns a short of this independence test.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.score.EbicScore
-
Returns a short of this independence test.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.score.FisherZScore
-
Returns a short of this independence test.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.score.GicScores
-
Returns a short of this independence test.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.score.MagDgBicScore
-
Returns a short of this independence test.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.score.MSeparationScore
-
Returns a short of this independence test.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.score.MVPBicScore
-
Returns a short of this independence test.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.score.PoissonPriorScore
-
Returns a short of this independence test.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.score.PositiveCorrScore
-
Returns a short of this independence test.
- getDescription() - Method in interface edu.cmu.tetrad.algcomparison.score.ScoreWrapper
-
Returns a short of this independence test.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.score.SemBicScore
-
Returns the description of the Sem BIC Score.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.score.SemBicScoreDeterministic
-
Returns a short description of the method.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.score.ZhangShenBoundScore
-
Returns the description of the Zhang-Shen Bound Score.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.simulation.BayesNetSimulation
-
Returns the description of the simulation.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.simulation.ConditionalGaussianSimulation
-
Returns the description of the simulation.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.simulation.GeneralSemSimulation
-
Returns the description of the simulation.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.simulation.GeneralSemSimulationSpecial1
-
getDescription.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.simulation.LeeHastieSimulation
-
Returns the description of the simulation.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.simulation.LinearFisherModel
-
Returns the description of the simulation.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.simulation.LinearSineSimulation
-
Returns the description of the simulation.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.simulation.NLSemSimulation
-
Returns the description of the simulation.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.simulation.SemSimulation
-
Returns the description of the simulation.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.simulation.SemThenDiscretize
-
Returns the description of the simulation.
- getDescription() - Method in interface edu.cmu.tetrad.algcomparison.simulation.Simulation
-
Returns the description of the simulation.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.simulation.SingleDatasetSimulation
-
Returns the description of the simulation.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.simulation.StandardizedSemSimulation
-
Returns the description of the simulation.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.simulation.TimeSeriesSemSimulation
-
Returns the description of the simulation.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.AdjacencyFn
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.AdjacencyFp
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.AdjacencyFpr
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.AdjacencyPrecision
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.AdjacencyRecall
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.AdjacencyTn
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.AdjacencyTp
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.AdjacencyTpr
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.AncestorF1
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.AncestorPrecision
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.AncestorRecall
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.AncestralPrecision
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.AncestralRecall
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.ArrowheadFn
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.ArrowheadFp
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.ArrowheadFpr
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.ArrowheadPrecision
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.ArrowheadPrecisionCommonEdges
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.ArrowheadRecall
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.ArrowheadRecallCommonEdges
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.ArrowheadTn
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.ArrowheadTp
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.AverageDegreeEst
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.AverageDegreeTrue
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.BicDiff
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.BicDiffPerRecord
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.BicEst
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.BicTrue
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.BidirectedEst
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.BidirectedFP
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.BidirectedLatentPrecision
-
Returns a short description of the statistic, which is the percentage of bidirected edges for which a latent confounder exists.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.BidirectedPrecision
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.BidirectedRecall
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.BidirectedTP
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.BidirectedTrue
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.CommonAncestorFalseNegativeBidirected
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.CommonAncestorFalsePositiveBidirected
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.CommonAncestorTruePositiveBidirected
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.CommonMeasuredAncestorRecallBidirected
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.CorrectSkeleton
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.DefiniteDirectedPathPrecision
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.DefiniteDirectedPathRecall
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.DensityEst
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.DensityTrue
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.ElapsedCpuTime
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.F1Adj
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.F1All
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.F1Arrow
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.FalseNegativesAdjacencies
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.FalsePositiveAdjacencies
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.FBetaAdj
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.FractionDependentUnderAlternative
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.FractionDependentUnderNull
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.GraphExactlyRight
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.IdaAverageSquaredDistance
-
Retrieves the description for this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.IdaCheckAvgMaxSquaredDiffEstTrue
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.IdaCheckAvgMinSquaredDiffEstTrue
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.IdaCheckAvgSquaredDifference
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.IdaMaximumSquaredDifference
-
Retrieves the description for this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.IdaMinimumSquaredDifference
-
Retrieves the description for this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.ImpliedArrowOrientationRatioEst
-
A Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.ImpliedArrowOrientationRatioEst2
-
A Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.ImpliedOrientationRatioEst
-
A Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.ImpliesLegalMag
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.KnowledgeSatisfied
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.LatentCommonAncestorFalseNegativeBidirected
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.LatentCommonAncestorFalsePositiveBidirected
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.LatentCommonAncestorRecallBidirected
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.LatentCommonAncestorTruePositiveBidirected
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.LegalPag
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.LocalGraphPrecision
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.LocalGraphRecall
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.MagCgScore
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.MagDgScore
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.MagSemScore
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckAdPasses
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckAdPassesBestOf10
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckAndersonDarlingP
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckAndersonDarlingPBestOf10
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckBinomialP
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckBinomialPBestOf10
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckKolmogorovSmirnoffP
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckKolmogorovSmirnoffPBestOf10
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckKsPasses
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckKsPassesBestOf10
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.MathewsCorrAdj
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.MathewsCorrArrow
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.Maximal
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.MaximalityCondition
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NoAlmostCyclicPathsCondition
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NoCyclicPathsCondition
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NodesInCyclesPrecision
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NodesInCyclesRecall
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NonancestorPrecision
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NonancestorRecall
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NoSemidirectedF1
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NoSemidirectedPrecision
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NoSemidirectedRecall
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumAmbiguousTriples
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumberArrowsEst
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumberArrowsNotInUnshieldedCollidersEst
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumberCollidersEst
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumberEdgesEst
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumberEdgesInCollidersEst
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumberEdgesInUnshieldedCollidersEst
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumberEdgesTrue
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumberOfEdgesEst
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumberOfEdgesTrue
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumberTailsEst
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumberUnshieldedCollidersEst
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumBidirectedBothNonancestorAncestor
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumBidirectedEdgesEst
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumBidirectedEdgesTrue
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumColoredDD
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumColoredNL
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumColoredPD
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumColoredPL
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCommonMeasuredAncestorBidirected
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCompatibleDefiniteDirectedEdgeAncestors
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCompatibleDirectedEdgeConfounded
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCompatibleDirectedEdgeNonAncestors
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCompatibleEdges
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCompatiblePossiblyDirectedEdgeAncestors
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCompatiblePossiblyDirectedEdgeNonAncestors
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCompatibleVisibleNonancestors
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCorrectBidirected
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCorrectDDAncestors
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCorrectPDAncestors
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCorrectVisibleEdges
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCoveringAdjacenciesInPag
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumDefinitelyDirected
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumDefinitelyNotDirectedPaths
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumDirectedEdgeAncestors
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumDirectedEdgeBnaMeasuredCounfounded
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumDirectedEdgeNoMeasureAncestors
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumDirectedEdgeNotAncNotRev
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumDirectedEdgeReversed
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumDirectedEdges
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumDirectedPathsEst
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumDirectedPathsTrue
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumDirectedShouldBePartiallyDirected
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumEdgeInEstInTrue
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumGenuineAdjacenciesInPag
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumIncorrectDDAncestors
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumIncorrectPDAncestors
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumIncorrectVisibleAncestors
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumLatentCommonAncestorBidirected
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumNondirectedEdges
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumParametersEst
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumPartiallyOrientedEdges
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumPossiblyDirected
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumUndirectedEdges
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumVisibleEdgeEst
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumVisibleEdges
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.NumVisibleEdgeTrue
-
Retrieves the description of the statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.OrientationPrecision
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.OrientationRecall
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.PagAdjacencyPrecision
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.PagAdjacencyRecall
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.ParameterColumn
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.PercentAmbiguous
-
Retrieves the description of the statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.PercentBidirectedEdges
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.ProportionSemidirectedPathsNotReversedEst
-
Retrieves the description of the statistic: Proportion of semi(X, Y) in estimated graph for which there is no semi(Y, X) in true graph.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.ProportionSemidirectedPathsNotReversedTrue
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.PvalueDistanceToAlpha
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.PvalueUniformityUnderNull
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.SemidirectedPathF1
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.SemidirectedPrecision
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.SemidirectedRecall
-
Returns a short one-line description of this statistic.
- getDescription() - Method in interface edu.cmu.tetrad.algcomparison.statistic.Statistic
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.StructuralHammingDistance
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.TailPrecision
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.TailRecall
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.TrueDagFalseNegativesArrows
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.TrueDagFalseNegativesTails
-
Retrieves a short one-line description of the statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.TrueDagFalsePositiveArrow
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.TrueDagFalsePositiveTails
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.TrueDagPrecisionArrow
-
Retrieves the description of the statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.TrueDagPrecisionTails
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.TrueDagRecallArrows
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.TrueDagRecallTails
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.TrueDagTruePositiveArrow
-
Retrieves a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.TrueDagTruePositiveDirectedPathNonancestor
-
Retrieves the description of the statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.TrueDagTruePositiveTails
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.TwoCycleFalseNegative
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.TwoCycleFalsePositive
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.TwoCyclePrecision
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.TwoCycleRecall
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.algcomparison.statistic.TwoCycleTruePositive
-
Returns a short one-line description of this statistic.
- getDescription() - Method in class edu.cmu.tetrad.data.simulation.LoadContinuousDataAndGraphs
-
Returns the description of the simulation.
- getDescription() - Method in class edu.cmu.tetrad.data.simulation.LoadContinuousDataAndSingleGraph
-
getDescription.
- getDescription() - Method in class edu.cmu.tetrad.data.simulation.LoadContinuousDataSmithSim
-
getDescription.
- getDescription() - Method in class edu.cmu.tetrad.data.simulation.LoadDataAndGraphs
-
Returns the description of the simulation.
- getDescription() - Method in class edu.cmu.tetrad.data.simulation.LoadDataFromFileWithoutGraph
-
Returns the description of the simulation.
- getDescription() - Method in class edu.cmu.tetrad.util.DefaultTetradLoggerConfig.DefaultEvent
-
getDescription.
- getDescription() - Method in interface edu.cmu.tetrad.util.TetradLoggerConfig.Event
-
Returns the description of the event.
- getDescriptorFromToken(String) - Method in class edu.cmu.tetrad.calculator.expression.ExpressionManager
-
getDescriptorFromToken.
- getDescriptors() - Method in class edu.cmu.tetrad.calculator.expression.ExpressionManager
-
Getter for the field
descriptors
. - getDeterminant() - Method in class edu.pitt.csb.mgm.EigenDecomposition
-
Computes the determinant of the matrix.
- getDeterminismThreshold() - Method in class edu.cmu.tetrad.search.work_in_progress.SemBicScoreDeterministic
-
Getter for the field
determinismThreshold
. - getDf() - Method in class edu.cmu.tetrad.search.test.ChiSquareTest.Result
-
Returns the adjusted degrees of freedom, or -1 if the degrees of freedom cannot be determined.
- getDf() - Method in class edu.cmu.tetrad.search.test.IndTestChiSquare
-
Returns the degrees of freedom associated with the most recent call of isIndependent.
- getDim(int) - Method in class edu.cmu.tetrad.util.MultiDimIntTable
-
Returns the dimension of the given variable.
- getDimension() - Method in class edu.cmu.tetrad.data.CorrelationMatrixOnTheFly
-
getDimension.
- getDimension() - Method in class edu.cmu.tetrad.data.CovarianceMatrix
-
getDimension.
- getDimension() - Method in class edu.cmu.tetrad.data.CovarianceMatrixOnTheFly
-
getDimension.
- getDimension() - Method in interface edu.cmu.tetrad.data.ICovarianceMatrix
-
Retrieves the dimension of the covariance matrix.
- getDimension(int) - Method in interface edu.cmu.tetrad.data.CellTable
-
Returns the dimension of the specified variable in the cell table.
- getDimension(int) - Method in class edu.cmu.tetrad.data.CellTableAdTree
-
Returns the dimensions of the given variable.
- getDimension(int) - Method in class edu.cmu.tetrad.data.CellTableCountSample
-
Returns the dimensions of the given variable.
- getDimension(int) - Method in class edu.cmu.tetrad.util.MultiDimIntTable
-
Returns the dimension of the given variable.
- getDir() - Method in class edu.cmu.tetrad.search.Cstar
-
getDir.
- getDirectedEdge(Node, Node) - Method in class edu.cmu.tetrad.graph.Dag
-
Returns the directed edge between the given nodes, if one exists in the graph.
- getDirectedEdge(Node, Node) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
getDirectedEdge.
- getDirectedEdge(Node, Node) - Method in interface edu.cmu.tetrad.graph.Graph
-
getDirectedEdge.
- getDirectedEdge(Node, Node) - Method in class edu.cmu.tetrad.graph.LagGraph
-
getDirectedEdge.
- getDirectedEdge(Node, Node) - Method in class edu.cmu.tetrad.graph.SemGraph
-
getDirectedEdge.
- getDirectedEdge(Node, Node) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Retrieves the directed edge connecting two nodes in the graph.
- getDirectedEdgeHead(Edge) - Static method in class edu.cmu.tetrad.graph.Edges
-
For a directed edge, returns the node adjacent to the arrow endpoint.
- getDirectedEdgeTail(Edge) - Static method in class edu.cmu.tetrad.graph.Edges
-
For a directed edge, returns the node adjacent to the null endpoint.
- getDiscLevels(DataSet) - Static method in class edu.pitt.csb.mgm.MixedUtils
-
getDiscLevels.
- getDiscreteData() - Method in class edu.cmu.tetrad.data.MixedDataBox
-
Getter for the field
discreteData
. - getDiscreteData(DataSet) - Static method in class edu.pitt.csb.mgm.MixedUtils
-
getDiscreteData.
- getDiscreteDataSet(DataModel) - Static method in class edu.cmu.tetrad.data.SimpleDataLoader
-
Returns the datamodel case to DataSet if it is discrete.
- getDiscreteInds(List<Node>) - Static method in class edu.pitt.csb.mgm.MixedUtils
-
getDiscreteInds.
- getDiscreteScore() - Method in class edu.cmu.tetrad.search.utils.FgesOrienter
-
getDiscreteScore.
- getDishBumpStDev() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.DishModel
-
Getter for the field
dishBumpStDev
. - getDishDishVariability() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.MeasurementSimulator
-
Returns the standard deviation in percentage of random dish bump values away from 100%.
- getDishDishVariability() - Method in class edu.cmu.tetrad.study.gene.tetradapp.model.MeasurementSimulatorParams
-
getDishDishVariability.
- getDishModel() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.GeneHistory
-
Gets the dish model.
- getDishNumber() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.DishModel
-
Returns the number of the getModel dish.
- getDishNumber() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.MeasurementSimulator
-
While the simulate() method is being executed, returns the dish number of the cell currently being simulated, zero indexed.
- getDisplayString(LaggedFactor) - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.DisplayNameHandler
-
Converts the given lagged factor into a display string.
- getDisplayString(String, int) - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.DisplayNameHandler
-
Uses the given factor and lag information to construct a display string.
- getDist() - Method in class edu.cmu.tetrad.sem.EmpiricalDistributionForExpression
-
getDist.
- getDistalEndpoint(Node) - Method in class edu.cmu.tetrad.graph.Edge
-
getDistalEndpoint.
- getDistalNode(Node) - Method in class edu.cmu.tetrad.graph.Edge
-
Traverses the edge in an undirected fashion--given one node along the edge, returns the node at the opposite end of the edge.
- getDistances(Graph, double[][], DataSet, CpdagParentDistancesFromTrue.DistanceType) - Method in class edu.cmu.tetrad.search.CpdagParentDistancesFromTrue
-
Calculates the distance matrix for the edges in the given CPDAG (outputCpdag).
- getDistribution() - Method in class edu.cmu.tetrad.sem.Parameter
-
Getter for the field
distribution
. - getDistribution(int) - Method in class edu.cmu.tetrad.search.work_in_progress.MixtureModel
-
Classifies a given case into a model, based on which model has the highest gamma value for that case.
- getDmStructure() - Method in class edu.cmu.tetrad.search.work_in_progress.DMSearch
-
Getter for the field
dmStructure
. - getDof() - Method in class edu.cmu.tetrad.bayes.BayesProperties
-
Call after calling getLikelihoodP().
- getDof() - Method in class edu.cmu.tetrad.search.score.ConditionalGaussianLikelihood.Ret
-
Returns the degrees of freedom.
- getDof() - Method in class edu.cmu.tetrad.search.test.IndTestDegenerateGaussianLrt.Ret
-
Returns the degrees of freedom.
- getDof() - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsBeam.Score
-
getDof.
- getDof() - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsGes.Score
-
Returns the degrees of freedom.
- getDof() - Method in class edu.cmu.tetrad.sem.DagScorer
-
getDof.
- getDof() - Method in interface edu.cmu.tetrad.sem.Scorer
-
getDof.
- getDof() - Method in class edu.cmu.tetrad.sem.SemPm
-
getDof.
- getDoF(int, int[]) - Method in class edu.cmu.tetrad.search.score.MvpLikelihood
-
Returns the score of the node at index i, given its parents.
- getDoF(int, int[]) - Method in class edu.cmu.tetrad.search.work_in_progress.MnlrLikelihood
-
Returns the degrees of freedom of a child given its parents.
- getDottedUnderlinedTriplesFromGraph(Node, Graph) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Retrieves the list of dotted and underlined triples from the given graph, with the specified node as the middle node.
- getDottedUnderlines() - Method in class edu.cmu.tetrad.graph.Dag
-
getDottedUnderlines.
- getDottedUnderlines() - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
getDottedUnderlines.
- getDottedUnderlines() - Method in interface edu.cmu.tetrad.graph.Graph
-
getDottedUnderlines.
- getDottedUnderlines() - Method in class edu.cmu.tetrad.graph.LagGraph
-
getDottedUnderlines.
- getDottedUnderlines() - Method in class edu.cmu.tetrad.graph.SemGraph
-
getDottedUnderlines.
- getDottedUnderlines() - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Returns a set of Triple objects representing dotted underlines.
- getDottedUnderlines() - Method in class edu.cmu.tetrad.graph.Underlines
-
getDottedUnderlines.
- getDouble(int, int) - Method in class edu.cmu.tetrad.data.BoxDataSet
-
getDouble.
- getDouble(int, int) - Method in interface edu.cmu.tetrad.data.DataSet
-
getDouble.
- getDouble(int, int) - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
getDouble.
- getDouble(String) - Method in class edu.cmu.tetrad.util.Parameters
-
Returns the double value of the given parameter, looking up its default in the ParamDescriptions map.
- getDouble(String, double) - Method in class edu.cmu.tetrad.util.Parameters
-
Returns the object value of the given parameter, using the given default.
- getDoubleData() - Method in class edu.cmu.tetrad.data.BoxDataSet
-
getDoubleData.
- getDoubleData() - Method in interface edu.cmu.tetrad.data.DataSet
-
getDoubleData.
- getDoubleData() - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
getDoubleData.
- getDoubleMissingValue() - Static method in class edu.cmu.tetrad.data.ContinuousVariable
-
getDoubleMissingValue.
- getDoubleValue(int, int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.BasicMatrix
-
Returns the value stored at element (r,c) as a double
- getDoubleValue(int, int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.LTMatrix
-
Returns the value stored at element (r,c) as a double
- getDoubleValue(int, int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.LTMatrixF
-
Returns the value stored at element (r,c) as a double
- getDoubleValue(int, int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.Matrix
-
Returns the value stored at element (r,c) as a double
- getDoubleValue(int, int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.MatrixF
-
Returns the value stored at element (r,c) as a double
- getEBICprior() - Method in class edu.cmu.tetrad.search.score.MvpLikelihood
-
getEBICprior.
- getEBICprior() - Method in class edu.cmu.tetrad.search.work_in_progress.MnlrLikelihood
-
getEBICprior.
- getEdge() - Method in class edu.cmu.tetrad.sem.StandardizedSemIm.ParameterRange
-
Getter for the field
edge
. - getEdge(int, int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.biolingua.Digraph
-
Returns the value of edge between nodes i and j
- getEdge(int, int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.BasicGraph
-
Returns the value of edge between nodes i and j
- getEdge(Node, Node) - Method in class edu.cmu.tetrad.graph.Dag
-
Retrieves the edge between two nodes in the graph.
- getEdge(Node, Node) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
getEdge.
- getEdge(Node, Node) - Method in interface edu.cmu.tetrad.graph.Graph
-
getEdge.
- getEdge(Node, Node) - Method in class edu.cmu.tetrad.graph.LagGraph
-
getEdge.
- getEdge(Node, Node) - Method in class edu.cmu.tetrad.graph.SemGraph
-
getEdge.
- getEdge(Node, Node) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Retrieves the edge between the given nodes.
- getEdgeCoef() - Method in class edu.cmu.tetrad.sem.DagScorer
-
Getter for the field
edgeCoef
. - getEdgeCoef() - Method in interface edu.cmu.tetrad.sem.Scorer
-
getEdgeCoef.
- getEdgeCoef() - Method in class edu.cmu.tetrad.sem.SemIm
-
Getter for the field
edgeCoef
. - getEdgeCoef(Edge) - Method in class edu.cmu.tetrad.sem.SemIm
-
Getter for the field
edgeCoef
. - getEdgeCoef(Node, Node) - Method in class edu.cmu.tetrad.sem.SemIm
-
Getter for the field
edgeCoef
. - getEdgeCoef(Node, Node) - Method in class edu.cmu.tetrad.sem.StandardizedSemIm
-
Getter for the field
edgeCoef
. - getEdgeParams(Node, Node, GeneralizedSemPm) - Static method in class edu.pitt.csb.mgm.MixedUtils
-
getEdgeParams.
- getEdgeParams(String, String, GeneralizedSemPm) - Static method in class edu.pitt.csb.mgm.MixedUtils
-
getEdgeParams.
- getEdges() - Method in class edu.cmu.tetrad.data.KnowledgeGroup
-
getEdges.
- getEdges() - Method in class edu.cmu.tetrad.graph.Dag
-
getEdges.
- getEdges() - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
getEdges.
- getEdges() - Method in interface edu.cmu.tetrad.graph.Graph
-
getEdges.
- getEdges() - Method in class edu.cmu.tetrad.graph.LagGraph
-
getEdges.
- getEdges() - Method in class edu.cmu.tetrad.graph.SemGraph
-
getEdges.
- getEdges() - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Retrieves the set of edges in the graph.
- getEdges() - Method in class edu.cmu.tetrad.search.utils.TeyssierScorer
-
Returns a list of edges for the current graph as a list of ordered pairs.
- getEdges() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.biolingua.Digraph
-
Returns the edge matrix.
- getEdges(Node) - Method in class edu.cmu.tetrad.graph.Dag
-
Returns a list of edges connected to the given node.
- getEdges(Node) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
getEdges.
- getEdges(Node) - Method in interface edu.cmu.tetrad.graph.Graph
-
getEdges.
- getEdges(Node) - Method in class edu.cmu.tetrad.graph.LagGraph
-
getEdges.
- getEdges(Node) - Method in class edu.cmu.tetrad.graph.SemGraph
-
getEdges.
- getEdges(Node) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Returns the list of edges connected to the specified node.
- getEdges(Node, Node) - Method in class edu.cmu.tetrad.graph.Dag
-
Returns a list of edges between the specified nodes in the graph.
- getEdges(Node, Node) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
getEdges.
- getEdges(Node, Node) - Method in interface edu.cmu.tetrad.graph.Graph
-
getEdges.
- getEdges(Node, Node) - Method in class edu.cmu.tetrad.graph.LagGraph
-
getEdges.
- getEdges(Node, Node) - Method in class edu.cmu.tetrad.graph.SemGraph
-
getEdges.
- getEdges(Node, Node) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Finds all edges between two nodes.
- getEdgesAdded() - Method in class edu.cmu.tetrad.graph.GraphUtils.GraphComparison
-
Returns the edges added.
- getEdgesRemoved() - Method in class edu.cmu.tetrad.graph.GraphUtils.GraphComparison
-
Returns the edges removed.
- getEdgeType() - Method in class edu.cmu.tetrad.graph.EdgeTypeProbability
-
Getter for the field
edgeType
. - getEdgeTypeProbabilities() - Method in class edu.cmu.tetrad.graph.Edge
-
Getter for the field
edgeTypeProbabilities
. - getEdgewiseComparisonString(Graph, Graph) - Static method in class edu.cmu.tetrad.algcomparison.CompareTwoGraphs
-
Returns an edgewise comparison of two graphs.
- getEdgewiseComparisonString(String, Graph, String, Graph) - Static method in class edu.cmu.tetrad.search.utils.GraphSearchUtils
-
getEdgewiseComparisonString.
- getEffectNode() - Method in class edu.cmu.tetrad.search.Cstar.Record
-
Retrieves the effect node of the record.
- getEffects() - Method in class edu.cmu.tetrad.search.Ida.NodeEffects
-
Returns the effects.
- getEigenvector(int) - Method in class edu.pitt.csb.mgm.EigenDecomposition
-
Gets a copy of the ith eigenvector of the original matrix.
- getElapsed() - Method in class edu.cmu.tetrad.study.performance.ComparisonResult
-
Getter for the field
elapsed
. - getElapsedTime() - Method in class edu.cmu.tetrad.search.Cfci
-
Returns the elapsed time to the search.
- getElapsedTime() - Method in class edu.cmu.tetrad.search.Cpc
-
Returns the elapsed time of search in milliseconds, after
search()
has been run. - getElapsedTime() - Method in class edu.cmu.tetrad.search.Fas
-
Returns the elapsed time of the search.
- getElapsedTime() - Method in class edu.cmu.tetrad.search.Fasd
-
Returns the elapsed time of the method execution.
- getElapsedTime() - Method in class edu.cmu.tetrad.search.FaskOrig
-
getElapsedTime.
- getElapsedTime() - Method in class edu.cmu.tetrad.search.Fci
-
Returns the elapsed time of search.
- getElapsedTime() - Method in class edu.cmu.tetrad.search.FciMax
-
Returns the elapsed time of search.
- getElapsedTime() - Method in class edu.cmu.tetrad.search.Fges
-
Returns the elapsed time of the search.
- getElapsedTime() - Method in class edu.cmu.tetrad.search.FgesMb
-
Returns the elapsed time of the search.
- getElapsedTime() - Method in interface edu.cmu.tetrad.search.IFas
-
Returns the elapsed time of the search.
- getElapsedTime() - Method in class edu.cmu.tetrad.search.Pc
-
Returns the elapsed time of the search, in milliseconds.
- getElapsedTime() - Method in class edu.cmu.tetrad.search.Pcd
-
Returns the elapsed time in milliseconds since the start of the method.
- getElapsedTime() - Method in class edu.cmu.tetrad.search.PcMb
-
Returns the elapsed time of the most recent search.
- getElapsedTime() - Method in class edu.cmu.tetrad.search.Rfci
-
Returns the elapsed time of the search.
- getElapsedTime() - Method in class edu.cmu.tetrad.search.SvarFas
- getElapsedTime() - Method in class edu.cmu.tetrad.search.SvarFges
-
Returns the elapsed time of the search.
- getElapsedTime() - Method in class edu.cmu.tetrad.search.utils.FgesOrienter
-
Getter for the field
elapsedTime
. - getElapsedTime() - Method in class edu.cmu.tetrad.search.utils.PcCommon
-
Getter for the field
elapsedTime
. - getElapsedTime() - Method in class edu.cmu.tetrad.search.work_in_progress.Dci
-
Getter for the field
elapsedTime
. - getElapsedTime() - Method in class edu.cmu.tetrad.search.work_in_progress.FasFdr
-
Returns the elapsed time of the search.
- getElapsedTime() - Method in class edu.cmu.tetrad.search.work_in_progress.FasLofs
-
getElapsedTime.
- getElapsedTime() - Method in class edu.cmu.tetrad.search.work_in_progress.ISFges
-
Returns the elapsed time.
- getElapsedTime() - Method in class edu.cmu.tetrad.search.work_in_progress.Kpc
-
Getter for the field
elapsedTime
. - getElapsedTime() - Method in class edu.cmu.tetrad.search.work_in_progress.Mmhc
-
getElapsedTime.
- getElapsedTime() - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpc
-
Getter for the field
elapsedTime
. - getElapsedTime() - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpcFast
-
Getter for the field
elapsedTime
. - getElapsedTime() - Method in class edu.cmu.tetrad.search.work_in_progress.VcPc
-
Getter for the field
elapsedTime
. - getElapsedTime() - Method in class edu.cmu.tetrad.search.work_in_progress.VcPcAlt
-
Getter for the field
elapsedTime
. - getElapsedTime() - Method in class edu.cmu.tetrad.search.work_in_progress.VcPcFast
-
Getter for the field
elapsedTime
. - getElapsedTime() - Method in class edu.pitt.csb.mgm.Mgm
-
Return time of execution for learning.
- getElapsedTime(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.ExternalAlgorithm
-
getElapsedTime.
- getElement(BayesIm) - Static method in class edu.cmu.tetrad.bayes.BayesXmlRenderer
-
Private constructor to prevent instantiation.
- getElement(SemIm) - Static method in class edu.cmu.tetrad.sem.SemXmlRenderer
-
Converts a Sem Im into xml.
- getEndpoint(Node, Node) - Method in class edu.cmu.tetrad.graph.Dag
-
Returns the endpoint between two nodes in the graph.
- getEndpoint(Node, Node) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
getEndpoint.
- getEndpoint(Node, Node) - Method in interface edu.cmu.tetrad.graph.Graph
-
getEndpoint.
- getEndpoint(Node, Node) - Method in class edu.cmu.tetrad.graph.LagGraph
-
getEndpoint.
- getEndpoint(Node, Node) - Method in class edu.cmu.tetrad.graph.SemGraph
-
getEndpoint.
- getEndpoint(Node, Node) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Returns the endpoint between two nodes in the graph.
- getEndpoint1() - Method in class edu.cmu.tetrad.graph.Edge
-
Getter for the field
endpoint1
. - getEndpoint2() - Method in class edu.cmu.tetrad.graph.Edge
-
Getter for the field
endpoint2
. - getEqualFrequencyBreakPoints(double[], int) - Static method in class edu.cmu.tetrad.data.Discretizer
-
getEqualFrequencyBreakPoints.
- getErrCovar() - Method in class edu.cmu.tetrad.sem.SemIm
-
Getter for the field
errCovar
. - getErrCovar(Node, Node) - Method in class edu.cmu.tetrad.sem.SemIm
-
Getter for the field
errCovar
. - getErrorCovar() - Method in class edu.cmu.tetrad.sem.DagScorer
-
Getter for the field
errorCovar
. - getErrorCovar() - Method in interface edu.cmu.tetrad.sem.Scorer
-
getErrorCovar.
- getErrorCovariance(Node, Node) - Method in class edu.cmu.tetrad.sem.StandardizedSemIm
-
getErrorCovariance.
- getErrorDistribution(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BooleanGlassFunction
-
Returns the error distribution for the
factor
'th factor. - getErrorDistribution(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.LinearFunction
-
Returns the error distribution for the
factor
'th factor. - getErrorDistribution(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.PolynomialFunction
-
Returns the error distribution for the
factor
'th factor. - getErrorNode(Node) - Method in class edu.cmu.tetrad.graph.SemGraph
-
getErrorNode.
- getErrorNode(Node) - Method in class edu.cmu.tetrad.sem.GeneralizedSemPm
-
Retrieves the error node associated with the given node.
- getErrorNodes() - Method in class edu.cmu.tetrad.sem.GeneralizedSemPm
-
Returns the list of exogenous variableNodes.
- getErrorNodes() - Method in class edu.cmu.tetrad.sem.StandardizedSemIm
-
getErrorNodes.
- getErrorsTemplate() - Method in class edu.cmu.tetrad.sem.GeneralizedSemPm
-
Returns the error template string.
- getErrorVariance(Node) - Method in class edu.cmu.tetrad.sem.StandardizedSemIm
-
getErrorVariance.
- getErrVar(Node) - Method in class edu.cmu.tetrad.sem.SemIm
-
getErrVar.
- getEss(ICovarianceMatrix) - Static method in class edu.cmu.tetrad.data.DataUtils
-
Returns the equivalent sample size, assuming all units are equally correlated and all unit variances are equal.
- getEstimatedIm() - Method in class edu.cmu.tetrad.bayes.EmBayesEstimator
-
Getter for the field
estimatedIm
. - getEstimatedSem() - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsBeam.Score
-
getEstimatedSem.
- getEstimatedSem() - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsGes.Score
-
Returns the estimated SEM IM.
- getEstimatedSem() - Method in class edu.cmu.tetrad.sem.SemEstimator
-
Getter for the field
estimatedSem
. - getEstimatedSem() - Method in class edu.cmu.tetrad.sem.SemEstimatorGibbs
-
Getter for the field
estimatedSem
. - getEstimator() - Method in class edu.cmu.tetrad.bayes.EmBayesProperties
-
Getter for the field
estimator
. - getEstSem() - Method in class edu.cmu.tetrad.sem.DagScorer
-
getEstSem.
- getEstSem() - Method in interface edu.cmu.tetrad.sem.Scorer
-
getEstSem.
- getEvidence() - Method in class edu.cmu.tetrad.bayes.ApproximateUpdater
-
Getter for the field
evidence
. - getEvidence() - Method in class edu.cmu.tetrad.bayes.CptInvariantUpdater
-
Getter for the field
evidence
. - getEvidence() - Method in class edu.cmu.tetrad.bayes.Identifiability
-
Getter for the field
evidence
. - getEvidence() - Method in class edu.cmu.tetrad.bayes.JunctionTreeUpdater
-
Returns the manipulation that was used to manipulate the Bayes IM.
- getEvidence() - Method in interface edu.cmu.tetrad.bayes.ManipulatingBayesUpdater
-
Returns the manipulation that was used to manipulate the Bayes IM.
- getEvidence() - Method in class edu.cmu.tetrad.bayes.RowSummingExactUpdater
-
Getter for the field
evidence
. - getEvidence() - Method in class edu.cmu.tetrad.bayes.UpdatedBayesIm
-
Getter for the field
evidence
. - getEvidence() - Method in class edu.cmu.tetrad.sem.SemUpdater
-
Getter for the field
evidence
. - getExampleNonsingular(ICovarianceMatrix, int) - Static method in class edu.cmu.tetrad.data.DataUtils
-
getExampleNonsingular.
- getExogenous(Node) - Method in class edu.cmu.tetrad.graph.SemGraph
-
getExogenous.
- getExpression() - Method in class edu.cmu.tetrad.calculator.expression.Equation
-
Getter for the field
expression
. - getExpressions() - Method in class edu.cmu.tetrad.calculator.expression.ConstantExpression
-
getExpressions.
- getExpressions() - Method in class edu.cmu.tetrad.calculator.expression.EvaluationExpression
-
getExpressions.
- getExpressions() - Method in interface edu.cmu.tetrad.calculator.expression.Expression
-
getExpressions.
- getExpressions() - Method in class edu.cmu.tetrad.calculator.expression.VariableExpression
-
getExpressions.
- getExternalGraph() - Method in class edu.cmu.tetrad.search.SvarFges
-
Getter for the field
externalGraph
. - getExternalGraph() - Method in class edu.cmu.tetrad.search.utils.FgesOrienter
-
Getter for the field
externalGraph
. - getFact() - Method in class edu.cmu.tetrad.search.test.IndependenceResult
-
Returns the independence fact being stored.
- getFactor() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.AbstractNbComponent
-
Returns the factor.
- getFactor() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.LaggedEdge
-
Getter for the field
factor
. - getFactor() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.LaggedFactor
-
Returns the name of the lagged factor.
- getFactor(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.IndexedConnectivity
-
Returns the (string name of) the factor at the given index.
- getFactor(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.IndexedLagGraph
-
Returns the (string name of) the factor at the given index.
- getFactors() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ActiveLagGraph
-
getFactors.
- getFactors() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ManualLagGraph
-
getFactors.
- getFactors() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BasicLagGraph
-
Returns a SortedSet of the factors in this graph.
- getFactors() - Method in interface edu.cmu.tetrad.study.gene.tetrad.gene.history.LagGraph
-
Returns a SortedSet of the factors in this graph.
- getFacts() - Method in class edu.cmu.tetrad.data.IndependenceFacts
-
getFacts.
- getFilename() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.StoredLagGraphParams
-
Returns the stored file.
- getFinalStrategyUsingDsep(Graph, Knowledge, boolean) - Static method in class edu.cmu.tetrad.search.utils.DagToPag
-
Returns the final strategy for finding a PAG using D-SEP.
- getFirst() - Method in class edu.cmu.tetrad.graph.NodePair
-
Getter for the field
first
. - getFirst() - Method in class edu.cmu.tetrad.graph.OrderedPair
-
Getter for the field
first
. - getFirstEdge() - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsBeam.Move
-
Getter for the field
edge
. - getFirstLayer() - Method in class edu.cmu.tetrad.search.utils.GrowShrinkTree
-
getFirstLayer.
- getFirstStepStored() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.MeasurementSimulator
-
Returns the index of the first step to actually be stored out.
- getFirstStepStored() - Method in class edu.cmu.tetrad.study.gene.tetradapp.model.MeasurementSimulatorParams
-
getFirstStepStored.
- getFixedParameters() - Method in interface edu.cmu.tetrad.sem.ISemIm
-
getFixedParameters.
- getFixedParameters() - Method in class edu.cmu.tetrad.sem.SemIm
-
Getter for the field
fixedParameters
. - getFml() - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsBeam.Score
-
getFml.
- getFml() - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsGes.Score
-
Returns the Fml.
- getFml() - Method in class edu.cmu.tetrad.sem.DagScorer
-
The value of the maximum likelihood function for the getModel the model (Bollen 107).
- getFml() - Method in interface edu.cmu.tetrad.sem.Scorer
-
getFml.
- getFn() - Method in class edu.cmu.tetrad.algcomparison.statistic.utils.AdjacencyConfusion
-
Returns the false negative count.
- getFn() - Method in class edu.cmu.tetrad.algcomparison.statistic.utils.ArrowConfusion
-
False negatives.
- getFn() - Method in class edu.cmu.tetrad.algcomparison.statistic.utils.BidirectedConfusion
-
Returns the number of false negatives.
- getFn() - Method in class edu.cmu.tetrad.algcomparison.statistic.utils.LocalGraphConfusion
-
Returns the false negatives (FN) value of the LocalGraphConfusion object.
- getFn() - Method in class edu.cmu.tetrad.algcomparison.statistic.utils.OrientationConfusion
-
Getter for the field
fn
. - getFnc() - Method in class edu.cmu.tetrad.algcomparison.statistic.utils.ArrowConfusion
-
False negatives for common edges.
- getForbidden() - Method in class edu.cmu.tetrad.search.utils.GrowShrinkTree
-
Getter for the field
forbidden
. - getFp() - Method in class edu.cmu.tetrad.algcomparison.statistic.utils.AdjacencyConfusion
-
Returns the false positive count.
- getFp() - Method in class edu.cmu.tetrad.algcomparison.statistic.utils.ArrowConfusion
-
False positives.
- getFp() - Method in class edu.cmu.tetrad.algcomparison.statistic.utils.BidirectedConfusion
-
Returns the number of false positives.
- getFp() - Method in class edu.cmu.tetrad.algcomparison.statistic.utils.LocalGraphConfusion
-
Retrieves the value of false positives (FP) from the LocalGraphConfusion object.
- getFp() - Method in class edu.cmu.tetrad.algcomparison.statistic.utils.OrientationConfusion
-
Getter for the field
fp
. - getFpc() - Method in class edu.cmu.tetrad.algcomparison.statistic.utils.ArrowConfusion
-
False positives for common edges.
- getFractionDependent(boolean) - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Returns the fraction of dependent judgments for the given list of results.
- getFractionDependent(List<IndependenceResult>) - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Calculates the fraction of dependent results.
- getFreeParameters() - Method in interface edu.cmu.tetrad.sem.ISemIm
-
getFreeParameters.
- getFreeParameters() - Method in class edu.cmu.tetrad.sem.SemIm
-
Getter for the field
freeParameters
. - getFreeParameters() - Method in class edu.cmu.tetrad.sem.SemPm
-
getFreeParameters.
- getFreeParamValues() - Method in interface edu.cmu.tetrad.sem.ISemIm
-
getFreeParamValues.
- getFreeParamValues() - Method in class edu.cmu.tetrad.sem.SemIm
-
getFreeParamValues.
- getFrequencies() - Method in class edu.cmu.tetrad.data.Histogram
-
getFrequencies.
- getFrom() - Method in class edu.cmu.tetrad.data.KnowledgeEdge
-
Getter for the field
from
. - getFromVariables() - Method in class edu.cmu.tetrad.data.KnowledgeGroup
-
getFromVariables.
- getFullGraph() - Method in class edu.cmu.tetrad.search.Mimbuild
-
The full graph inferred, including the edges from latents to measures.
- getFullGraph() - Method in class edu.cmu.tetrad.search.MimbuildTrek
-
The full graph discovered.
- getFullTierOrdering() - Method in class edu.cmu.tetrad.graph.SemGraph
-
getFullTierOrdering.
- getFValue(int, double[][]) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BooleanGlassFunction
-
Calculates the new value for the F function, for the given factor, in light of the given history.
- getGeneralizedSemPm() - Method in class edu.cmu.tetrad.sem.GeneralizedSemIm
-
Retrieves the GeneralizedSemPm object associated with this GeneralizedSemIm.
- getGesDepth() - Method in class edu.cmu.tetrad.search.work_in_progress.DMSearch
-
Getter for the field
gesDepth
. - getGraph() - Method in interface edu.cmu.tetrad.regression.Regression
-
getGraph.
- getGraph() - Method in class edu.cmu.tetrad.regression.RegressionCovariance
-
Getter for the field
graph
. - getGraph() - Method in class edu.cmu.tetrad.regression.RegressionDataset
-
Getter for the field
graph
. - getGraph() - Method in class edu.cmu.tetrad.search.Cpc
-
The graph that's constructed during the search.
- getGraph() - Method in class edu.cmu.tetrad.search.score.ScoredGraph
-
Returns the graph.
- getGraph() - Method in class edu.cmu.tetrad.search.test.MsepTest
-
Returns the underlying graph that is being used to calculate d-separation relationships.
- getGraph() - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsBeam
-
Getter for the field
graph
. - getGraph() - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsGes
-
Getter for the field
graph
. - getGraph() - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsGes.GraphWithPValue
-
Getter for the field
graph
. - getGraph() - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpc
-
The graph that's constructed during the search.
- getGraph() - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpcFast
-
The graph that's constructed during the search.
- getGraph() - Method in class edu.cmu.tetrad.search.work_in_progress.VcPc
-
The graph that's constructed during the search.
- getGraph() - Method in class edu.cmu.tetrad.search.work_in_progress.VcPcAlt
-
The graph that's constructed during the search.
- getGraph() - Method in class edu.cmu.tetrad.search.work_in_progress.VcPcFast
-
The graph that's constructed during the search.
- getGraph() - Method in class edu.cmu.tetrad.sem.GeneralizedSemPm
-
Returns the structural model graph this SEM PM is using.
- getGraph() - Method in class edu.cmu.tetrad.sem.LargeScaleSimulation
-
Getter for the field
graph
. - getGraph() - Method in class edu.cmu.tetrad.sem.SemPm
-
Getter for the field
graph
. - getGraph(boolean) - Method in class edu.cmu.tetrad.search.Grasp
-
Returns the graph implied by the discovered permutation.
- getGraph(boolean) - Method in class edu.cmu.tetrad.search.utils.TeyssierScorer
-
Returns the DAG build for the current permutation, or its CPDAG.
- getGraph(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.GraspTol
-
getGraph.
- getGraph(List<Node>, Map<Node, Set<Node>>, boolean) - Static method in class edu.cmu.tetrad.search.PermutationSearch
-
Construct a graph given a specification of the parents for each node.
- getGraph(List<Node>, Map<Node, Set<Node>>, Knowledge, boolean) - Static method in class edu.cmu.tetrad.search.PermutationSearch
-
Constructs a graph given a specification of the parents for each node.
- getGraphComparison(Graph, Graph) - Static method in class edu.cmu.tetrad.search.utils.GraphSearchUtils
-
Just counts arrowhead errors--for cyclic edges counts an arrowhead at each node.
- getGraphFile() - Method in class edu.cmu.tetrad.study.performance.ComparisonParameters
-
Getter for the field
graphFile
. - getGraphName() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.akutsu.RevealOutputGraph
-
Getter for the field
graphName
. - getGraphName() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.reveal.RevealOutputGraph
-
Getter for the field
graphName
. - getGraphName() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.RevealOutputGraph
-
Getter for the field
graphName
. - getGraphName() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.BasicGraph
-
Returns the name of the graph
- getGraphName() - Method in interface edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.OutputGraph
-
Returns the name of the graph
- getGraphNum() - Method in class edu.cmu.tetrad.study.performance.ComparisonParameters
-
Getter for the field
graphNum
. - getGraphRBD() - Method in class edu.pitt.dbmi.algo.bayesian.constraint.search.RfciBsc
-
Returns the graph that was learned using the BSC-D method.
- getGraphRBI() - Method in class edu.pitt.dbmi.algo.bayesian.constraint.search.RfciBsc
-
Returns the graph that was learned using the BSC-I method.
- getGraphWithoutXToY(Graph, Node, Node, GraphUtils.GraphType) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Returns a graph that is obtained by removing the edge from node x to node y from the input graph.
- getGST(Node) - Method in class edu.cmu.tetrad.search.PermutationSearch
-
Retrieves the GrowShrinkTree (GST) associated with the given Node.
- getH() - Method in class edu.cmu.tetrad.search.test.IndTestProbabilistic
-
Returns a map from independence facts to their probabilities of independence.
- getH() - Method in class edu.cmu.tetrad.search.work_in_progress.ProbabilisticMapIndependence
-
getH.
- getHigh() - Method in class edu.cmu.tetrad.sem.StandardizedSemIm.ParameterRange
-
Getter for the field
high
. - getHighPValueAlpha() - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsBeam
-
Getter for the field
highPValueAlpha
. - getHistory() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.MeasurementSimulator
-
Returns the history that was set in the constructor.
- getHistoryArray() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.GeneHistory
-
Returns the getModel history array.
- getI() - Method in class edu.cmu.tetrad.search.utils.Sextad
-
Getter for the field
i
. - getI() - Method in class edu.cmu.tetrad.search.utils.Tetrad
-
Getter for the field
i
. - getI() - Method in class edu.cmu.tetrad.search.work_in_progress.Sextad
-
Getter for the field
i
. - getId() - Method in class edu.cmu.tetrad.util.DefaultTetradLoggerConfig.DefaultEvent
-
getId.
- getId() - Method in interface edu.cmu.tetrad.util.TetradLoggerConfig.Event
-
Returns the ID of the event.
- getIdaMinEffect(Node, Node) - Method in class edu.cmu.tetrad.search.IdaCheck
-
Gets the signed minimum absolute total effect value between two nodes.
- getImagEigenvalue(int) - Method in class edu.pitt.csb.mgm.EigenDecomposition
-
Gets the imaginary part of the ith eigenvalue of the original matrix.
- getImagEigenvalues() - Method in class edu.pitt.csb.mgm.EigenDecomposition
-
Gets a copy of the imaginary parts of the eigenvalues of the original matrix.
- getImplCovar() - Method in class edu.cmu.tetrad.sem.StandardizedSemIm
-
Getter for the field
implCovar
. - getImplCovar(boolean) - Method in interface edu.cmu.tetrad.sem.ISemIm
-
getImplCovar.
- getImplCovar(boolean) - Method in class edu.cmu.tetrad.sem.SemIm
-
getImplCovar.
- getImplCovar(List<Node>) - Method in class edu.cmu.tetrad.sem.SemIm
-
Getter for the field
implCovar
. - getImplCovarMeas() - Method in interface edu.cmu.tetrad.sem.ISemIm
-
getImplCovarMeas.
- getImplCovarMeas() - Method in class edu.cmu.tetrad.sem.SemIm
-
getImplCovarMeas.
- getImplCovarMeas() - Method in class edu.cmu.tetrad.sem.StandardizedSemIm
-
Getter for the field
implCovarMeas
. - getIms() - Method in class edu.cmu.tetrad.algcomparison.simulation.GeneralSemSimulation
-
Retrieves the list of GeneralizedSemIm objects used for simulation.
- getIms() - Method in class edu.cmu.tetrad.algcomparison.simulation.SemSimulation
-
Retrieves the list of SemIm objects used for simulation.
- getIndegree() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.LagGraphParams
-
Getter for the field
indegree
. - getIndegree(Graph) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Calculates the maximum indegree in a given graph.
- getIndegree(Node) - Method in class edu.cmu.tetrad.graph.Dag
-
Returns the indegree of the specified node in the graph.
- getIndegree(Node) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
getIndegree.
- getIndegree(Node) - Method in interface edu.cmu.tetrad.graph.Graph
-
getIndegree.
- getIndegree(Node) - Method in class edu.cmu.tetrad.graph.LagGraph
-
getIndegree.
- getIndegree(Node) - Method in class edu.cmu.tetrad.graph.SemGraph
-
getIndegree.
- getIndegree(Node) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Returns the indegree of a given node in the graph.
- getIndegreeType() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.LagGraphParams
-
Getter for the field
indegreeType
. - getIndependenceFacts() - Method in class edu.cmu.tetrad.search.utils.GraphoidAxioms
-
Returns the independence facts in the form 1:2|3 for use in various Tetrad algorithms.
- getIndependenceNodes() - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Returns the nodes that are possible X and Y for X _||_ Y | Z1,...,Zn.
- getIndependenceTest() - Method in class edu.cmu.tetrad.search.BFci
-
The independence test being used for some steps in final orientation.
- getIndependenceTest() - Method in class edu.cmu.tetrad.search.Cpc
-
Rreturn the independence test used in the search, set in the constructor.
- getIndependenceTest() - Method in class edu.cmu.tetrad.search.Fci
-
Returns the independence test used in search.
- getIndependenceTest() - Method in class edu.cmu.tetrad.search.FciMax
-
Returns the independence test used in search.
- getIndependenceTest() - Method in class edu.cmu.tetrad.search.GFci
-
Returns the independence test used in search.
- getIndependenceTest() - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Returns the independence test being used.
- getIndependenceTest() - Method in class edu.cmu.tetrad.search.Pc
-
Returns the independence test being used in the search.
- getIndependenceTest() - Method in class edu.cmu.tetrad.search.Pcd
-
Retrieves the IndependenceTest used by this method.
- getIndependenceTest() - Method in class edu.cmu.tetrad.search.Rfci
-
Returns the independence test.
- getIndependenceTest() - Method in class edu.cmu.tetrad.search.SpFci
-
Returns the independence test used in search.
- getIndependenceTest() - Method in class edu.cmu.tetrad.search.SvarFci
-
Returns independence test.
- getIndependenceTest() - Method in class edu.cmu.tetrad.search.utils.PcCommon
-
Getter for the field
independenceTest
. - getIndependenceTest() - Method in class edu.cmu.tetrad.search.work_in_progress.IGFci
-
Retrieves the current independence test object being used.
- getIndependenceTest() - Method in class edu.cmu.tetrad.search.work_in_progress.Kpc
-
Getter for the field
independenceTest
. - getIndependenceTest() - Method in class edu.cmu.tetrad.search.work_in_progress.Mmhc
-
Getter for the field
independenceTest
. - getIndependenceTest() - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpc
-
Getter for the field
independenceTest
. - getIndependenceTest() - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpcFast
-
Getter for the field
independenceTest
. - getIndependenceTest() - Method in class edu.cmu.tetrad.search.work_in_progress.VcPc
-
Getter for the field
independenceTest
. - getIndependenceTest() - Method in class edu.cmu.tetrad.search.work_in_progress.VcPcAlt
-
Getter for the field
independenceTest
. - getIndependenceTest() - Method in class edu.cmu.tetrad.search.work_in_progress.VcPcFast
-
Getter for the field
independenceTest
. - getIndependenceTest() - Method in class edu.cmu.tetrad.study.performance.ComparisonParameters
-
Getter for the field
independenceTest
. - getIndependenceWrapper() - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.FaskOrig
-
Retrieves the IndependenceWrapper associated with this object.
- getIndependenceWrapper() - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FaskConcatenated
-
Returns the independence wrapper.
- getIndependenceWrapper() - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FaskVote
-
Returns the independence wrapper.
- getIndependenceWrapper() - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FciIod
-
Returns the independence wrapper.
- getIndependenceWrapper() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Cpc
-
Retrieves the IndependenceWrapper associated with this object.
- getIndependenceWrapper() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Cstar
-
Returns the independence wrapper.
- getIndependenceWrapper() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Fas
-
Returns the independence wrapper.
- getIndependenceWrapper() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Grasp
-
Returns the independence wrapper.
- getIndependenceWrapper() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Pc
-
Returns the independence wrapper.
- getIndependenceWrapper() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.PcMb
-
Returns the independence wrapper.
- getIndependenceWrapper() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Bfci
-
Returns the IndependenceWrapper associated with this Bfci algorithm.
- getIndependenceWrapper() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Ccd
-
Returns the IndependenceWrapper object associated with this instance.
- getIndependenceWrapper() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Cfci
-
Retrieves the IndependenceWrapper used by the algorithm.
- getIndependenceWrapper() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Fci
-
Retrieves the
IndependenceWrapper
object associated with this method. - getIndependenceWrapper() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.FciMax
-
Retrieves the IndependenceWrapper associated with the algorithm.
- getIndependenceWrapper() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Gfci
-
Returns the independence wrapper associated with this instance.
- getIndependenceWrapper() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.GraspFci
-
Retrieves the IndependenceWrapper object associated with this method.
- getIndependenceWrapper() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.LvLite
- getIndependenceWrapper() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Rfci
-
Returns the independence wrapper.
- getIndependenceWrapper() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.SpFci
-
Retrieves the IndependenceWrapper associated with this algorithm.
- getIndependenceWrapper() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.SvarFci
-
Retrieves the IndependenceWrapper object associated with this algorithm.
- getIndependenceWrapper() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.SvarGfci
-
Retrieves the IndependenceWrapper object associated with this algorithm.
- getIndependenceWrapper() - Method in interface edu.cmu.tetrad.algcomparison.utils.TakesIndependenceWrapper
-
Returns the independence wrapper.
- getIndex() - Method in class edu.cmu.tetrad.search.utils.Bes.Arrow
-
Returns the index of the arrow.
- getIndex() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.ideker.ItkPredictorSearch.Gene
-
getIndex.
- getIndex() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.IndexedParent
-
Returns the index of the parent.
- getIndex(int, IndexedParent) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.IndexedConnectivity
-
Returns the index of the parent of the given factor that is equal to the given IndexedParent, or -1 if the given IndexedParent is not equal to any parent.
- getIndex(int, IndexedParent) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.IndexedLagGraph
-
Returns the index of the parent of the given factor that is equal to the given IndexedParent, or -1 if the given IndexedParent is not equal to any parent.
- getIndex(DataModel) - Method in class edu.cmu.tetrad.algcomparison.algorithm.ExternalAlgorithm
-
getIndex.
- getIndex(Endpoint) - Static method in class edu.cmu.tetrad.graph.MisclassificationUtils
-
getIndex.
- getIndex(Node) - Method in class edu.cmu.tetrad.search.utils.GrowShrinkTree
-
Getter for the field
index
. - getIndex(String) - Method in class edu.cmu.tetrad.data.DiscreteVariable
-
getIndex.
- getIndex(String) - Static method in class edu.cmu.tetrad.search.utils.TsUtils
-
getIndex.
- getIndex(String) - Static method in class edu.cmu.tetrad.sem.LargeScaleSimulation
-
getIndex.
- getIndex(String) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.IndexedConnectivity
-
Returns the index of the given String factor.
- getIndex(String) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.IndexedLagGraph
-
Returns the index of the given String factor.
- getIndex(String) - Static method in class edu.cmu.tetrad.study.performance.Comparison2
-
getIndex.
- getIndex(String, LaggedFactor) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.IndexedConnectivity
-
Returns the index of the given parent for the given factor.
- getIndex(String, LaggedFactor) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.IndexedLagGraph
-
Returns the index of the given parent for the given factor.
- getIndexedLagGraph() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BooleanGlassFunction
-
getIndexedLagGraph.
- getIndexedLagGraph() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.LinearFunction
-
Returns the indexed connectivity.
- getIndexedLagGraph() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.PolynomialFunction
-
Returns the indexed connectivity.
- getIndexedLagGraph() - Method in interface edu.cmu.tetrad.study.gene.tetrad.gene.history.UpdateFunction
-
getIndexedLagGraph.
- getIndices() - Method in class edu.cmu.tetrad.util.IndexedMatrix
-
Getter for the field
indices
. - getInducingPath(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.graph.Paths
-
This method calculates the inducing path between two measured nodes in a graph.
- getInhibitExcite() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.AbstractNbComponent
-
Returns the inhibit/excite.
- getInitialAllowedColliders() - Method in class edu.cmu.tetrad.search.utils.FciOrient
-
Returns the initial allowed colliders based on the current strategy.
- getInitialAllowedColliders() - Method in interface edu.cmu.tetrad.search.utils.R0R4Strategy
-
Returns the allowed colliders for the current strategy.
- getInitialAllowedColliders() - Method in class edu.cmu.tetrad.search.utils.R0R4StrategyTestBased
-
Retrieves the initial set of allowed colliders.
- getInitializer() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.GeneHistory
-
Returns the initializer.
- getInitSync() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.GeneHistory
-
Determines whether initialization is synchronized.
- getInputNodes() - Method in interface edu.cmu.tetrad.sem.ConnectionFunction
-
getInputNodes.
- getInputs() - Method in class edu.cmu.tetrad.search.work_in_progress.DMSearch
-
Getter for the field
inputs
. - getInputs(Node) - Method in class edu.cmu.tetrad.search.work_in_progress.DMSearch.LatentStructure
-
getInputs.
- getInstance() - Static method in class edu.cmu.tetrad.annotation.AlgorithmAnnotations
-
Gets the instance of this class.
- getInstance() - Static method in class edu.cmu.tetrad.annotation.ScoreAnnotations
-
getInstance.
- getInstance() - Static method in class edu.cmu.tetrad.annotation.TestOfIndependenceAnnotations
-
getInstance.
- getInstance() - Static method in class edu.cmu.tetrad.calculator.expression.ExpressionManager
-
getInstance.
- getInstance() - Static method in class edu.cmu.tetrad.sem.TemplateExpander
-
getInstance.
- getInstance() - Static method in class edu.cmu.tetrad.util.AlgorithmDescriptions
-
Gets the instance of this class.
- getInstance() - Static method in class edu.cmu.tetrad.util.IndependenceTestDescriptions
-
getInstance.
- getInstance() - Static method in class edu.cmu.tetrad.util.LogUtils
-
getInstance.
- getInstance() - Static method in class edu.cmu.tetrad.util.NumberFormatUtil
-
getInstance.
- getInstance() - Static method in class edu.cmu.tetrad.util.PagCache
-
Returns the singleton instance of the PagCache.
- getInstance() - Static method in class edu.cmu.tetrad.util.ParamDescriptions
-
getInstance.
- getInstance() - Static method in class edu.cmu.tetrad.util.RandomUtil
-
getInstance.
- getInstance() - Static method in class edu.cmu.tetrad.util.ScoreDescriptions
-
getInstance.
- getInstance() - Static method in class edu.cmu.tetrad.util.TaskManager
-
Getter for the field
instance
. - getInstance() - Static method in class edu.cmu.tetrad.util.TetradLogger
-
Returns an instance of TetradLogger.
- getInstance() - Static method in class edu.cmu.tetrad.util.TetradProperties
-
getInstance.
- getInt(int, int) - Method in class edu.cmu.tetrad.data.BoxDataSet
-
getInt.
- getInt(int, int) - Method in interface edu.cmu.tetrad.data.DataSet
-
getInt.
- getInt(int, int) - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
getInt.
- getInt(String) - Method in class edu.cmu.tetrad.util.Parameters
-
Returns the integer value of the given parameter, looking up its default in the ParamDescriptions map.
- getInt(String, int) - Method in class edu.cmu.tetrad.util.Parameters
-
Returns the integer value of the given parameter, looking up its default in the ParamDescriptions map.
- getIntegerDistribution(Context) - Method in class edu.cmu.tetrad.calculator.expression.ConstantExpression
-
getIntegerDistribution.
- getIntegerDistribution(Context) - Method in class edu.cmu.tetrad.calculator.expression.EvaluationExpression
-
getIntegerDistribution.
- getIntegerDistribution(Context) - Method in interface edu.cmu.tetrad.calculator.expression.Expression
-
getIntegerDistribution.
- getIntegerDistribution(Context) - Method in class edu.cmu.tetrad.calculator.expression.VariableExpression
-
getIntegerDistribution.
- getIntercept() - Method in class edu.cmu.tetrad.regression.LogisticRegression.Result
-
The intercept.
- getIntercept(Node) - Method in interface edu.cmu.tetrad.sem.ISemIm
-
getIntercept.
- getIntercept(Node) - Method in class edu.cmu.tetrad.sem.SemIm
-
Calculates the intercept for a given node.
- getIntersectionComparisonString(List<Graph>) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Generates a comparison string for the intersection of multiple graphs.
- getInterval() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.MeasurementSimulator
-
Sets the interval (in time steps) between time steps stored out.
- getInterval() - Method in class edu.cmu.tetrad.study.gene.tetradapp.model.MeasurementSimulatorParams
-
getInterval.
- getInts(int[]) - Static method in class edu.cmu.tetrad.search.utils.ClusterSignificance
-
Converts a list of indices into a list of Integers representing a cluster.
- getIterations() - Method in class edu.cmu.tetrad.search.work_in_progress.Ion
-
getIterations.
- getIterations() - Method in class edu.cmu.tetrad.sem.Ricf.RicfResult
-
Returns the number of iterations.
- getJ() - Method in class edu.cmu.tetrad.search.utils.Sextad
-
Getter for the field
j
. - getJ() - Method in class edu.cmu.tetrad.search.utils.Tetrad
-
Getter for the field
j
. - getJ() - Method in class edu.cmu.tetrad.search.work_in_progress.Sextad
-
Getter for the field
j
. - getJointMarginal(int[], int[]) - Method in class edu.cmu.tetrad.bayes.ApproximateUpdater
-
Computes the joint marginal probability for the specified variables and their corresponding values.
- getJointMarginal(int[], int[]) - Method in interface edu.cmu.tetrad.bayes.BayesUpdater
-
Returns the joint marginal probability of the given variables taking the given values, given the evidence.
- getJointMarginal(int[], int[]) - Method in class edu.cmu.tetrad.bayes.CptInvariantUpdater
-
getJointMarginal.
- getJointMarginal(int[], int[]) - Method in class edu.cmu.tetrad.bayes.Identifiability
-
getJointMarginal.
- getJointMarginal(int[], int[]) - Method in class edu.cmu.tetrad.bayes.JunctionTreeUpdater
-
Returns the joint marginal probability of the given variables taking the given values, given the evidence.
- getJointMarginal(int[], int[]) - Method in class edu.cmu.tetrad.bayes.RowSummingExactUpdater
-
getJointMarginal.
- getJointProbability(int[], int[]) - Method in class edu.cmu.tetrad.bayes.JunctionTreeAlgorithm
-
getJointProbability.
- getJointProbabilityAll(int[]) - Method in class edu.cmu.tetrad.bayes.JunctionTreeAlgorithm
-
Get the joint probability of all nodes (variables).
- getJPD() - Method in class edu.cmu.tetrad.bayes.MlBayesImObs
-
getJPD.
- getK() - Method in class edu.cmu.tetrad.search.FastIca.IcaResult
-
Returns the pre-whitening matrix that projects data onto the first n.comp principal components.
- getK() - Method in class edu.cmu.tetrad.search.utils.Sextad
-
Getter for the field
k
. - getK() - Method in class edu.cmu.tetrad.search.utils.Tetrad
-
Getter for the field
k
. - getK() - Method in class edu.cmu.tetrad.search.work_in_progress.Sextad
-
Getter for the field
k
. - getK() - Method in class edu.cmu.tetrad.util.PartialCorrelationPdf
-
Getter for the field
k
. - getKAddition() - Method in class edu.cmu.tetrad.search.work_in_progress.ISBDeuScore
-
Retrieves the value of the variable representing the k_addition.
- getKAddition() - Method in class edu.cmu.tetrad.search.work_in_progress.ISBicScore
-
Retrieves the current value of the k_addition parameter.
- getKDeletion() - Method in class edu.cmu.tetrad.search.work_in_progress.ISBDeuScore
-
Retrieves the value of the k_deletion field.
- getKDeletion() - Method in class edu.cmu.tetrad.search.work_in_progress.ISBicScore
-
Retrieves the current value of the k_deletion parameter.
- getknowledge() - Method in interface edu.cmu.tetrad.search.utils.R0R4Strategy
-
Returns the knowledge object used by the strategy.
- getknowledge() - Method in class edu.cmu.tetrad.search.utils.R0R4StrategyScoreBased
- getknowledge() - Method in class edu.cmu.tetrad.search.utils.R0R4StrategyTestBased
-
Retrieves the Knowledge object used by the FciOrientDataExaminationStrategy.
- getKnowledge() - Method in class edu.cmu.tetrad.algcomparison.algorithm.cluster.Fofc
-
Returns the knowledge associated with this object.
- getKnowledge() - Method in class edu.cmu.tetrad.algcomparison.algorithm.cluster.Ftfc
-
Returns the knowledge associated with this algorithm.
- getKnowledge() - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.Fask
-
Retrieves the knowledge associated with this object.
- getKnowledge() - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.FaskOrig
-
Retrieves the knowledge associated with this object.
- getKnowledge() - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FaskConcatenated
-
Returns a knowledge object.
- getKnowledge() - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FaskLofsConcatenated
-
Returns a knowledge object.
- getKnowledge() - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FaskVote
-
Returns a knowledge object.
- getKnowledge() - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FasLofs
-
Returns a knowledge object.
- getKnowledge() - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FciIod
-
Returns a knowledge object.
- getKnowledge() - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FgesConcatenated
-
Returns a knowledge object.
- getKnowledge() - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.Images
-
Retrieves the knowledge of the current instance.
- getKnowledge() - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.ImagesBoss
-
Returns a knowledge object.
- getKnowledge() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Boss
-
Returns a knowledge object.
- getKnowledge() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.BossLingam
-
Returns a knowledge object.
- getKnowledge() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Cpc
-
Retrieves the knowledge associated with this object.
- getKnowledge() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Fas
-
Returns a knowledge object.
- getKnowledge() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Fges
-
Returns a knowledge object.
- getKnowledge() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.FgesMb
-
Returns a knowledge object.
- getKnowledge() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.FgesMeasurement
-
Returns a knowledge object.
- getKnowledge() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Grasp
-
Returns a knowledge object.
- getKnowledge() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Pc
-
Returns a knowledge object.
- getKnowledge() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Pcd
-
Returns a knowledge object.
- getKnowledge() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.PcMb
-
Returns a knowledge object.
- getKnowledge() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.SingleGraphAlg
-
Returns a knowledge object.
- getKnowledge() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Sp
-
Returns a knowledge object.
- getKnowledge() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Bfci
-
Retrieves the knowledge associated with the algorithm.
- getKnowledge() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.BossDumb
-
Retrieves the knowledge object associated with this method.
- getKnowledge() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.BossPag
-
Retrieves the knowledge object associated with this method.
- getKnowledge() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Cfci
-
Returns the knowledge.
- getKnowledge() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Fci
-
Retrieves the knowledge object.
- getKnowledge() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.FciMax
-
Retrieves the knowledge associated with the algorithm.
- getKnowledge() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Gfci
-
Retrieves the Knowledge object associated with this instance.
- getKnowledge() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.GraspFci
-
Retrieves the knowledge object associated with this method.
- getKnowledge() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.LvLite
-
Retrieves the knowledge object associated with this method.
- getKnowledge() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.PagSampleRfci
-
Retrieves the knowledge associated with this method.
- getKnowledge() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Rfci
-
Returns a knowledge object.
- getKnowledge() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.RfciBsc
-
Retrieves the knowledge associated with this object.
- getKnowledge() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.SpFci
-
Retrieves the knowledge object associated with this algorithm.
- getKnowledge() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.SvarFci
-
Retrieves the knowledge object associated with this algorithm.
- getKnowledge() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.SvarGfci
-
Returns the knowledge associated with this object.
- getKnowledge() - Method in class edu.cmu.tetrad.algcomparison.Comparison
-
Retrieves the knowledge.
- getKnowledge() - Method in class edu.cmu.tetrad.algcomparison.simulation.TimeSeriesSemSimulation
-
Returns a knowledge object.
- getKnowledge() - Method in class edu.cmu.tetrad.algcomparison.statistic.KnowledgeSatisfied
- getKnowledge() - Method in interface edu.cmu.tetrad.algcomparison.utils.HasKnowledge
-
Returns a knowledge object.
- getKnowledge() - Method in class edu.cmu.tetrad.data.BoxDataSet
-
Getter for the field
knowledge
. - getKnowledge() - Method in class edu.cmu.tetrad.data.CorrelationMatrixOnTheFly
-
getKnowledge.
- getKnowledge() - Method in class edu.cmu.tetrad.data.CovarianceMatrix
-
Getter for the field
knowledge
. - getKnowledge() - Method in class edu.cmu.tetrad.data.CovarianceMatrixOnTheFly
-
Getter for the field
knowledge
. - getKnowledge() - Method in class edu.cmu.tetrad.data.DataModelList
-
Getter for the field
knowledge
. - getKnowledge() - Method in interface edu.cmu.tetrad.data.ICovarianceMatrix
-
Retrieves the knowledge associated with the ICovarianceMatrix.
- getKnowledge() - Method in class edu.cmu.tetrad.data.IndependenceFacts
-
Getter for the field
knowledge
. - getKnowledge() - Method in interface edu.cmu.tetrad.data.KnowledgeTransferable
-
getKnowledge.
- getKnowledge() - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
Getter for the field
knowledge
. - getKnowledge() - Method in class edu.cmu.tetrad.data.TimeSeriesData
-
Getter for the field
knowledge
. - getKnowledge() - Method in class edu.cmu.tetrad.search.Cpc
-
Returns the knowledge specification used in the search.
- getKnowledge() - Method in class edu.cmu.tetrad.search.FaskOrig
-
Getter for the field
knowledge
. - getKnowledge() - Method in class edu.cmu.tetrad.search.Fci
-
Returns the background knowledge that was set.
- getKnowledge() - Method in class edu.cmu.tetrad.search.FciMax
-
Retrieves the background knowledge that was set.
- getKnowledge() - Method in class edu.cmu.tetrad.search.Fges
-
Returns the background knowledge.
- getKnowledge() - Method in class edu.cmu.tetrad.search.FgesMb
-
Returns the background knowledge.
- getKnowledge() - Method in class edu.cmu.tetrad.search.GFci
-
Returns the knowledge used in search.
- getKnowledge() - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Returns the knowledge object for the Markov checker.
- getKnowledge() - Method in class edu.cmu.tetrad.search.Pc
-
Returns the knowledge specification used in the search.
- getKnowledge() - Method in class edu.cmu.tetrad.search.Pcd
-
Retrieves the Knowledge object used by this method.
- getKnowledge() - Method in class edu.cmu.tetrad.search.PcMb
-
Returns The knowledge used in search.
- getKnowledge() - Method in class edu.cmu.tetrad.search.Rfci
-
Returns the knowledge used in search.
- getKnowledge() - Method in class edu.cmu.tetrad.search.SpFci
-
Returns the knowledge.
- getKnowledge() - Method in class edu.cmu.tetrad.search.SvarFci
-
Returns the knowledge for the search.
- getKnowledge() - Method in class edu.cmu.tetrad.search.SvarFges
-
Getter for the field
knowledge
. - getKnowledge() - Method in class edu.cmu.tetrad.search.utils.BesPermutation
-
Returns the knowledge that BES will use.
- getKnowledge() - Method in class edu.cmu.tetrad.search.utils.DagToPag
-
Getter for the field
knowledge
. - getKnowledge() - Method in class edu.cmu.tetrad.search.utils.FgesOrienter
-
Getter for the field
knowledge
. - getKnowledge() - Method in class edu.cmu.tetrad.search.utils.PcCommon
-
Getter for the field
knowledge
. - getKnowledge() - Method in class edu.cmu.tetrad.search.utils.PossibleMsepFci
-
Getter for the field
knowledge
. - getKnowledge() - Method in class edu.cmu.tetrad.search.utils.R0R4StrategyScoreBased
-
Retrieves the knowledge associated with this instance.
- getKnowledge() - Method in class edu.cmu.tetrad.search.utils.ShiftSearch
-
Getter for the field
knowledge
. - getKnowledge() - Method in class edu.cmu.tetrad.search.utils.TsDagToPag
-
Getter for the field
knowledge
. - getKnowledge() - Method in class edu.cmu.tetrad.search.work_in_progress.FasDci
-
Getter for the field
knowledge
. - getKnowledge() - Method in class edu.cmu.tetrad.search.work_in_progress.FasLofs
-
Getter for the field
knowledge
. - getKnowledge() - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsBeam
-
Getter for the field
knowledge
. - getKnowledge() - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsGes
-
Getter for the field
knowledge
. - getKnowledge() - Method in class edu.cmu.tetrad.search.work_in_progress.IGFci
-
Returns the knowledge used in the IGFci algorithm.
- getKnowledge() - Method in class edu.cmu.tetrad.search.work_in_progress.ISFges
-
Retrieves the Knowledge instance associated with this object.
- getKnowledge() - Method in class edu.cmu.tetrad.search.work_in_progress.Kpc
-
Getter for the field
knowledge
. - getKnowledge() - Method in class edu.cmu.tetrad.search.work_in_progress.Mmhc
-
Getter for the field
knowledge
. - getKnowledge() - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpc
-
Getter for the field
knowledge
. - getKnowledge() - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpcFast
-
Getter for the field
knowledge
. - getKnowledge() - Method in class edu.cmu.tetrad.search.work_in_progress.VcFas
-
Getter for the field
knowledge
. - getKnowledge() - Method in class edu.cmu.tetrad.search.work_in_progress.VcPc
-
Getter for the field
knowledge
. - getKnowledge() - Method in class edu.cmu.tetrad.search.work_in_progress.VcPcAlt
-
Getter for the field
knowledge
. - getKnowledge() - Method in class edu.cmu.tetrad.search.work_in_progress.VcPcFast
-
Getter for the field
knowledge
. - getKnowledge(Graph) - Static method in class edu.cmu.tetrad.search.utils.TsUtils
-
getKnowledge.
- getKnowledge(Graph) - Method in class edu.cmu.tetrad.sem.LargeScaleSimulation
-
getKnowledge.
- getKnowledge(Graph) - Static method in class edu.cmu.tetrad.study.performance.Comparison2
-
getKnowledge.
- getKnowledgeGroups() - Method in class edu.cmu.tetrad.data.Knowledge
-
Getter for the field
knowledgeGroups
. - getKReorientation() - Method in class edu.cmu.tetrad.search.work_in_progress.ISBDeuScore
-
Retrieves the value of the k_reorient variable.
- getKReorientation() - Method in class edu.cmu.tetrad.search.work_in_progress.ISBicScore
-
Retrieves the current value of the k_reorientation parameter.
- getKsPValue(boolean) - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Returns the Kolmorogov-Smirnov p-value for the given list of results.
- getKsPValue(List<IndependenceResult>) - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Calculates the Kolmogorov-Smirnov (KS) p-value for a list of independence test results.
- getKsPValue(List<Double>) - Static method in class edu.cmu.tetrad.util.UniformityTest
-
Calculates the p-value of a list of points using the Kolmogorov-Smirnov test.
- getKsPValue(List<Double>, double, double) - Static method in class edu.cmu.tetrad.util.UniformityTest
-
Calculates the p-value of a list of points using the Kolmogorov-Smirnov test.
- getL() - Method in class edu.cmu.tetrad.search.utils.Sextad
-
Getter for the field
l
. - getL() - Method in class edu.cmu.tetrad.search.utils.Tetrad
-
Getter for the field
l
. - getL() - Method in class edu.cmu.tetrad.search.work_in_progress.Sextad
-
Getter for the field
l
. - getLag() - Method in class edu.cmu.tetrad.graph.TimeLagGraph.NodeId
-
Getter for the field
lag
. - getLag() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.IndexedParent
-
Returns the lag of the parent.
- getLag() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.LaggedFactor
-
Returns the number of time steps back for this lagged factor.
- getLag(String) - Static method in class edu.cmu.tetrad.search.utils.TsUtils
-
getLag.
- getLag(String) - Static method in class edu.cmu.tetrad.sem.LargeScaleSimulation
-
getLag.
- getLag(String) - Static method in class edu.cmu.tetrad.study.performance.Comparison2
-
getLag.
- getLag0Nodes() - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Getter for the field
lag0Nodes
. - getLaggedFactor() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.LaggedEdge
-
Getter for the field
laggedFactor
. - getLaggedFactor(String) - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.DisplayNameHandler
-
Parses the given string and returns the LaggedFactor it represents.
- getLagGraph() - Method in class edu.cmu.tetrad.study.gene.tetradapp.model.GenePm
-
Gets the lag workbench that is wrapped.
- getLags(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.akutsu.RevealOutputGraph
-
Returns the lags of the parent variables for the given variable, provided parents have associated time lags; otherwise, returns null.
- getLags(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.biolingua.BiolinguaDigraph
-
Returns the lags of the parent variables for the given variable, provided parents have associated time lags; otherwise, returns null.
- getLags(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.reveal.RevealOutputGraph
-
Returns the lags of the parent variables for the given variable, provided parents have associated time lags; otherwise, returns null.
- getLags(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.RevealOutputGraph
-
Returns the lags of the parent variables for the given variable, provided parents have associated time lags; otherwise, returns null.
- getLags(int) - Method in interface edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.OutputGraph
-
Returns the lags of the parent variables for the given variable, provided parents have associated time lags; otherwise, returns null.
- getLambda1() - Method in class edu.cmu.tetrad.search.Dagma
-
Retrieves the value of lambda1.
- getLatentEffects(Node) - Method in class edu.cmu.tetrad.search.work_in_progress.DMSearch.LatentStructure
-
getLatentEffects.
- getLatentNodes() - Method in class edu.cmu.tetrad.sem.SemPm
-
getLatentNodes.
- getLatents() - Method in class edu.cmu.tetrad.search.work_in_progress.DMSearch.LatentStructure
-
getLatents.
- getLatents(Graph) - Static method in class edu.cmu.tetrad.sem.ReidentifyVariables
-
getLatents.
- getLatentsCov() - Method in class edu.cmu.tetrad.search.Mimbuild
-
Returns the inferred covariance matrix over the latent variables.
- getLatentsCov() - Method in class edu.cmu.tetrad.search.MimbuildTrek
-
The covariance matrix over the latents that is implied by the clustering.
- getLatestFilePath() - Method in class edu.cmu.tetrad.util.TetradLogger
-
Getter for the field
latestFilePath
. - getLengthWritten() - Method in interface edu.cmu.tetrad.util.TetradLogger.LogDisplayOutputStream
-
The total string length written to the text area.
- getLhat() - Method in class edu.cmu.tetrad.sem.Ricf.RicfResult
-
Returns the "lhat" matrix.
- getLik() - Method in class edu.cmu.tetrad.search.score.ConditionalGaussianLikelihood.Ret
-
Returns the likelihood.
- getLik() - Method in class edu.cmu.tetrad.search.test.IndTestDegenerateGaussianLrt.Ret
-
Returns the likelihood.
- getLik(int, int[]) - Method in class edu.cmu.tetrad.search.score.MvpLikelihood
-
Returns the score of the node at index i, given its parents.
- getLik(int, int[]) - Method in class edu.cmu.tetrad.search.work_in_progress.MnlrLikelihood
-
Returns the likelihood of a child given its parents.
- getLikelihood() - Method in class edu.cmu.tetrad.bayes.BayesProperties
-
Call after calling getLikelihoodP().
- getLikelihood(int, int[]) - Method in class edu.cmu.tetrad.search.score.ConditionalGaussianLikelihood
-
Returns the likelihood of variable i conditional on the given parents, assuming the continuous mixedVariables index by i or by the parents are jointly Gaussian conditional on the discrete comparison.
- getLikelihoodRatioP() - Method in class edu.cmu.tetrad.bayes.EmBayesProperties
-
Calculates the p-value of the graph with respect to the given data.
- getLikelihoodRatioP(Graph) - Method in class edu.cmu.tetrad.bayes.BayesProperties
-
Calculates the p-value of the graph with respect to the given data, against the complete model as an alternative.
- getLineColor() - Method in class edu.cmu.tetrad.graph.Edge
-
Getter for the field
lineColor
. - getListOfExplicitlyForbiddenEdges() - Method in class edu.cmu.tetrad.data.Knowledge
-
getListOfExplicitlyForbiddenEdges.
- getListOfExplicitlyRequiredEdges() - Method in class edu.cmu.tetrad.data.Knowledge
-
getListOfExplicitlyRequiredEdges.
- getListOfForbiddenEdges() - Method in class edu.cmu.tetrad.data.Knowledge
-
getListOfForbiddenEdges.
- getListOfRequiredEdges() - Method in class edu.cmu.tetrad.data.Knowledge
-
getListOfRequiredEdges.
- getLocalPValues(IndependenceTest, List<IndependenceFact>) - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Calculates the local p-values for a given independence test and a list of independence facts.
- getLocalPValues(IndependenceTest, List<IndependenceFact>, Double) - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Get Local P values with shuffle threshold provided.
- getLocation(String) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ActiveLagGraph
-
Gets the location.
- getLocation(String) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ManualLagGraph
-
Gets the location.
- getLocation(String) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BasicLagGraph
-
Gets the location.
- getLocation(String) - Method in interface edu.cmu.tetrad.study.gene.tetrad.gene.history.LagGraph
-
Gets the location.
- getLocations() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ActiveLagGraph
-
getLocations.
- getLocations() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ManualLagGraph
-
getLocations.
- getLocations() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BasicLagGraph
-
Getter for the field
locations
. - getLocations() - Method in interface edu.cmu.tetrad.study.gene.tetrad.gene.history.LagGraph
-
Gets the locations.
- getLoggerForClass(Class<?>) - Method in class edu.cmu.tetrad.util.TetradLogger
-
getLoggerForClass.
- getLoggingDirectory() - Method in class edu.cmu.tetrad.util.TetradLogger
-
getLoggingDirectory.
- getLoggingFilePrefix() - Method in class edu.cmu.tetrad.util.TetradLogger
-
getLoggingFilePrefix.
- getLogLikelihood() - Method in class edu.cmu.tetrad.regression.LogisticRegression.Result
-
The log likelihood of the regression
- getLong(String) - Method in class edu.cmu.tetrad.util.Parameters
-
Returns the long value of the given parameter, looking up its default in the ParamDescriptions map.
- getLong(String, long) - Method in class edu.cmu.tetrad.util.Parameters
-
Returns the long value of the given parameter, looking up its default in the ParamDescriptions map.
- getLongDescription() - Method in class edu.cmu.tetrad.util.ParamDescription
-
Getter for the field
longDescription
. - getLow() - Method in class edu.cmu.tetrad.sem.StandardizedSemIm.ParameterRange
-
Getter for the field
low
. - getLowerBoundDouble() - Method in class edu.cmu.tetrad.util.ParamDescription
-
Getter for the field
lowerBoundDouble
. - getLowerBoundInt() - Method in class edu.cmu.tetrad.util.ParamDescription
-
Getter for the field
lowerBoundInt
. - getLowerBoundLong() - Method in class edu.cmu.tetrad.util.ParamDescription
-
Getter for the field
lowerBoundLong
. - getLrScores() - Method in class edu.cmu.tetrad.search.FaskOrig
-
Returns a matrix of left-right scores for the search.
- getM() - Method in class edu.cmu.tetrad.search.utils.Sextad
-
Getter for the field
m
. - getM() - Method in class edu.cmu.tetrad.search.work_in_progress.Sextad
-
Getter for the field
m
. - getMag() - Method in class edu.cmu.tetrad.search.work_in_progress.MagCgBicScore
-
Returns the wrapped MAG.
- getMag() - Method in class edu.cmu.tetrad.search.work_in_progress.MagDgBicScore
-
Returns the wrapped MAG.
- getMag() - Method in class edu.cmu.tetrad.search.work_in_progress.MagSemBicScore
-
Returns the wrapped MAG.
- getManipulatedBayesIm() - Method in class edu.cmu.tetrad.bayes.ApproximateUpdater
-
Getter for the field
manipulatedBayesIm
. - getManipulatedBayesIm() - Method in class edu.cmu.tetrad.bayes.CptInvariantUpdater
-
Getter for the field
manipulatedBayesIm
. - getManipulatedBayesIm() - Method in class edu.cmu.tetrad.bayes.Identifiability
-
Getter for the field
manipulatedBayesIm
. - getManipulatedBayesIm() - Method in class edu.cmu.tetrad.bayes.JunctionTreeUpdater
-
Returns the manipulated Bayes IM.
- getManipulatedBayesIm() - Method in interface edu.cmu.tetrad.bayes.ManipulatingBayesUpdater
-
Returns the manipulated Bayes IM.
- getManipulatedBayesIm() - Method in class edu.cmu.tetrad.bayes.RowSummingExactUpdater
-
Getter for the field
manipulatedBayesIm
. - getManipulatedGraph() - Method in class edu.cmu.tetrad.bayes.ApproximateUpdater
-
getManipulatedGraph.
- getManipulatedGraph() - Method in class edu.cmu.tetrad.bayes.CptInvariantUpdater
-
getManipulatedGraph.
- getManipulatedGraph() - Method in class edu.cmu.tetrad.bayes.Identifiability
-
getManipulatedGraph.
- getManipulatedGraph() - Method in class edu.cmu.tetrad.bayes.JunctionTreeUpdater
-
Returns the manipulated graph.
- getManipulatedGraph() - Method in interface edu.cmu.tetrad.bayes.ManipulatingBayesUpdater
-
Returns the manipulated graph.
- getManipulatedGraph() - Method in class edu.cmu.tetrad.bayes.RowSummingExactUpdater
-
getManipulatedGraph.
- getManipulatedGraph() - Method in class edu.cmu.tetrad.sem.SemUpdater
-
getManipulatedGraph.
- getManipulatedSemIm() - Method in class edu.cmu.tetrad.sem.SemUpdater
-
getManipulatedSemIm.
- getMarginal(int, int) - Method in class edu.cmu.tetrad.bayes.ApproximateUpdater
-
Returns the marginal probability of the given variable taking the given value, given the evidence.
- getMarginal(int, int) - Method in interface edu.cmu.tetrad.bayes.BayesUpdater
-
Returns the marginal probability of the given variable taking the given value, given the evidence.
- getMarginal(int, int) - Method in class edu.cmu.tetrad.bayes.CptInvariantMarginalCalculator
-
getMarginal.
- getMarginal(int, int) - Method in class edu.cmu.tetrad.bayes.CptInvariantUpdater
-
Returns the marginal probability of the given variable taking the given value, given the evidence.
- getMarginal(int, int) - Method in class edu.cmu.tetrad.bayes.Identifiability
-
Returns the marginal probability of the given variable taking the given value, given the evidence.
- getMarginal(int, int) - Method in class edu.cmu.tetrad.bayes.JunctionTreeUpdater
-
Returns the marginal probability of the given variable taking the given value, given the evidence.
- getMarginal(int, int) - Method in interface edu.cmu.tetrad.bayes.ManipulatingBayesUpdater
-
Returns the marginal probability of the given variable taking the given value, given the evidence.
- getMarginal(int, int) - Method in class edu.cmu.tetrad.bayes.RowSummingExactUpdater
-
Returns the marginal probability of the given variable taking the given value, given the evidence.
- getMarginalProbability(int) - Method in class edu.cmu.tetrad.bayes.JunctionTreeAlgorithm
-
getMarginalProbability.
- getMarginalProbability(int, int) - Method in class edu.cmu.tetrad.bayes.JunctionTreeAlgorithm
-
getMarginalProbability.
- getMarginals() - Method in class edu.cmu.tetrad.classify.ClassifierBayesUpdaterDiscrete
-
Returns the marginals.
- getMarkovBlanketSubgraphWithTargetNode(Graph, Node) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Calculates the subgraph over the Markov blanket of a target node for a DAG, CPDAG, MAG, or PAG.
- getMarkovCheckRecord() - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Generates the results for the given set of independence facts as a single record.
- getMarkovCheckRecordString() - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Returns the Markov check record as a string.
- getMatrix() - Method in class edu.cmu.tetrad.data.CorrelationMatrixOnTheFly
-
getMatrix.
- getMatrix() - Method in class edu.cmu.tetrad.data.CovarianceMatrix
-
getMatrix.
- getMatrix() - Method in class edu.cmu.tetrad.data.CovarianceMatrixOnTheFly
-
Getter for the field
matrix
. - getMatrix() - Method in interface edu.cmu.tetrad.data.Covariances
-
Returns the underlying covariance matrix.
- getMatrix() - Method in class edu.cmu.tetrad.data.CovariancesDoubleForkJoin
-
getMatrix.
- getMatrix() - Method in interface edu.cmu.tetrad.data.ICovarianceMatrix
-
Retrieves the covariance matrix.
- getMatrix(int[]) - Method in class edu.cmu.tetrad.data.CovarianceMatrixOnTheFly
-
Getter for the field
matrix
. - getMax() - Method in class edu.cmu.tetrad.data.Histogram
-
For a continuous target, returns the maximum value of the values histogrammed, for the unconditioned data.
- getMaxCoef() - Method in class edu.cmu.tetrad.search.CpdagParentDistancesFromTrue
-
Returns the maximum estimated coefficients for each edge.
- getMaxDegree() - Method in class edu.cmu.tetrad.search.Fges
-
The maximum of parents any nodes can have in the output pattern.
- getMaxDegree() - Method in class edu.cmu.tetrad.search.FgesMb
-
The maximum of parents any nodes can have in the output pattern.
- getMaxDegree() - Method in class edu.cmu.tetrad.search.score.BasisFunctionBicScore
-
Retrieves the maximum degree from the underlying BIC score component.
- getMaxDegree() - Method in class edu.cmu.tetrad.search.score.BdeScore
-
Gets the maximum degree of the BDe Score.
- getMaxDegree() - Method in class edu.cmu.tetrad.search.score.BdeuScore
-
Returns the maximum degree of the BDeuScore object.
- getMaxDegree() - Method in class edu.cmu.tetrad.search.score.ConditionalGaussianScore
-
Returns the max degree, by default 1000.
- getMaxDegree() - Method in class edu.cmu.tetrad.search.score.DegenerateGaussianScore
-
Returns the max degree, by default 1000.
- getMaxDegree() - Method in class edu.cmu.tetrad.search.score.DiscreteBicScore
-
Returns the max degree, by default 1000.
- getMaxDegree() - Method in class edu.cmu.tetrad.search.score.DiscreteBicScoreAdTree
-
Returns the max degree, by default 1000.
- getMaxDegree() - Method in class edu.cmu.tetrad.search.score.EbicScore
-
Returns the max degree, by default 1000.
- getMaxDegree() - Method in class edu.cmu.tetrad.search.score.GicScores
-
Returns the max degree, by default 1000.
- getMaxDegree() - Method in class edu.cmu.tetrad.search.score.GraphScore
-
Returns the max degree, by default 1000.
- getMaxDegree() - Method in class edu.cmu.tetrad.search.score.ImagesScore
-
Returns the max degree, by default 1000.
- getMaxDegree() - Method in class edu.cmu.tetrad.search.score.IndTestScore
-
Returns the max degree, by default 1000.
- getMaxDegree() - Method in class edu.cmu.tetrad.search.score.MvpScore
-
Returns the max degree, by default 1000.
- getMaxDegree() - Method in class edu.cmu.tetrad.search.score.PoissonPriorScore
-
Returns the max degree, by default 1000.
- getMaxDegree() - Method in interface edu.cmu.tetrad.search.score.Score
-
Returns the max degree, by default 1000.
- getMaxDegree() - Method in class edu.cmu.tetrad.search.score.SemBicScore
-
Returns the maximum degree of the score.
- getMaxDegree() - Method in class edu.cmu.tetrad.search.score.ZsbScore
-
Returns the max degree, by default 1000.
- getMaxDegree() - Method in class edu.cmu.tetrad.search.SpFci
-
Returns The maximum indegree of the output graph.
- getMaxDegree() - Method in class edu.cmu.tetrad.search.work_in_progress.IGFci
-
Retrieves the maximum degree for the graph.
- getMaxDegree() - Method in class edu.cmu.tetrad.search.work_in_progress.ISBDeuScore
-
Calculates the maximum degree based on the sample size.
- getMaxDegree() - Method in class edu.cmu.tetrad.search.work_in_progress.ISBicScore
-
Retrieves the maximum degree value.
- getMaxDegree() - Method in class edu.cmu.tetrad.search.work_in_progress.ISFges
-
The maximum of parents any nodes can have in an output pattern.
- getMaxDegree() - Method in interface edu.cmu.tetrad.search.work_in_progress.ISScore
-
Retrieves the maximum allowable degree for nodes in the current scoring context.
- getMaxDegree() - Method in class edu.cmu.tetrad.search.work_in_progress.MagCgBicScore
-
Returns the max degree, by default 1000.
- getMaxDegree() - Method in class edu.cmu.tetrad.search.work_in_progress.MagDgBicScore
-
Returns the max degree, by default 1000.
- getMaxDegree() - Method in class edu.cmu.tetrad.search.work_in_progress.MagSemBicScore
-
Returns the max degree, by default 1000.
- getMaxDegree() - Method in class edu.cmu.tetrad.search.work_in_progress.MnlrScore
-
Returns the max degree, by default 1000.
- getMaxDegree() - Method in class edu.cmu.tetrad.search.work_in_progress.SemBicScoreDeterministic
-
Returns the max degree, by default 1000.
- getMaxDiscriminatingPathLength() - Method in class edu.cmu.tetrad.search.Rfci
-
Returns the maximum length of any discriminating path, or -1 of unlimited.
- getMaxDiscriminatingPathLength() - Method in class edu.cmu.tetrad.search.SpFci
-
Returns the maximum length of any discriminating path, or -1 of unlimited.
- getMaxDiscriminatingPathLength() - Method in class edu.cmu.tetrad.search.SvarFci
-
Returns the maximum length of any discriminating path, or -1 of unlimited.
- getMaxDiscriminatingPathLength() - Method in class edu.cmu.tetrad.search.utils.FciOrient
-
Returns the maximum path length, or -1 if unlimited.
- getMaxDiscriminatingPathLength() - Method in class edu.cmu.tetrad.search.utils.TsDagToPag
-
Retrieves the maximum length of any discriminating path.
- getMaximumCardinalityOrdering(Graph) - Static method in class edu.cmu.tetrad.bayes.GraphTools
-
Perform Tarjan and Yannakakis (1984) maximum cardinality search (MCS) to get the maximum cardinality ordering.
- getMaxIndegree() - Method in class edu.cmu.tetrad.search.SvarFges
-
The maximum of parents any nodes can have in the output pattern.
- getMaxIndex() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.Polynomial
-
Returns the highest variable index in any term.
- getMaxIndex() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.PolynomialTerm
-
Returns the highest variable index in this term.
- getMaxit() - Method in class edu.cmu.tetrad.search.work_in_progress.Glasso
-
Getter for the field
maxit
. - getMaxIterations() - Method in class edu.cmu.tetrad.cluster.KMeans
-
Return the maximum number of iterations, or -1 if the algorithm is allowed to run unconstrainted.
- getMaxLag() - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Getter for the field
maxLag
. - getMaxLag() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ActiveLagGraph
-
getMaxLag.
- getMaxLag() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ManualLagGraph
-
getMaxLag.
- getMaxLag() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BasicLagGraph
-
Maximum lag needed to fully represent the graph, which is the largest lag of any of the lagged factors stored in the graph.
- getMaxLag() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BooleanGlassFunction
-
getMaxLag.
- getMaxLag() - Method in interface edu.cmu.tetrad.study.gene.tetrad.gene.history.LagGraph
-
Maximum lag needed to fully represent the graph, which is the largest lag of any of the lagged factors stored in the graph.
- getMaxLag() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.LinearFunction
-
Returns the max lag of the history.
- getMaxLag() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.PolynomialFunction
-
Returns the max lag of the history.
- getMaxLag() - Method in interface edu.cmu.tetrad.study.gene.tetrad.gene.history.UpdateFunction
-
getMaxLag.
- getMaxLagAllowable() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ActiveLagGraph
-
getMaxLagAllowable.
- getMaxLagAllowable() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ManualLagGraph
-
getMaxLagAllowable.
- getMaxLagAllowable() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BasicLagGraph
-
Gets the maximum allowable lag.
- getMaxLagAllowable() - Method in interface edu.cmu.tetrad.study.gene.tetrad.gene.history.LagGraph
-
Gets the maximum allowable lag.
- getMaxMemUsage() - Method in class edu.cmu.tetrad.search.work_in_progress.Ion
-
getMaxMemUsage.
- getMaxNumShifts() - Method in class edu.cmu.tetrad.search.utils.ShiftSearch
-
Getter for the field
maxNumShifts
. - getMaxPathLength() - Method in class edu.cmu.tetrad.search.work_in_progress.IGFci
-
Retrieves the maximum length of any path, or -1 if unlimited.
- getMaxReachablePathLength() - Method in class edu.cmu.tetrad.search.Cfci
-
Returns the maximum length for any discriminating path.
- getMaxShift() - Method in class edu.cmu.tetrad.search.utils.ShiftSearch
-
Getter for the field
maxShift
. - getMaxTierForbiddenWithin() - Method in class edu.cmu.tetrad.data.Knowledge
-
getMaxTierForbiddenWithin.
- getMaxTotalEffect(Node, Node) - Method in class edu.cmu.tetrad.search.IdaCheck
-
Returns the maximum total effect value between two nodes.
- getMconn() - Method in class edu.cmu.tetrad.search.MarkovCheck.AllSubsetsIndependenceFacts
-
Returns the set of m-connection facts.
- getMConnectedVars(Node, Set<Node>) - Method in class edu.cmu.tetrad.graph.Paths
-
Retrieves the set of nodes that are connected to the given node
y
and are also present in the set of nodesz
. - getMConnectedVars(Node, Set<Node>, Map<Node, Set<Node>>) - Method in class edu.cmu.tetrad.graph.Paths
-
getMConnectedVars.
- getMean(Node) - Method in interface edu.cmu.tetrad.sem.ISemIm
-
getMean.
- getMean(Node) - Method in class edu.cmu.tetrad.sem.SemIm
-
Calculates the mean value associated with a given
Node
. - getMeanParameter(Node) - Method in class edu.cmu.tetrad.sem.SemPm
-
getMeanParameter.
- getMeans() - Method in class edu.cmu.tetrad.search.work_in_progress.MixtureModel
-
getMeans.
- getMeans() - Method in class edu.cmu.tetrad.sem.SemIm
-
getMeans.
- getMeanStdDev(Node) - Method in interface edu.cmu.tetrad.sem.ISemIm
-
getMeanStdDev.
- getMeanStdDev(Node) - Method in class edu.cmu.tetrad.sem.SemIm
-
Calculates the mean standard deviation for the given node.
- getMeasuredData() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.MeasurementSimulator
-
Returns the measured data that is the result of a simulation, in the form of a three-dimensional double array.
- getMeasuredData() - Method in class edu.cmu.tetrad.study.gene.tetradapp.model.MeasurementSimulatorParams
-
getMeasuredData.
- getMeasuredNodes() - Method in interface edu.cmu.tetrad.bayes.BayesIm
-
Returns the list of measured variables.
- getMeasuredNodes() - Method in class edu.cmu.tetrad.bayes.BayesPm
-
Returns the measured nodes.
- getMeasuredNodes() - Method in class edu.cmu.tetrad.bayes.DirichletBayesIm
-
getMeasuredNodes.
- getMeasuredNodes() - Method in class edu.cmu.tetrad.bayes.MlBayesIm
-
getMeasuredNodes.
- getMeasuredNodes() - Method in class edu.cmu.tetrad.bayes.MlBayesImObs
-
getMeasuredNodes.
- getMeasuredNodes() - Method in class edu.cmu.tetrad.bayes.UpdatedBayesIm
-
getMeasuredNodes.
- getMeasuredNodes() - Method in class edu.cmu.tetrad.sem.DagScorer
-
getMeasuredNodes.
- getMeasuredNodes() - Method in class edu.cmu.tetrad.sem.GeneralizedSemPm
-
Returns a list of measured nodes.
- getMeasuredNodes() - Method in interface edu.cmu.tetrad.sem.ISemIm
-
getMeasuredNodes.
- getMeasuredNodes() - Method in interface edu.cmu.tetrad.sem.Scorer
-
getMeasuredNodes.
- getMeasuredNodes() - Method in class edu.cmu.tetrad.sem.SemIm
-
The list of measured nodes for the semPm.
- getMeasuredNodes() - Method in class edu.cmu.tetrad.sem.SemPm
-
getMeasuredNodes.
- getMeasuredNodes() - Method in class edu.cmu.tetrad.sem.StandardizedSemIm
-
The list of measured nodes for the semPm.
- getMeasuredVarNames() - Method in class edu.cmu.tetrad.sem.SemPm
-
getMeasuredVarNames.
- getMethod() - Method in class edu.cmu.tetrad.data.ContinuousDiscretizationSpec
-
Returns the value of the method used for discretization.
- getMin() - Method in class edu.cmu.tetrad.data.Histogram
-
For a continuous target, returns the minimum value of the values histogrammed, for the unconditioned data.
- getMinChunk(int) - Method in class edu.cmu.tetrad.search.SvarFges
-
Returns the minimum number of operations to perform before parallelizing.
- getMinChunk(int) - Method in class edu.cmu.tetrad.search.work_in_progress.ISFges
-
Calculates the minimum chunk size for parallel processing.
- getMinClusterSize() - Method in class edu.cmu.tetrad.search.Mimbuild
-
jf Clusters smaller than this size will be tossed out.
- getMinClusterSize() - Method in class edu.cmu.tetrad.search.MimbuildTrek
-
Clusters smaller than this size will be tossed out.
- getMinCoef() - Method in class edu.cmu.tetrad.search.CpdagParentDistancesFromTrue
-
Returns the minimum estimated coefficients for each edge.
- getMinDepth() - Method in class edu.cmu.tetrad.search.work_in_progress.DMSearch
-
getMinDepth.
- getMinimum() - Method in class edu.cmu.tetrad.search.Mimbuild
-
Getter for the field
minimum
. - getMinTotalEffect(Node, Node) - Method in class edu.cmu.tetrad.search.IdaCheck
-
Gets the minimum total effect value between two nodes.
- getMisclassificationTable(Graph, Graph) - Static method in class edu.cmu.tetrad.algcomparison.CompareTwoGraphs
-
Returns a misclassification comparison of two graphs.
- getMissingValueMarker() - Method in class edu.cmu.tetrad.data.AbstractVariable
-
getMissingValueMarker.
- getMissingValueMarker() - Method in class edu.cmu.tetrad.data.ContinuousVariable
-
getMissingValueMarker.
- getMissingValueMarker() - Method in class edu.cmu.tetrad.data.DiscreteVariable
-
getMissingValueMarker.
- getMissingValueMarker() - Method in interface edu.cmu.tetrad.data.Variable
-
Returns the name of the variable.
- getMixedDataSet() - Method in class edu.cmu.tetrad.bayes.EmBayesEstimator
-
getMixedDataSet.
- getMixedDataSet(DataModel) - Static method in class edu.cmu.tetrad.data.SimpleDataLoader
-
Returns the datamodel case to DataSet if it is mixed.
- getMlag() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.LagGraphParams
-
Getter for the field
mlag
. - getMlag() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ManualLagGraphParams
-
Returns the maximum lag.
- getModelList() - Method in class edu.cmu.tetrad.data.DataModelList
-
Getter for the field
modelList
. - getModelPValue(List<List<Integer>>) - Method in class edu.cmu.tetrad.search.utils.ClusterSignificance
-
Returns the p-value for the given cluster.
- getModelScore() - Method in class edu.cmu.tetrad.search.Fges
-
Returns the score of the final search model.
- getModelScore() - Method in class edu.cmu.tetrad.search.FgesMb
-
Returns the score of the final search model.
- getMsep() - Method in class edu.cmu.tetrad.search.MarkovCheck.AllSubsetsIndependenceFacts
-
Returns the set of m-separation facts.
- getN() - Method in class edu.cmu.tetrad.data.Histogram
-
For a continuous target, returns the number of values histogrammed.
- getN() - Method in class edu.cmu.tetrad.regression.RegressionResult
-
Getter for the field
n
. - getN() - Method in class edu.cmu.tetrad.search.utils.Sextad
-
Getter for the field
n
. - getN() - Method in class edu.cmu.tetrad.search.work_in_progress.Glasso
-
Getter for the field
n
. - getN() - Method in class edu.cmu.tetrad.search.work_in_progress.Sextad
-
Getter for the field
n
. - getName() - Method in class edu.cmu.tetrad.calculator.expression.ConstantExpression
-
Getter for the field
name
. - getName() - Method in interface edu.cmu.tetrad.calculator.expression.ExpressionDescriptor
-
getName.
- getName() - Method in class edu.cmu.tetrad.data.AbstractVariable
-
Getter for the field
name
. - getName() - Method in class edu.cmu.tetrad.data.BoxDataSet
-
Gets the name of the data set.
- getName() - Method in class edu.cmu.tetrad.data.CorrelationMatrixOnTheFly
-
Gets the name of the covariance matrix.
- getName() - Method in class edu.cmu.tetrad.data.CovarianceMatrix
-
Gets the name of the covariance matrix.
- getName() - Method in class edu.cmu.tetrad.data.CovarianceMatrixOnTheFly
-
Gets the name of the covariance matrix.
- getName() - Method in interface edu.cmu.tetrad.data.DataModel
-
getName.
- getName() - Method in class edu.cmu.tetrad.data.DataModelList
-
Gets the name of the data model list.
- getName() - Method in interface edu.cmu.tetrad.data.DataSet
-
getName.
- getName() - Method in interface edu.cmu.tetrad.data.ICovarianceMatrix
-
Gets the name of the covariance matrix.
- getName() - Method in class edu.cmu.tetrad.data.IndependenceFacts
-
Getter for the field
name
. - getName() - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
Gets the name of the data set.
- getName() - Method in class edu.cmu.tetrad.data.TimeSeriesData
-
Getter for the field
name
. - getName() - Method in class edu.cmu.tetrad.graph.GraphNode
-
Getter for the field
name
. - getName() - Method in interface edu.cmu.tetrad.graph.Node
-
Returns the name of this node.
- getName() - Method in class edu.cmu.tetrad.graph.TimeLagGraph.NodeId
-
Getter for the field
name
. - getName() - Method in class edu.cmu.tetrad.sem.Parameter
-
Getter for the field
name
. - getName() - Method in class edu.cmu.tetrad.simulation.PRAOerrors
-
getName.
- getName() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.AbstractNbComponent
-
Getter for the field
name
. - getName() - Method in interface edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.NbComponent
-
Returns the name.
- getName() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.BasicMatrix
-
Returns name of this matrix
- getName() - Method in class edu.cmu.tetrad.util.dist.Beta
-
Please don't make me say it...
- getName() - Method in class edu.cmu.tetrad.util.dist.ChiSquare
-
getName.
- getName() - Method in class edu.cmu.tetrad.util.dist.Discrete
-
getName.
- getName() - Method in interface edu.cmu.tetrad.util.dist.Distribution
-
Returns the name of the distribution.
- getName() - Method in class edu.cmu.tetrad.util.dist.Exponential
-
getName.
- getName() - Method in class edu.cmu.tetrad.util.dist.Gamma
-
getName.
- getName() - Method in class edu.cmu.tetrad.util.dist.GaussianPower
-
Getter for the field
name
. - getName() - Method in class edu.cmu.tetrad.util.dist.Indicator
-
getName.
- getName() - Method in class edu.cmu.tetrad.util.dist.LogNormal
-
getName.
- getName() - Method in class edu.cmu.tetrad.util.dist.MixtureOfGaussians
-
getName.
- getName() - Method in class edu.cmu.tetrad.util.dist.Normal
-
getName.
- getName() - Method in class edu.cmu.tetrad.util.dist.Poisson
-
getName.
- getName() - Method in class edu.cmu.tetrad.util.dist.SingleValue
-
Returns the name of the distribution.
- getName() - Method in class edu.cmu.tetrad.util.dist.Split
-
getName.
- getName() - Method in class edu.cmu.tetrad.util.dist.TruncatedNormal
-
getName.
- getName() - Method in class edu.cmu.tetrad.util.dist.Uniform
-
getName.
- getNameNoLag(Object) - Method in class edu.cmu.tetrad.search.SvarFci
-
Returns the name of the given object without any lagging characters.
- getNameNoLag(Object) - Method in class edu.cmu.tetrad.search.SvarFges
-
Retrieves the name from the given object without any lag.
- getNameNoLag(Object) - Method in class edu.cmu.tetrad.search.utils.SvarSetEndpointStrategy
-
getNameNoLag.
- getNameNoLag(Object) - Static method in class edu.cmu.tetrad.search.utils.TsUtils
-
getNameNoLag.
- getNameNoLag(Object) - Method in class edu.cmu.tetrad.sem.LargeScaleSimulation
-
getNameNoLag.
- getNameNoLag(Object) - Static method in class edu.cmu.tetrad.study.performance.Comparison2
-
getNameNoLag.
- getNames() - Method in class edu.cmu.tetrad.util.ParamDescriptions
-
getNames.
- getNeighbors(Node) - Method in class edu.cmu.tetrad.search.FciOrientDijkstra.Graph
-
Returns the neighbors of a node, reachable via DijkstraEdges in the grph.
- getNeighbors(Node) - Method in class edu.cmu.tetrad.search.utils.R5R9Dijkstra.Graph
-
Retrieves the filtered neighbors of a given node.
- getNewSemIm() - Method in interface edu.cmu.tetrad.search.work_in_progress.Hbsms
-
getNewSemIm.
- getNewSemIm() - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsBeam
-
Getter for the field
newSemIm
. - getNewSemIm() - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsGes
-
Getter for the field
newSemIm
. - getNextOffset() - Method in class edu.cmu.tetrad.calculator.parser.ExpressionLexer
-
Getter for the field
nextOffset
. - getNextOffset() - Method in class edu.cmu.tetrad.calculator.parser.ExpressionParser
-
getNextOffset.
- getNode() - Method in class edu.cmu.tetrad.search.utils.GrowShrinkTree
-
Getter for the field
node
. - getNode(int) - Method in interface edu.cmu.tetrad.bayes.BayesIm
-
Returns the name of the given node.
- getNode(int) - Method in class edu.cmu.tetrad.bayes.BayesPm
-
Returns the node at the given index.
- getNode(int) - Method in class edu.cmu.tetrad.bayes.DirichletBayesIm
-
Returns the name of the given node.
- getNode(int) - Method in class edu.cmu.tetrad.bayes.Evidence
-
getNode.
- getNode(int) - Method in class edu.cmu.tetrad.bayes.MlBayesIm
-
Retrieves the node at the specified index.
- getNode(int) - Method in class edu.cmu.tetrad.bayes.MlBayesImObs
-
Returns the name of the given node.
- getNode(int) - Method in class edu.cmu.tetrad.bayes.UpdatedBayesIm
-
Returns the name of the given node.
- getNode(int) - Method in class edu.cmu.tetrad.sem.SemEvidence
-
getNode.
- getNode(int) - Method in class edu.cmu.tetrad.sem.SemManipulation
-
getNode.
- getNode(Node) - Method in class edu.cmu.tetrad.search.IndTestIod
-
Return the node associated with the given variable in the graph.
- getNode(Node) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestSepsetDci
-
getNode.
- getNode(String) - Method in interface edu.cmu.tetrad.bayes.BayesIm
-
Returns the name of the given node.
- getNode(String) - Method in class edu.cmu.tetrad.bayes.BayesPm
-
Returns the node by the given name.
- getNode(String) - Method in class edu.cmu.tetrad.bayes.DirichletBayesIm
-
getNode.
- getNode(String) - Method in class edu.cmu.tetrad.bayes.MlBayesIm
-
getNode.
- getNode(String) - Method in class edu.cmu.tetrad.bayes.MlBayesImObs
-
getNode.
- getNode(String) - Method in class edu.cmu.tetrad.bayes.UpdatedBayesIm
-
getNode.
- getNode(String) - Method in class edu.cmu.tetrad.graph.Dag
-
Retrieves the node in the graph with the specified name.
- getNode(String) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
getNode.
- getNode(String) - Method in interface edu.cmu.tetrad.graph.Graph
-
getNode.
- getNode(String) - Method in class edu.cmu.tetrad.graph.LagGraph
-
getNode.
- getNode(String) - Method in class edu.cmu.tetrad.graph.SemGraph
-
getNode.
- getNode(String) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Retrieves a Node from the graph based on the given name.
- getNode(String) - Method in class edu.cmu.tetrad.sem.GeneralizedSemPm
-
Returns the Node with the given name.
- getNode(String, int) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
getNode.
- getNode1() - Method in class edu.cmu.tetrad.graph.Edge
-
Getter for the field
node1
. - getNode2() - Method in class edu.cmu.tetrad.graph.Edge
-
Getter for the field
node2
. - getNodeA() - Method in class edu.cmu.tetrad.sem.Parameter
-
Getter for the field
nodeA
. - getNodeB() - Method in class edu.cmu.tetrad.sem.Parameter
-
Getter for the field
nodeB
. - getNodeDists(Graph) - Static method in class edu.pitt.csb.mgm.MixedUtils
-
getNodeDists.
- getNodeExpression(Node) - Method in class edu.cmu.tetrad.sem.GeneralizedSemPm
-
getNodeExpression.
- getNodeExpressionString(Node) - Method in class edu.cmu.tetrad.sem.GeneralizedSemPm
-
getNodeExpressionString.
- getNodeId(Node) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
getNodeId.
- getNodeIndex() - Method in class edu.cmu.tetrad.bayes.BayesPm
-
Returns the node index.
- getNodeIndex() - Method in class edu.cmu.tetrad.sem.SemProposition
-
Returns the index of the node.
- getNodeIndex(Node) - Method in interface edu.cmu.tetrad.bayes.BayesIm
-
Returns the index of the given node.
- getNodeIndex(Node) - Method in class edu.cmu.tetrad.bayes.DirichletBayesIm
-
Returns the index of the given node.
- getNodeIndex(Node) - Method in class edu.cmu.tetrad.bayes.MlBayesIm
-
Returns the index of the given node in the nodes array.
- getNodeIndex(Node) - Method in class edu.cmu.tetrad.bayes.MlBayesImObs
-
Returns the index of the given node.
- getNodeIndex(Node) - Method in class edu.cmu.tetrad.bayes.UpdatedBayesIm
-
Returns the index of the given node.
- getNodeIndex(Node) - Method in class edu.cmu.tetrad.sem.SemEvidence
-
getNodeIndex.
- getNodeIndex(String) - Method in class edu.cmu.tetrad.bayes.Evidence
-
getNodeIndex.
- getNodeIndex(String) - Method in class edu.cmu.tetrad.bayes.Proposition
-
getNodeIndex.
- getNodeIndex(String) - Method in class edu.cmu.tetrad.sem.SemEvidence
-
getNodeIndex.
- getNodeIndex(String) - Method in class edu.cmu.tetrad.sem.SemManipulation
-
getNodeIndex.
- getNodeName(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.akutsu.RevealOutputGraph
-
Returns the name of the variable at the given index.
- getNodeName(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.reveal.RevealOutputGraph
-
Returns the name of the variable at the given index.
- getNodeName(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.RevealOutputGraph
-
Returns the name of the variable at the given index.
- getNodeName(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.BasicGraph
-
Returns the name of node
i
in this graph - getNodeName(int) - Method in interface edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.OutputGraph
-
Returns the name of the variable at the given index.
- getNodeNames() - Method in class edu.cmu.tetrad.graph.Dag
-
getNodeNames.
- getNodeNames() - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
getNodeNames.
- getNodeNames() - Method in interface edu.cmu.tetrad.graph.Graph
-
getNodeNames.
- getNodeNames() - Method in class edu.cmu.tetrad.graph.LagGraph
-
getNodeNames.
- getNodeNames() - Method in class edu.cmu.tetrad.graph.SemGraph
-
getNodeNames.
- getNodeNames() - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Returns a list of node names in the graph.
- getNodes() - Method in class edu.cmu.tetrad.bayes.JunctionTreeAlgorithm
-
getNodes.
- getNodes() - Method in class edu.cmu.tetrad.graph.Dag
-
getNodes.
- getNodes() - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
getNodes.
- getNodes() - Method in interface edu.cmu.tetrad.graph.Graph
-
getNodes.
- getNodes() - Method in class edu.cmu.tetrad.graph.LagGraph
-
getNodes.
- getNodes() - Method in class edu.cmu.tetrad.graph.SemGraph
-
getNodes.
- getNodes() - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Retrieves a list of nodes from the graph.
- getNodes() - Method in class edu.cmu.tetrad.search.Fas
-
Retrieves the list of nodes in the graph.
- getNodes() - Method in class edu.cmu.tetrad.search.Fasd
-
Retrieves the list of nodes from the current object.
- getNodes() - Method in class edu.cmu.tetrad.search.FciOrientDijkstra.Graph
-
Returns the nodes in the graph.
- getNodes() - Method in class edu.cmu.tetrad.search.Ida.NodeEffects
-
Returns the nodes.
- getNodes() - Method in class edu.cmu.tetrad.search.IdaCheck
-
Returns a list of nodes.
- getNodes() - Method in interface edu.cmu.tetrad.search.IFas
-
Returns the nodes searched over.
- getNodes() - Method in class edu.cmu.tetrad.search.Pcd
-
Retrieves the list of nodes in the graph.
- getNodes() - Method in class edu.cmu.tetrad.search.SvarFas
-
Retrieves the list of nodes from the current object.
- getNodes() - Method in class edu.cmu.tetrad.search.utils.R5R9Dijkstra.Graph
-
Retrieves the nodes in the graph.
- getNodes() - Method in class edu.cmu.tetrad.search.utils.Sextad
-
Returns the list of nodes.
- getNodes() - Method in class edu.cmu.tetrad.search.utils.Tetrad
-
getNodes.
- getNodes() - Method in class edu.cmu.tetrad.search.work_in_progress.FasFdr
-
Returns the nodes searched over.
- getNodes() - Method in class edu.cmu.tetrad.search.work_in_progress.Sextad
-
getNodes.
- getNodes() - Method in class edu.cmu.tetrad.search.work_in_progress.VcFas
-
getNodes.
- getNodes() - Method in class edu.cmu.tetrad.sem.GeneralizedSemPm
-
Retrieves a list of nodes.
- getNodesInEvidence() - Method in class edu.cmu.tetrad.sem.SemEvidence
-
getNodesInEvidence.
- getNodesInTo(Node, Endpoint) - Method in class edu.cmu.tetrad.graph.Dag
-
Retrieves a list of nodes in the given graph that have edges pointing into the specified node and endpoint.
- getNodesInTo(Node, Endpoint) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
Nodes adjacent to the given node with the given proximal endpoint.
- getNodesInTo(Node, Endpoint) - Method in interface edu.cmu.tetrad.graph.Graph
-
Nodes adjacent to the given node with the given proximal endpoint.
- getNodesInTo(Node, Endpoint) - Method in class edu.cmu.tetrad.graph.LagGraph
-
Nodes adjacent to the given node with the given proximal endpoint.
- getNodesInTo(Node, Endpoint) - Method in class edu.cmu.tetrad.graph.SemGraph
-
Nodes adjacent to the given node with the given proximal endpoint.
- getNodesInTo(Node, Endpoint) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Retrieves a list of nodes that have an incoming edge from a specific node and endpoint.
- getNodesOutTo(Node, Endpoint) - Method in class edu.cmu.tetrad.graph.Dag
-
Retrieves a list of nodes that have outgoing edges to a specified node and endpoint.
- getNodesOutTo(Node, Endpoint) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
Nodes adjacent to the given node with the given distal endpoint.
- getNodesOutTo(Node, Endpoint) - Method in interface edu.cmu.tetrad.graph.Graph
-
Nodes adjacent to the given node with the given distal endpoint.
- getNodesOutTo(Node, Endpoint) - Method in class edu.cmu.tetrad.graph.LagGraph
-
Nodes adjacent to the given node with the given distal endpoint.
- getNodesOutTo(Node, Endpoint) - Method in class edu.cmu.tetrad.graph.SemGraph
-
Nodes adjacent to the given node with the given distal endpoint.
- getNodesOutTo(Node, Endpoint) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Retrieves the list of nodes in a graph that have an outgoing edge to the given node and endpoint.
- getNodeSubstitutedString(Node) - Method in class edu.cmu.tetrad.sem.GeneralizedSemIm
-
Retrieves the substituted string representation of a given Node.
- getNodeSubstitutedString(Node, Map<String, Double>) - Method in class edu.cmu.tetrad.sem.GeneralizedSemIm
-
Retrieves the substituted string representation of a given Node.
- getNodeType() - Method in class edu.cmu.tetrad.data.ContinuousVariable
-
Getter for the field
nodeType
. - getNodeType() - Method in class edu.cmu.tetrad.data.DiscreteVariable
-
Getter for the field
nodeType
. - getNodeType() - Method in class edu.cmu.tetrad.graph.GraphNode
-
Getter for the field
nodeType
. - getNodeType() - Method in interface edu.cmu.tetrad.graph.Node
-
Returns the node type for this node.
- getNodeVariableType() - Method in class edu.cmu.tetrad.data.ContinuousVariable
-
Returns the node shape for this node.
- getNodeVariableType() - Method in class edu.cmu.tetrad.data.DiscreteVariable
-
Returns the node shape for this node.
- getNodeVariableType() - Method in class edu.cmu.tetrad.graph.GraphNode
-
Returns the node shape for this node.
- getNodeVariableType() - Method in interface edu.cmu.tetrad.graph.Node
-
Returns the node shape for this node.
- getNonadjacencies() - Method in class edu.cmu.tetrad.search.Pc
-
Returns the non-adjacencies of the searched graph.
- getNoncolliders() - Method in class edu.cmu.tetrad.search.work_in_progress.GraphChange
-
Return noncolliders
- getNoncolliderTriples() - Method in class edu.cmu.tetrad.search.utils.PcCommon
-
Getter for the field
noncolliderTriples
. - getNoncolliderTriples() - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpc
-
Getter for the field
noncolliderTriples
. - getNoncolliderTriples() - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpcFast
-
Getter for the field
noncolliderTriples
. - getNoncolliderTriples() - Method in class edu.cmu.tetrad.search.work_in_progress.VcPc
-
Getter for the field
noncolliderTriples
. - getNoncolliderTriples() - Method in class edu.cmu.tetrad.search.work_in_progress.VcPcAlt
-
Getter for the field
noncolliderTriples
. - getNoncolliderTriples() - Method in class edu.cmu.tetrad.search.work_in_progress.VcPcFast
-
Getter for the field
noncolliderTriples
. - getNonparanormalTransformed(DataSet) - Static method in class edu.cmu.tetrad.data.DataTransforms
-
getNonparanormalTransformed.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.AdjacencyFn
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.AdjacencyFp
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.AdjacencyFpr
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.AdjacencyPrecision
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.AdjacencyRecall
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.AdjacencyTn
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.AdjacencyTp
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.AdjacencyTpr
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.AncestorF1
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.AncestorPrecision
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.AncestorRecall
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.AncestralPrecision
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.AncestralRecall
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.ArrowheadFn
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.ArrowheadFp
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.ArrowheadFpr
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.ArrowheadPrecision
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.ArrowheadPrecisionCommonEdges
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.ArrowheadRecall
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.ArrowheadRecallCommonEdges
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.ArrowheadTn
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.ArrowheadTp
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.AverageDegreeEst
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.AverageDegreeTrue
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.BicDiff
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.BicDiffPerRecord
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.BicEst
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.BicTrue
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.BidirectedEst
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.BidirectedFP
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.BidirectedLatentPrecision
-
Calculates the normalized value of a given statistic value.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.BidirectedPrecision
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.BidirectedRecall
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.BidirectedTP
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.BidirectedTrue
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.CommonAncestorFalseNegativeBidirected
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.CommonAncestorFalsePositiveBidirected
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.CommonAncestorTruePositiveBidirected
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.CommonMeasuredAncestorRecallBidirected
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.CorrectSkeleton
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.DefiniteDirectedPathPrecision
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.DefiniteDirectedPathRecall
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.DensityEst
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.DensityTrue
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.ElapsedCpuTime
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.F1Adj
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.F1All
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.F1Arrow
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.FalseNegativesAdjacencies
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.FalsePositiveAdjacencies
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.FBetaAdj
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.FractionDependentUnderAlternative
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.FractionDependentUnderNull
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.GraphExactlyRight
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.IdaAverageSquaredDistance
-
Returns a normalized value of the statistic.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.IdaCheckAvgMaxSquaredDiffEstTrue
-
Calculates the normalized value of a statistic.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.IdaCheckAvgMinSquaredDiffEstTrue
-
Calculates the normalized value of a statistic.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.IdaCheckAvgSquaredDifference
-
Calculates the normalized value of a statistic.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.IdaMaximumSquaredDifference
-
Returns a normalized value of the statistic.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.IdaMinimumSquaredDifference
-
Returns a normalized value of the statistic.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.ImpliedArrowOrientationRatioEst
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.ImpliedArrowOrientationRatioEst2
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.ImpliedOrientationRatioEst
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.ImpliesLegalMag
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.KnowledgeSatisfied
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.LatentCommonAncestorFalseNegativeBidirected
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.LatentCommonAncestorFalsePositiveBidirected
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.LatentCommonAncestorRecallBidirected
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.LatentCommonAncestorTruePositiveBidirected
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.LegalPag
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.LocalGraphPrecision
-
This method returns the normalized value of a given statistic.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.LocalGraphRecall
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.MagCgScore
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.MagDgScore
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.MagSemScore
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckAdPasses
-
Calculates the normalized value of a statistic.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckAdPassesBestOf10
-
Calculates the normalized value of a statistic.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckAndersonDarlingP
-
Calculates the normalized value of a statistic.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckAndersonDarlingPBestOf10
-
Calculates the normalized value of a statistic.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckBinomialP
-
Calculates the normalized value of a statistic.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckBinomialPBestOf10
-
Calculates the normalized value of a statistic.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckKolmogorovSmirnoffP
-
Calculates the normalized value of a statistic.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckKolmogorovSmirnoffPBestOf10
-
Calculates the normalized value of a statistic.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckKsPasses
-
Calculates the normalized value of a statistic.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckKsPassesBestOf10
-
Calculates the normalized value of a statistic.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.MathewsCorrAdj
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.MathewsCorrArrow
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.Maximal
-
Returns the normalized value of the given statistic value.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.MaximalityCondition
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NoAlmostCyclicPathsCondition
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NoCyclicPathsCondition
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NodesInCyclesPrecision
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NodesInCyclesRecall
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NonancestorPrecision
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NonancestorRecall
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NoSemidirectedF1
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NoSemidirectedPrecision
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NoSemidirectedRecall
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumAmbiguousTriples
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumberArrowsEst
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumberArrowsNotInUnshieldedCollidersEst
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumberCollidersEst
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumberEdgesEst
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumberEdgesInCollidersEst
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumberEdgesInUnshieldedCollidersEst
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumberEdgesTrue
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumberOfEdgesEst
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumberOfEdgesTrue
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumberTailsEst
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumberUnshieldedCollidersEst
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumBidirectedBothNonancestorAncestor
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumBidirectedEdgesEst
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumBidirectedEdgesTrue
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumColoredDD
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumColoredNL
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumColoredPD
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumColoredPL
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCommonMeasuredAncestorBidirected
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCompatibleDefiniteDirectedEdgeAncestors
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCompatibleDirectedEdgeConfounded
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCompatibleDirectedEdgeNonAncestors
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCompatibleEdges
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCompatiblePossiblyDirectedEdgeAncestors
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCompatiblePossiblyDirectedEdgeNonAncestors
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCompatibleVisibleNonancestors
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCorrectBidirected
-
Returns the normalized value of the given statistic.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCorrectDDAncestors
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCorrectPDAncestors
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCorrectVisibleEdges
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCoveringAdjacenciesInPag
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumDefinitelyDirected
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumDefinitelyNotDirectedPaths
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumDirectedEdgeAncestors
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumDirectedEdgeBnaMeasuredCounfounded
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumDirectedEdgeNoMeasureAncestors
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumDirectedEdgeNotAncNotRev
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumDirectedEdgeReversed
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumDirectedEdges
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumDirectedPathsEst
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumDirectedPathsTrue
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumDirectedShouldBePartiallyDirected
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumEdgeInEstInTrue
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumGenuineAdjacenciesInPag
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumIncorrectDDAncestors
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumIncorrectPDAncestors
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumIncorrectVisibleAncestors
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumLatentCommonAncestorBidirected
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumNondirectedEdges
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumParametersEst
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumPartiallyOrientedEdges
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumPossiblyDirected
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumUndirectedEdges
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumVisibleEdgeEst
-
Returns the normalized value of the given value.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumVisibleEdges
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumVisibleEdgeTrue
-
Returns the normalized value of a given statistic.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.OrientationPrecision
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.OrientationRecall
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.PagAdjacencyPrecision
-
Retrieves the normalized value of a given statistic.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.PagAdjacencyRecall
-
Retrieves the normalized value of this statistic.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.ParameterColumn
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.PercentAmbiguous
-
Calculates the normalized value of a statistic given the original value.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.PercentBidirectedEdges
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.ProportionSemidirectedPathsNotReversedEst
-
Retrieves the normalized value of the given statistic.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.ProportionSemidirectedPathsNotReversedTrue
-
Calculates the normalized value of a given statistic.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.PvalueDistanceToAlpha
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.PvalueUniformityUnderNull
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.SemidirectedPathF1
-
Retrieves the normalized value of the statistic.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.SemidirectedPrecision
-
Returns the normalized value of the statistic.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.SemidirectedRecall
-
Retrieves the normalized value of the statistic.
- getNormValue(double) - Method in interface edu.cmu.tetrad.algcomparison.statistic.Statistic
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.StructuralHammingDistance
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.TailPrecision
-
Retrieves the normalized value of the statistic.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.TailRecall
-
Returns the normalized value of a statistic.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.TrueDagFalseNegativesArrows
-
Retrieves the normalized value of a statistic.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.TrueDagFalseNegativesTails
-
Retrieves the normalized value of the given statistic.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.TrueDagFalsePositiveArrow
-
Retrieves the normalized value of the statistic.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.TrueDagFalsePositiveTails
-
Calculates the normalized value of a statistic.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.TrueDagPrecisionArrow
-
Retrieves the normalized value of the statistic.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.TrueDagPrecisionTails
-
Calculates the normalized value of a statistic.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.TrueDagRecallArrows
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.TrueDagRecallTails
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.TrueDagTruePositiveArrow
-
Retrieves the normalized value of the statistic.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.TrueDagTruePositiveDirectedPathNonancestor
-
Retrieves the normalized value of a statistic.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.TrueDagTruePositiveTails
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.TwoCycleFalseNegative
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.TwoCycleFalsePositive
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.TwoCyclePrecision
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.TwoCycleRecall
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNormValue(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.TwoCycleTruePositive
-
Returns a mapping of the statistic to the interval [0, 1], with higher being better.
- getNparents() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.AbstractNbComponent
-
Sets the number of parents.
- getNumAllowed(int) - Method in class edu.cmu.tetrad.bayes.Proposition
-
getNumAllowed.
- getNumAllowedCategories(int) - Method in class edu.cmu.tetrad.bayes.Proposition
-
getNumAllowedCategories.
- getNumber() - Method in class edu.cmu.tetrad.sem.ParamConstraint
-
Getter for the field
number
. - getNumberFormat() - Method in class edu.cmu.tetrad.data.BoxDataSet
-
getNumberFormat.
- getNumberFormat() - Method in interface edu.cmu.tetrad.data.DataSet
-
The number format of the dataset.
- getNumberFormat() - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
getNumberFormat.
- getNumberFormat() - Method in class edu.cmu.tetrad.util.NumberFormatUtil
-
getNumberFormat.
- getNumberOfArguments() - Method in interface edu.cmu.tetrad.calculator.expression.ExpressionSignature
-
getNumberOfArguments.
- getNumberOfColumns(DataModel) - Static method in class edu.cmu.tetrad.util.MultidataUtils
-
getNumberOfColumns.
- getNumberOfNodes() - Method in class edu.cmu.tetrad.bayes.JunctionTreeAlgorithm
-
getNumberOfNodes.
- getNumCases() - Method in class edu.cmu.tetrad.classify.ClassifierBayesUpdaterDiscrete
-
Returns the number of cases for the data.
- getNumCategories() - Method in class edu.cmu.tetrad.data.DiscreteVariable
-
getNumCategories.
- getNumCategories(int) - Method in class edu.cmu.tetrad.bayes.Evidence
-
getNumCategories.
- getNumCategories(int) - Method in class edu.cmu.tetrad.bayes.Proposition
-
getNumCategories.
- getNumCategories(Node) - Method in class edu.cmu.tetrad.bayes.BayesPm
-
Returns the number of values for the given node.
- getNumCauses() - Method in class edu.cmu.tetrad.search.Cstar.Record
-
Retrieves the number of possible causes of the target in a record.
- getNumCells() - Method in class edu.cmu.tetrad.search.utils.AdTree
-
Return the number of cells in the table.
- getNumCells() - Method in class edu.cmu.tetrad.util.MultiDimIntTable
-
Returns the number of cells in the table.
- getNumCellsPerDish() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.MeasurementSimulator
-
Returns the number of cells per dish.
- getNumCellsPerDish() - Method in class edu.cmu.tetrad.study.gene.tetradapp.model.MeasurementSimulatorParams
-
getNumCellsPerDish.
- getNumClusters() - Method in class edu.cmu.tetrad.cluster.KMeans
-
getNumClusters.
- getNumClusters() - Method in class edu.cmu.tetrad.data.Clusters
-
Getter for the field
numClusters
. - getNumColumns() - Method in interface edu.cmu.tetrad.bayes.CptMap
-
Retrieves the number of columns in the CptMap.
- getNumColumns() - Method in class edu.cmu.tetrad.bayes.CptMapCounts
-
Returns the number of columns in the probability map.
- getNumColumns() - Method in class edu.cmu.tetrad.bayes.CptMapProbs
-
Returns the number of columns in the probability map.
- getNumColumns() - Method in class edu.cmu.tetrad.data.BoxDataSet
-
getNumColumns.
- getNumColumns() - Method in interface edu.cmu.tetrad.data.DataSet
-
getNumColumns.
- getNumColumns() - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
getNumColumns.
- getNumColumns() - Method in class edu.cmu.tetrad.util.Matrix
-
getNumColumns.
- getNumColumns() - Method in class edu.cmu.tetrad.util.TextTable
-
getNumColumns.
- getNumColumns(int) - Method in interface edu.cmu.tetrad.bayes.BayesIm
-
Returns the number of columns.
- getNumColumns(int) - Method in class edu.cmu.tetrad.bayes.DirichletBayesIm
-
Returns the number of columns.
- getNumColumns(int) - Method in class edu.cmu.tetrad.bayes.MlBayesIm
-
Returns the number of columns in the specified node.
- getNumColumns(int) - Method in class edu.cmu.tetrad.bayes.MlBayesImObs
-
Returns the number of columns.
- getNumColumns(int) - Method in class edu.cmu.tetrad.bayes.UpdatedBayesIm
-
Returns the number of columns.
- getNumCombinations(int, int) - Static method in class edu.cmu.tetrad.util.ChoiceGenerator
-
Returns the number of combinations of a choose b.
- getNumCombinations(int, int) - Static method in class edu.cmu.tetrad.util.SublistGenerator
-
getNumCombinations.
- getNumCoveringAdjacenciesInPag(Graph, Graph) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Returns the number of covering edges in the given estimated partial ancestral graph (PAG) with respect to the given true PAG.
- getnumCPDAGsToStore() - Method in class edu.cmu.tetrad.search.SvarFges
-
Getter for the field
numCPDAGsToStore
. - getNumDataModels() - Method in class edu.cmu.tetrad.algcomparison.algorithm.ExternalAlgorithm
-
getNumDataModels.
- getNumDataModels() - Method in class edu.cmu.tetrad.algcomparison.simulation.BayesNetSimulation
-
Returns the number of data models.
- getNumDataModels() - Method in class edu.cmu.tetrad.algcomparison.simulation.ConditionalGaussianSimulation
-
Returns the number of data models.
- getNumDataModels() - Method in class edu.cmu.tetrad.algcomparison.simulation.GeneralSemSimulation
-
Returns the number of data models.
- getNumDataModels() - Method in class edu.cmu.tetrad.algcomparison.simulation.GeneralSemSimulationSpecial1
-
Returns the number of data models.
- getNumDataModels() - Method in class edu.cmu.tetrad.algcomparison.simulation.LeeHastieSimulation
-
Returns the number of data models.
- getNumDataModels() - Method in class edu.cmu.tetrad.algcomparison.simulation.LinearFisherModel
-
Returns the number of data models.
- getNumDataModels() - Method in class edu.cmu.tetrad.algcomparison.simulation.LinearSineSimulation
-
Returns the number of data models.
- getNumDataModels() - Method in class edu.cmu.tetrad.algcomparison.simulation.NLSemSimulation
-
Returns the number of data models.
- getNumDataModels() - Method in class edu.cmu.tetrad.algcomparison.simulation.SemSimulation
-
Returns the number of data models.
- getNumDataModels() - Method in class edu.cmu.tetrad.algcomparison.simulation.SemThenDiscretize
-
Returns the number of data models.
- getNumDataModels() - Method in interface edu.cmu.tetrad.algcomparison.simulation.Simulation
-
Returns the number of data models.
- getNumDataModels() - Method in class edu.cmu.tetrad.algcomparison.simulation.SingleDatasetSimulation
-
Returns the number of data models (1).
- getNumDataModels() - Method in class edu.cmu.tetrad.algcomparison.simulation.StandardizedSemSimulation
-
Returns the number of data models.
- getNumDataModels() - Method in class edu.cmu.tetrad.algcomparison.simulation.TimeSeriesSemSimulation
-
Returns the number of data models.
- getNumDataModels() - Method in class edu.cmu.tetrad.data.simulation.LoadContinuousDataAndGraphs
-
Returns the number of data models.
- getNumDataModels() - Method in class edu.cmu.tetrad.data.simulation.LoadContinuousDataAndSingleGraph
-
Returns the number of data models.
- getNumDataModels() - Method in class edu.cmu.tetrad.data.simulation.LoadContinuousDataSmithSim
-
Returns the number of data models.
- getNumDataModels() - Method in class edu.cmu.tetrad.data.simulation.LoadDataAndGraphs
-
Returns the number of data models.
- getNumDataModels() - Method in class edu.cmu.tetrad.data.simulation.LoadDataFromFileWithoutGraph
-
Returns the number of data models.
- getNumDimensions() - Method in class edu.cmu.tetrad.util.MultiDimIntTable
-
Returns the number of dimensions in the table.
- getNumDishes() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.MeasurementSimulator
-
Returns the number of dishes to simulate.
- getNumDishes() - Method in class edu.cmu.tetrad.study.gene.tetradapp.model.MeasurementSimulatorParams
-
getNumDishes.
- getNumEdges() - Method in class edu.cmu.tetrad.graph.Dag
-
getNumEdges.
- getNumEdges() - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
getNumEdges.
- getNumEdges() - Method in interface edu.cmu.tetrad.graph.Graph
-
getNumEdges.
- getNumEdges() - Method in class edu.cmu.tetrad.graph.LagGraph
-
getNumEdges.
- getNumEdges() - Method in class edu.cmu.tetrad.graph.SemGraph
-
getNumEdges.
- getNumEdges() - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Retrieves the number of edges in the graph.
- getNumEdges() - Method in class edu.cmu.tetrad.search.Grasp
-
Returns the number of edges in the DAG implied by the discovered permutation.
- getNumEdges() - Method in class edu.cmu.tetrad.search.utils.TeyssierScorer
-
getNumEdges.
- getNumEdges() - Method in class edu.cmu.tetrad.search.work_in_progress.GraspTol
-
getNumEdges.
- getNumEdges() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.BasicGraph
-
Returns the Total # of edges in this graph
- getNumEdges() - Method in class edu.cmu.tetrad.study.performance.ComparisonParameters
-
Getter for the field
numEdges
. - getNumEdges(Node) - Method in class edu.cmu.tetrad.graph.Dag
-
Returns the number of edges connected to the specified node.
- getNumEdges(Node) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
getNumEdges.
- getNumEdges(Node) - Method in interface edu.cmu.tetrad.graph.Graph
-
getNumEdges.
- getNumEdges(Node) - Method in class edu.cmu.tetrad.graph.LagGraph
-
getNumEdges.
- getNumEdges(Node) - Method in class edu.cmu.tetrad.graph.SemGraph
-
getNumEdges.
- getNumEdges(Node) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Retrieves the number of edges connected to a specific node.
- getNumEffects() - Method in class edu.cmu.tetrad.search.Cstar.Record
-
Retrieves the number of possible effects of the target in a record.
- getNumericalMean() - Method in class edu.cmu.tetrad.sem.EmpiricalCdf
-
Returns the numerical mean of the empirical cumulative distribution function (CDF).
- getNumericalVariance() - Method in class edu.cmu.tetrad.sem.EmpiricalCdf
-
Returns the numerical variance of the empirical cumulative distribution function (CDF).
- getNumFactors() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ActiveLagGraph
-
getNumFactors.
- getNumFactors() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ManualLagGraph
-
getNumFactors.
- getNumFactors() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BasicLagGraph
-
Returns the number of factors represented in the graph.
- getNumFactors() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BooleanGlassFunction
-
getNumFactors.
- getNumFactors() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.IndexedConnectivity
-
Returns the number of factors.
- getNumFactors() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.IndexedLagGraph
-
Returns the number of factors.
- getNumFactors() - Method in interface edu.cmu.tetrad.study.gene.tetrad.gene.history.LagGraph
-
Returns the number of factors represented in the graph.
- getNumFactors() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.LinearFunction
-
Returns the number of factors in the history.
- getNumFactors() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.PolynomialFunction
-
Returns the number of factors in the history.
- getNumFactors() - Method in interface edu.cmu.tetrad.study.gene.tetrad.gene.history.UpdateFunction
-
getNumFactors.
- getNumFixedParams() - Method in class edu.cmu.tetrad.sem.SemIm
-
getNumFixedParams.
- getNumFreeParams() - Method in class edu.cmu.tetrad.sem.DagScorer
-
getNumFreeParams.
- getNumFreeParams() - Method in interface edu.cmu.tetrad.sem.ISemIm
-
getNumFreeParams.
- getNumFreeParams() - Method in interface edu.cmu.tetrad.sem.Scorer
-
getNumFreeParams.
- getNumFreeParams() - Method in class edu.cmu.tetrad.sem.SemIm
-
getNumFreeParams.
- getNumFunctions() - Method in class edu.cmu.tetrad.search.test.ConditionalCorrelationIndependence
-
Retrieves the number of functions used in the ConditionalCorrelationIndependence analysis.
- getNumIndependenceTests() - Method in class edu.cmu.tetrad.search.Fasd
-
Returns the number of conditional independence tests done in the course of search.
- getNumIndependenceTests() - Method in class edu.cmu.tetrad.search.GrowShrink
-
getNumIndependenceTests.
- getNumIndependenceTests() - Method in interface edu.cmu.tetrad.search.IMbSearch
-
Number of independent tests.
- getNumIndependenceTests() - Method in class edu.cmu.tetrad.search.Pcd
-
Retrieves the number of independence tests performed by the graph search.
- getNumIndependenceTests() - Method in class edu.cmu.tetrad.search.PcMb
-
Returns the number of independence tests performed during the most recent search.
- getNumIndependenceTests() - Method in class edu.cmu.tetrad.search.SvarFas
-
Returns the number of independence tests.
- getNumIndependenceTests() - Method in class edu.cmu.tetrad.search.work_in_progress.FasDci
-
Getter for the field
numIndependenceTests
. - getNumIndependenceTests() - Method in class edu.cmu.tetrad.search.work_in_progress.FasFdr
-
Returns the nubmer of independence tests done in the course of the search.
- getNumIndependenceTests() - Method in class edu.cmu.tetrad.search.work_in_progress.Iamb
-
getNumIndependenceTests.
- getNumIndependenceTests() - Method in class edu.cmu.tetrad.search.work_in_progress.IambnPc
-
getNumIndependenceTests.
- getNumIndependenceTests() - Method in class edu.cmu.tetrad.search.work_in_progress.InterIamb
-
getNumIndependenceTests.
- getNumIndependenceTests() - Method in class edu.cmu.tetrad.search.work_in_progress.Mmmb
-
getNumIndependenceTests.
- getNumIndependenceTests() - Method in class edu.cmu.tetrad.search.work_in_progress.VcFas
-
Getter for the field
numIndependenceTests
. - getNumInducedAdjacenciesInPag(Graph, Graph) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Calculates the number of induced adjacencies in the given estiamted Partial Ancestral (PAG) with respect to the given true PAG.
- getNumInitialLags() - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Getter for the field
numInitialLags
. - getNumIterations() - Method in class edu.cmu.tetrad.sem.SemEstimatorGibbsParams
-
Getter for the field
numIterations
. - getNumNodes() - Method in interface edu.cmu.tetrad.bayes.BayesIm
-
Returns the name of the given node.
- getNumNodes() - Method in class edu.cmu.tetrad.bayes.BayesPm
-
Returns the number of nodes.
- getNumNodes() - Method in class edu.cmu.tetrad.bayes.DirichletBayesIm
-
getNumNodes.
- getNumNodes() - Method in class edu.cmu.tetrad.bayes.Evidence
-
getNumNodes.
- getNumNodes() - Method in class edu.cmu.tetrad.bayes.MlBayesIm
-
getNumNodes.
- getNumNodes() - Method in class edu.cmu.tetrad.bayes.MlBayesImObs
-
getNumNodes.
- getNumNodes() - Method in class edu.cmu.tetrad.bayes.UpdatedBayesIm
-
getNumNodes.
- getNumNodes() - Method in class edu.cmu.tetrad.graph.Dag
-
getNumNodes.
- getNumNodes() - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
getNumNodes.
- getNumNodes() - Method in interface edu.cmu.tetrad.graph.Graph
-
getNumNodes.
- getNumNodes() - Method in class edu.cmu.tetrad.graph.LagGraph
-
getNumNodes.
- getNumNodes() - Method in class edu.cmu.tetrad.graph.SemGraph
-
getNumNodes.
- getNumNodes() - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Gets the number of nodes in the graph.
- getNumNodes() - Method in class edu.cmu.tetrad.sem.SemEvidence
-
getNumNodes.
- getNumParameters() - Method in class edu.cmu.tetrad.util.dist.Beta
-
Uh, there are 2 parameters...
- getNumParameters() - Method in class edu.cmu.tetrad.util.dist.ChiSquare
-
getNumParameters.
- getNumParameters() - Method in class edu.cmu.tetrad.util.dist.Discrete
-
getNumParameters.
- getNumParameters() - Method in interface edu.cmu.tetrad.util.dist.Distribution
-
Returns the number of parameters in the distribution.
- getNumParameters() - Method in class edu.cmu.tetrad.util.dist.Exponential
-
getNumParameters.
- getNumParameters() - Method in class edu.cmu.tetrad.util.dist.Gamma
-
getNumParameters.
- getNumParameters() - Method in class edu.cmu.tetrad.util.dist.GaussianPower
-
getNumParameters.
- getNumParameters() - Method in class edu.cmu.tetrad.util.dist.Indicator
-
getNumParameters.
- getNumParameters() - Method in class edu.cmu.tetrad.util.dist.LogNormal
-
getNumParameters.
- getNumParameters() - Method in class edu.cmu.tetrad.util.dist.MixtureOfGaussians
-
getNumParameters.
- getNumParameters() - Method in class edu.cmu.tetrad.util.dist.Normal
-
getNumParameters.
- getNumParameters() - Method in class edu.cmu.tetrad.util.dist.Poisson
-
getNumParameters.
- getNumParameters() - Method in class edu.cmu.tetrad.util.dist.SingleValue
-
Returns the number of parameters in the distribution.
- getNumParameters() - Method in class edu.cmu.tetrad.util.dist.Split
-
getNumParameters.
- getNumParameters() - Method in class edu.cmu.tetrad.util.dist.TruncatedNormal
-
getNumParameters.
- getNumParameters() - Method in class edu.cmu.tetrad.util.dist.Uniform
-
getNumParameters.
- getNumParents(int) - Method in interface edu.cmu.tetrad.bayes.BayesIm
-
Returns the number of parents for the given node.
- getNumParents(int) - Method in class edu.cmu.tetrad.bayes.DirichletBayesIm
-
Returns the number of parents for the given node.
- getNumParents(int) - Method in class edu.cmu.tetrad.bayes.MlBayesIm
-
Returns the number of parents for the given node.
- getNumParents(int) - Method in class edu.cmu.tetrad.bayes.MlBayesImObs
-
Returns the number of parents for the given node.
- getNumParents(int) - Method in class edu.cmu.tetrad.bayes.UpdatedBayesIm
-
Returns the number of parents for the given node.
- getNumParents(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.biolingua.Digraph
-
Returns the number of parents of node i.
- getNumParents(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.IndexedConnectivity
-
Returns the number of parents of the given factor.
- getNumParents(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.IndexedLagGraph
-
Returns the number of parents of the given factor.
- getNumRandomCalls() - Method in class edu.cmu.tetrad.sem.SemIm
-
Getter for the field
numRandomCalls
. - getNumRegressors() - Method in class edu.cmu.tetrad.regression.LogisticRegression.Result
-
The number of regressors.
- getNumRegressors() - Method in class edu.cmu.tetrad.regression.RegressionResult
-
getNumRegressors.
- getNumRestarts() - Method in interface edu.cmu.tetrad.sem.SemOptimizer
-
getNumRestarts.
- getNumRestarts() - Method in class edu.cmu.tetrad.sem.SemOptimizerEm
-
Returns the number of restarts for the optimization process.
- getNumRestarts() - Method in class edu.cmu.tetrad.sem.SemOptimizerPowell
-
getNumRestarts.
- getNumRestarts() - Method in class edu.cmu.tetrad.sem.SemOptimizerRegression
-
getNumRestarts.
- getNumRestarts() - Method in class edu.cmu.tetrad.sem.SemOptimizerRicf
-
getNumRestarts.
- getNumRestarts() - Method in class edu.cmu.tetrad.sem.SemOptimizerScattershot
-
getNumRestarts.
- getNumRows() - Method in interface edu.cmu.tetrad.bayes.CptMap
-
Retrieves the number of rows in the CptMap.
- getNumRows() - Method in class edu.cmu.tetrad.bayes.CptMapCounts
-
Returns the number of rows in the probability map.
- getNumRows() - Method in class edu.cmu.tetrad.bayes.CptMapProbs
-
Returns the number of rows in the probability map.
- getNumRows() - Method in class edu.cmu.tetrad.bayes.MlBayesImObs
-
getNumRows.
- getNumRows() - Method in class edu.cmu.tetrad.bayes.StoredCellProbsObs
-
getNumRows.
- getNumRows() - Method in class edu.cmu.tetrad.data.BoxDataSet
-
getNumRows.
- getNumRows() - Method in interface edu.cmu.tetrad.data.DataSet
-
getNumRows.
- getNumRows() - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
getNumRows.
- getNumRows() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BooleanFunction
-
getNumRows.
- getNumRows() - Method in class edu.cmu.tetrad.util.Matrix
-
getNumRows.
- getNumRows() - Method in class edu.cmu.tetrad.util.TextTable
-
getNumRows.
- getNumRows(int) - Method in interface edu.cmu.tetrad.bayes.BayesIm
-
Returns the number of rows.
- getNumRows(int) - Method in class edu.cmu.tetrad.bayes.DirichletBayesIm
-
Returns the number of rows.
- getNumRows(int) - Method in class edu.cmu.tetrad.bayes.MlBayesIm
-
Retrieves the number of rows in the specified node.
- getNumRows(int) - Method in class edu.cmu.tetrad.bayes.MlBayesImObs
-
Returns the number of rows.
- getNumRows(int) - Method in class edu.cmu.tetrad.bayes.UpdatedBayesIm
-
Returns the number of rows.
- getNumSamplesPerDish() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.MeasurementSimulator
-
Returns the number of samples generated per dish in the measurement model.
- getNumSamplesPerDish() - Method in class edu.cmu.tetrad.study.gene.tetradapp.model.MeasurementSimulatorParams
-
getNumSamplesPerDish.
- getNumTerms() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.Polynomial
-
Returns the number of terms.
- getNumTests(boolean) - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Returns the number of tests for the given list of results.
- getNumTiers() - Method in class edu.cmu.tetrad.data.Knowledge
-
getNumTiers.
- getNumTimePoints() - Method in class edu.cmu.tetrad.data.TimeSeriesData
-
getNumTimePoints.
- getNumValues(String) - Method in class edu.cmu.tetrad.util.Parameters
-
Returns the number of values for the parameter.
- getNumVariables() - Method in class edu.cmu.tetrad.bayes.Proposition
-
getNumVariables.
- getNumVariables() - Method in class edu.cmu.tetrad.sem.SemProposition
-
Returns the number of variables in the current object.
- getNumVariables() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.PolynomialTerm
-
Returns the number of variables in this term.
- getNumVars() - Method in class edu.cmu.tetrad.data.TimeSeriesData
-
getNumVars.
- getNumVars() - Method in class edu.cmu.tetrad.study.performance.ComparisonParameters
-
Getter for the field
numVars
. - getNy0() - Method in class edu.cmu.tetrad.regression.LogisticRegression.Result
-
The number of data points with target = 0.
- getNy1() - Method in class edu.cmu.tetrad.regression.LogisticRegression.Result
-
The number of data points with target = 1.
- getObject(int, int) - Method in class edu.cmu.tetrad.data.BoxDataSet
-
getObject.
- getObject(int, int) - Method in interface edu.cmu.tetrad.data.DataSet
-
getObject.
- getObject(int, int) - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
getObject.
- getObservedCounts(Node, BayesPm, BayesIm) - Method in class edu.cmu.tetrad.bayes.BdeMetricCache
-
This method is used in testing and debugging and not in the BDe metric calculations.
- getOhat() - Method in class edu.cmu.tetrad.sem.Ricf.RicfResult
-
Returns the ohat matrix.
- getOneMbDag(Graph) - Static method in class edu.cmu.tetrad.search.utils.MbUtils
-
Returns an example DAG from the given MB CPDAG.
- getOrder() - Method in class edu.cmu.tetrad.search.PermutationSearch
-
Retrieves the order list.
- getOrder() - Method in class edu.cmu.tetrad.search.work_in_progress.MagCgBicScore
-
Returns the order.
- getOrder() - Method in class edu.cmu.tetrad.search.work_in_progress.MagDgBicScore
-
Returns the order.
- getOrder() - Method in class edu.cmu.tetrad.search.work_in_progress.MagSemBicScore
-
Returns the order.
- getOrderedPairs() - Method in class edu.cmu.tetrad.search.IdaCheck
-
Retrieves a list of OrderedPair objects representing all possible pairs of distinct nodes in the graph.
- getOrderShallow() - Method in class edu.cmu.tetrad.search.utils.TeyssierScorer
-
Returns the current permutation without making a copy.
- getOrientPrecision() - Method in class edu.cmu.tetrad.simulation.PRAOerrors
-
getOrientPrecision.
- getOrientRecall() - Method in class edu.cmu.tetrad.simulation.PRAOerrors
-
getOrientRecall.
- getOrients() - Method in class edu.cmu.tetrad.search.work_in_progress.GraphChange
-
Return orients
- getOriginalSemIm() - Method in interface edu.cmu.tetrad.search.work_in_progress.Hbsms
-
getOriginalSemIm.
- getOriginalSemIm() - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsBeam
-
Getter for the field
originalSemIm
. - getOriginalSemIm() - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsGes
-
Getter for the field
originalSemIm
. - getOut() - Method in class edu.cmu.tetrad.search.Fges
-
Returns the output stream used for printing.
- getOut() - Method in class edu.cmu.tetrad.search.FgesMb
-
Returns the output stream associated with this object.
- getOut() - Method in class edu.cmu.tetrad.search.SvarFges
-
Getter for the field
out
. - getOut() - Method in class edu.cmu.tetrad.search.utils.FgesOrienter
-
Getter for the field
out
. - getOut() - Method in class edu.cmu.tetrad.search.work_in_progress.IGFci
-
Retrieves the current PrintStream used for output by the IGFci algorithm.
- getOut() - Method in class edu.cmu.tetrad.search.work_in_progress.ISFges
-
Retrieves the current PrintStream used for standard output.
- getOut() - Method in class edu.cmu.tetrad.sem.LargeScaleSimulation
-
Getter for the field
out
. - getOut() - Method in class edu.pitt.dbmi.algo.bayesian.constraint.search.RfciBsc
-
Getter for the field
out
. - getOutdegree(Node) - Method in class edu.cmu.tetrad.graph.Dag
-
Returns the outdegree of the given node.
- getOutdegree(Node) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
getOutdegree.
- getOutdegree(Node) - Method in interface edu.cmu.tetrad.graph.Graph
-
getOutdegree.
- getOutdegree(Node) - Method in class edu.cmu.tetrad.graph.LagGraph
-
getOutdegree.
- getOutdegree(Node) - Method in class edu.cmu.tetrad.graph.SemGraph
-
getOutdegree.
- getOutdegree(Node) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Retrieves the outdegree of the specified node in the graph.
- getOutputs() - Method in class edu.cmu.tetrad.search.work_in_progress.DMSearch
-
Getter for the field
outputs
. - getOutputs(Node) - Method in class edu.cmu.tetrad.search.work_in_progress.DMSearch.LatentStructure
-
getOutputs.
- getP() - Method in class edu.cmu.tetrad.data.AndersonDarlingTest
-
Constructs an Anderson-Darling test for the given column of data.
- getP() - Method in class edu.cmu.tetrad.data.GeneralAndersonDarlingTest
-
Getter for the field
p
. - getP() - Method in class edu.cmu.tetrad.data.MultiGeneralAndersonDarlingTest
-
Getter for the field
p
. - getP() - Method in class edu.cmu.tetrad.regression.RegressionResult
-
Getter for the field
p
. - getPag() - Method in class edu.cmu.tetrad.search.utils.PossibleMConnectingPath
-
Getter for the field
pag
. - getPag(Graph) - Method in class edu.cmu.tetrad.util.PagCache
-
Returns the PAG (Partial Ancestral Graph) corresponding to the given DAG (Directed Acyclic Graph).
- getPag(Graph, Knowledge, boolean) - Method in class edu.cmu.tetrad.util.PagCache
-
Returns the PAG (Partial Ancestral Graph) corresponding to the given DAG (Directed Acyclic Graph).
- getParam2() - Method in class edu.cmu.tetrad.sem.ParamConstraint
-
Getter for the field
param2
. - getParamComparison(Parameter, Parameter) - Method in class edu.cmu.tetrad.sem.SemPm
-
getParamComparison.
- getParameter() - Method in class edu.cmu.tetrad.sem.Mapping
-
Getter for the field
parameter
. - getParameter(int) - Method in class edu.cmu.tetrad.util.dist.Beta
-
Returns the index'th parameter.
- getParameter(int) - Method in class edu.cmu.tetrad.util.dist.ChiSquare
-
Returns the index'th parameter.
- getParameter(int) - Method in class edu.cmu.tetrad.util.dist.Discrete
-
Returns the index'th parameter.
- getParameter(int) - Method in interface edu.cmu.tetrad.util.dist.Distribution
-
Returns the index'th parameter.
- getParameter(int) - Method in class edu.cmu.tetrad.util.dist.Exponential
-
Returns the index'th parameter.
- getParameter(int) - Method in class edu.cmu.tetrad.util.dist.Gamma
-
Returns the index'th parameter.
- getParameter(int) - Method in class edu.cmu.tetrad.util.dist.GaussianPower
-
Returns the index'th parameter.
- getParameter(int) - Method in class edu.cmu.tetrad.util.dist.Indicator
-
Returns the index'th parameter.
- getParameter(int) - Method in class edu.cmu.tetrad.util.dist.LogNormal
-
Returns the index'th parameter.
- getParameter(int) - Method in class edu.cmu.tetrad.util.dist.MixtureOfGaussians
-
Returns the index'th parameter.
- getParameter(int) - Method in class edu.cmu.tetrad.util.dist.Normal
-
Returns the index'th parameter.
- getParameter(int) - Method in class edu.cmu.tetrad.util.dist.Poisson
-
Returns the index'th parameter.
- getParameter(int) - Method in class edu.cmu.tetrad.util.dist.SingleValue
-
Returns the index'th parameter.
- getParameter(int) - Method in class edu.cmu.tetrad.util.dist.Split
-
Returns the index'th parameter.
- getParameter(int) - Method in class edu.cmu.tetrad.util.dist.TruncatedNormal
-
Returns the index'th parameter.
- getParameter(int) - Method in class edu.cmu.tetrad.util.dist.Uniform
-
Returns the index'th parameter.
- getParameter(Node, Node) - Method in class edu.cmu.tetrad.sem.SemPm
-
getParameter.
- getParameter(String) - Method in class edu.cmu.tetrad.sem.SemPm
-
getParameter.
- getParameterEstimationInitializationExpression(String) - Method in class edu.cmu.tetrad.sem.GeneralizedSemPm
-
Retrieves the initialization expression for a given parameter used in parameter estimation.
- getParameterEstimationInitializationExpressionString(String) - Method in class edu.cmu.tetrad.sem.GeneralizedSemPm
-
Returns the initialization expression string for the given parameter.
- getParameterExpression(String) - Method in class edu.cmu.tetrad.sem.GeneralizedSemPm
-
Retrieves the expression associated with the given parameter.
- getParameterExpressionString(String) - Method in class edu.cmu.tetrad.sem.GeneralizedSemPm
-
Returns the expression string associated with the given parameter.
- getParameterName(int) - Method in class edu.cmu.tetrad.util.dist.Beta
-
The name of the index'th parameter, for display purposes.
- getParameterName(int) - Method in class edu.cmu.tetrad.util.dist.ChiSquare
-
Returns the name of the index'th parameter, for display purposes.
- getParameterName(int) - Method in class edu.cmu.tetrad.util.dist.Discrete
-
The name of the index'th parameter, for display purposes.
- getParameterName(int) - Method in interface edu.cmu.tetrad.util.dist.Distribution
-
The name of the index'th parameter, for display purposes.
- getParameterName(int) - Method in class edu.cmu.tetrad.util.dist.Exponential
-
The name of the index'th parameter, for display purposes.
- getParameterName(int) - Method in class edu.cmu.tetrad.util.dist.Gamma
-
The name of the index'th parameter, for display purposes.
- getParameterName(int) - Method in class edu.cmu.tetrad.util.dist.GaussianPower
-
The name of the index'th parameter, for display purposes.
- getParameterName(int) - Method in class edu.cmu.tetrad.util.dist.Indicator
-
The name of the index'th parameter, for display purposes.
- getParameterName(int) - Method in class edu.cmu.tetrad.util.dist.LogNormal
-
The name of the index'th parameter, for display purposes.
- getParameterName(int) - Method in class edu.cmu.tetrad.util.dist.MixtureOfGaussians
-
The name of the index'th parameter, for display purposes.
- getParameterName(int) - Method in class edu.cmu.tetrad.util.dist.Normal
-
The name of the index'th parameter, for display purposes.
- getParameterName(int) - Method in class edu.cmu.tetrad.util.dist.Poisson
-
The name of the index'th parameter, for display purposes.
- getParameterName(int) - Method in class edu.cmu.tetrad.util.dist.SingleValue
-
Returns the name of the index'th parameter.
- getParameterName(int) - Method in class edu.cmu.tetrad.util.dist.Split
-
The name of the index'th parameter, for display purposes.
- getParameterName(int) - Method in class edu.cmu.tetrad.util.dist.TruncatedNormal
-
The name of the index'th parameter, for display purposes.
- getParameterName(int) - Method in class edu.cmu.tetrad.util.dist.Uniform
-
The name of the index'th parameter, for display purposes.
- getParameterNames() - Static method in class edu.cmu.tetrad.bayes.BayesPm
-
Returns the parameter names.
- getParameterNames() - Static method in class edu.cmu.tetrad.bayes.MlBayesIm
-
getParameterNames.
- getParameterNames() - Static method in class edu.cmu.tetrad.sem.GeneralizedSemPm
-
Retrieves the names of the parameters required for a certain operation.
- getParameterNames() - Static method in class edu.cmu.tetrad.sem.SemIm
-
getParameterNames.
- getParameterRange(Edge) - Method in class edu.cmu.tetrad.sem.StandardizedSemIm
-
getParameterRange.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.cluster.Bpc
-
Retrieves the list of parameters used by the algorithm.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.cluster.Fofc
-
Returns a list of parameters for the search algorithm.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.cluster.Ftfc
-
Retrieves the list of parameters supported by this algorithm.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.Dagma
-
Retrieves the list of parameters used by the algorithm.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.DirectLingam
-
Returns a list of parameters for the DirectLingam algorithm.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.Fask
-
Returns the list of parameter names that are used by the algorithm.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.FaskOrig
-
Returns the list of parameter names that are used by the algorithm.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.IcaLingam
-
Returns a list of parameters used by the getParameters method.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.IcaLingD
-
Retrieves the list of parameters used by this method.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.ExternalAlgorithm
-
getParameters.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.FirstInflection
-
Returns the list of parameter names that are used.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.mixed.Mgm
-
Returns the list of parameters required by the getParameters method.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FaskConcatenated
-
Returns the list of parameter names that are used.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FaskLofsConcatenated
-
Returns the list of parameter names that are used.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FaskVote
-
Returns the list of parameter names that are used.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FasLofs
-
Returns the list of parameter names that are used.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FciIod
-
Returns the list of parameter names that are used.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FgesConcatenated
-
Returns the list of parameter names that are used.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.Images
-
Retrieves the list of parameters required for the algorithm.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.ImagesBoss
-
Returns the list of parameter names that are used.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Boss
-
Returns the list of parameter names that are used.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.BossLingam
-
Returns the list of parameter names that are used.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Cpc
-
Retrieves the list of parameters used in this method.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Cstar
-
Returns the list of parameter names that are used.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Fas
-
Returns the list of parameter names that are used.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Fges
-
Returns the list of parameter names that are used.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.FgesMb
-
Returns the list of parameter names that are used.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.FgesMeasurement
-
Returns the list of parameter names that are used.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Grasp
-
Returns the list of parameter names that are used.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Pc
-
Returns the list of parameter names that are used.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Pcd
-
Returns the list of parameter names that are used.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.PcMb
-
Returns the list of parameter names that are used.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.RestrictedBoss
-
Returns the list of parameter names that are used.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.SingleGraphAlg
-
Returns the list of parameter names that are used.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Sp
-
Returns the list of parameter names that are used.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Bfci
-
Retrieves the list of parameters used for the BFCI (Best-order FCI) algorithm.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.BossDumb
-
Retrieves the list of parameters used by the algorithm.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.BossPag
-
Retrieves the list of parameters used by the algorithm.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Ccd
-
Retrieves the parameters for the search algorithm.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Cfci
-
Returns the list of parameters used by the algorithm.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Fci
-
Retrieves the list of parameters used by this algorithm.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.FciMax
-
Returns the list of parameters used by the method.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Gfci
-
Returns a list of parameters used to configure the search algorithm.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.GraspFci
-
Retrieves the list of parameters used by the algorithm.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.LvLite
-
Retrieves the list of parameters used by the algorithm.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.PagSampleRfci
-
Retrieves the list of parameters for the method.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Rfci
-
Returns the list of parameter names that are used.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.RfciBsc
-
Returns the list of parameter names that are used.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.SpFci
-
Returns the list of parameters used by the method.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.SvarFci
-
Retrieves the list of parameters required for this method.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.SvarGfci
-
Returns the list of parameters required by this method.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.other.FactorAnalysis
-
Retrieves the parameters for the current instance of the
FactorAnalysis
class. - getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.other.Glasso
-
Retrieves a list of parameters used by the algorithm.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.Eb
-
Returns the list of parameters that are used by the class.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.FaskPw
-
Retrieves the list of parameters required for the algorithm.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.R1
-
Retrieves the list of parameters for the current instance.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.R2
-
Retrieves the list of parameters for the current instance of the class.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.R3
-
Retrieves the list of parameters for the method.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.Rskew
-
Retrieves a list of parameters required for the current instance of the class.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.RskewE
-
Retrieves the list of parameters required for the current instance of the class.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.Skew
-
Retrieves the list of parameter names that are used by this method and its associated algorithm.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.SkewE
-
Returns the list of parameters for the current instance of the class.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.Tanh
-
Returns the parameters required by the current algorithm.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.StabilitySelection
-
Returns the list of parameter names that are used.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.algorithm.StARS
-
Returns the list of parameter names that are used.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.graph.Cyclic
-
Returns the parameters that this graph uses.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.graph.ErdosRenyi
-
Returns the parameters that this graph uses.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.graph.RandomForward
-
Returns the parameters that this graph uses.
- getParameters() - Method in interface edu.cmu.tetrad.algcomparison.graph.RandomGraph
-
Returns the parameters that this graph uses.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.graph.RandomSingleFactorMim
-
Returns the parameters that this graph uses.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.graph.RandomTwoFactorMim
-
Returns the parameters that this graph uses.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.graph.ScaleFree
-
Returns the parameters that this graph uses.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.graph.SingleGraph
-
Returns the parameters that this graph uses.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.independence.BasisFunctionBicTest
-
Retrieves the parameters required for the Basis Function BIC test.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.independence.BdeuTest
-
Returns the parameters that this search uses.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.independence.CciTest
-
Returns the parameters that this search uses.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.independence.ChiSquare
-
Retrieves the parameters required by the Chi Square Test.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.independence.ConditionalGaussianLRT
-
Returns the parameters that this search uses.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.independence.DegenerateGaussianLRT
-
Returns the parameters that this search uses.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.independence.DiscreteBicTest
-
Returns the parameters that this search uses.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.independence.FisherZ
-
Retrieves the parameters of the Fisher Z test.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.independence.GICScoreTests
-
Returns the parameters that this search uses.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.independence.GSquare
-
Returns the parameters that this search uses.
- getParameters() - Method in interface edu.cmu.tetrad.algcomparison.independence.IndependenceWrapper
-
Returns the parameters that this search uses.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.independence.Kci
-
Returns the parameters that this search uses.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.independence.MagSemBicTest
-
Returns the parameters that this search uses.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.independence.Mnlrlrt
-
Returns the parameters that this search uses.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.independence.MSeparationTest
-
Returns the parameters that this search uses.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.independence.MultinomialLogisticRegressionWald
-
Returns the parameters that this search uses.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.independence.Mvplrt
-
Returns the parameters that this search uses.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.independence.PoissonPriorTest
-
Retrieves the parameters required for the Poisson Prior test.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.independence.PositiveCorr
-
Returns the parameters that this search uses.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.independence.ProbabilisticTest
-
Returns the parameters that this search uses.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.independence.SemBicDTest
-
Returns the list of parameters used in this method.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.independence.SemBicTest
-
Retrieves the parameters required for the SEM BIC test.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.score.BasisFunctionBicScore
-
Returns the parameters that this search uses.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.score.BdeuScore
-
Returns the parameters that this search uses.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.score.ConditionalGaussianBicScore
-
Returns the parameters that this search uses.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.score.DegenerateGaussianBicScore
-
Returns the parameters that this search uses.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.score.DiscreteBicScore
-
Returns the parameters that this search uses.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.score.EbicScore
-
Returns the parameters that this search uses.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.score.FisherZScore
-
Returns the parameters that this search uses.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.score.GicScores
-
Returns the parameters that this search uses.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.score.MagDgBicScore
-
Returns the parameters that this search uses.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.score.MSeparationScore
-
Returns the parameters that this search uses.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.score.MVPBicScore
-
Returns the parameters that this search uses.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.score.PoissonPriorScore
-
Returns the parameters that this search uses.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.score.PositiveCorrScore
-
Returns the parameters that this search uses.
- getParameters() - Method in interface edu.cmu.tetrad.algcomparison.score.ScoreWrapper
-
Returns the parameters that this search uses.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.score.SemBicScore
-
Returns a list of parameters applicable to this method.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.score.SemBicScoreDeterministic
-
Retrieves the list of parameters required for the getScore() method.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.score.ZhangShenBoundScore
-
Returns the list of parameters required for the Zhang-Shen Bound Score.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.simulation.BayesNetSimulation
-
Returns the list of parameters used in the simulation.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.simulation.ConditionalGaussianSimulation
-
Returns the list of parameters used in the simulation.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.simulation.GeneralSemSimulation
-
Retrieves the parameters required for the simulation.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.simulation.GeneralSemSimulationSpecial1
-
Returns the list of parameters used in the simulation.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.simulation.LeeHastieSimulation
-
Returns the list of parameters used in the simulation.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.simulation.LinearFisherModel
-
Returns the list of parameters used in the simulation.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.simulation.LinearSineSimulation
-
Returns the list of parameters used in the simulation.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.simulation.NLSemSimulation
-
Returns the list of parameters used in the simulation.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.simulation.SemSimulation
-
Retrieves the parameters required for the simulation.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.simulation.SemThenDiscretize
-
Returns the list of parameters used in the simulation.
- getParameters() - Method in interface edu.cmu.tetrad.algcomparison.simulation.Simulation
-
Returns the list of parameters used in the simulation.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.simulation.SingleDatasetSimulation
-
Returns the list of parameters used in the simulation.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.simulation.StandardizedSemSimulation
-
Returns the list of parameters used in the simulation.
- getParameters() - Method in class edu.cmu.tetrad.algcomparison.simulation.TimeSeriesSemSimulation
-
Returns the list of parameters used in the simulation.
- getParameters() - Method in interface edu.cmu.tetrad.algcomparison.utils.HasParameters
-
Returns the list of parameter names that are used.
- getParameters() - Method in class edu.cmu.tetrad.calculator.parser.ExpressionParser
-
Getter for the field
parameters
. - getParameters() - Method in class edu.cmu.tetrad.data.simulation.LoadContinuousDataAndGraphs
-
Returns the list of parameters used in the simulation.
- getParameters() - Method in class edu.cmu.tetrad.data.simulation.LoadContinuousDataAndSingleGraph
-
Returns the list of parameters used in the simulation.
- getParameters() - Method in class edu.cmu.tetrad.data.simulation.LoadContinuousDataSmithSim
-
Returns the list of parameters used in the simulation.
- getParameters() - Method in class edu.cmu.tetrad.data.simulation.LoadDataAndGraphs
-
Returns the list of parameters used in the simulation.
- getParameters() - Method in class edu.cmu.tetrad.data.simulation.LoadDataFromFileWithoutGraph
-
Returns the list of parameters used in the simulation.
- getParameters() - Method in class edu.cmu.tetrad.sem.GeneralizedSemPm
-
Retrieves the set of parameters.
- getParameters() - Method in class edu.cmu.tetrad.sem.SemPm
-
Getter for the field
parameters
. - getParameters() - Static method in class edu.cmu.tetrad.util.Params
-
getParameters.
- getParametersEstimationInitializationTemplate() - Method in class edu.cmu.tetrad.sem.GeneralizedSemPm
-
Retrieves the parameter estimation initialization template.
- getParametersNames() - Method in class edu.cmu.tetrad.util.Parameters
-
getParametersNames.
- getParametersTemplate() - Method in class edu.cmu.tetrad.sem.GeneralizedSemPm
-
Retrieves the template for the parameters.
- getParameterValue(Edge) - Method in class edu.cmu.tetrad.sem.StandardizedSemIm
-
getParameterValue.
- getParameterValue(String) - Method in class edu.cmu.tetrad.sem.GeneralizedSemIm
-
Retrieves the value of a parameter in the model.
- getParameterValues() - Method in interface edu.cmu.tetrad.algcomparison.utils.HasParameterValues
-
getParameterValues.
- getParameterValues() - Method in class edu.cmu.tetrad.data.simulation.LoadContinuousDataAndSingleGraph
-
getParameterValues.
- getParameterValues() - Method in class edu.cmu.tetrad.data.simulation.LoadContinuousDataSmithSim
-
getParameterValues.
- getParamName() - Method in class edu.cmu.tetrad.util.ParamDescription
-
Getter for the field
paramName
. - getParams() - Method in class edu.cmu.tetrad.sem.SemIm
-
Getter for the field
params
. - getParams() - Method in class edu.cmu.tetrad.study.performance.ComparisonResult
-
Getter for the field
params
. - getParamsWithUnsupportedValueType() - Method in class edu.cmu.tetrad.util.ParamDescriptions
-
Getter for the field
paramsWithUnsupportedValueType
. - getParamValue(Node, Node) - Method in interface edu.cmu.tetrad.sem.ISemIm
-
getParamValue.
- getParamValue(Node, Node) - Method in class edu.cmu.tetrad.sem.SemIm
-
getParamValue.
- getParamValue(Parameter) - Method in interface edu.cmu.tetrad.sem.ISemIm
-
getParamValue.
- getParamValue(Parameter) - Method in class edu.cmu.tetrad.sem.SemIm
-
Retrieves the value associated with the given parameter.
- getParent(int, int) - Method in interface edu.cmu.tetrad.bayes.BayesIm
-
Returns the ith parent of the givne node.
- getParent(int, int) - Method in class edu.cmu.tetrad.bayes.DirichletBayesIm
-
Returns the ith parent of the givne node.
- getParent(int, int) - Method in class edu.cmu.tetrad.bayes.MlBayesIm
-
Retrieves the parent of a node at the specified index.
- getParent(int, int) - Method in class edu.cmu.tetrad.bayes.MlBayesImObs
-
Returns the ith parent of the givne node.
- getParent(int, int) - Method in class edu.cmu.tetrad.bayes.UpdatedBayesIm
-
Returns the ith parent of the givne node.
- getParent(int, int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.IndexedConnectivity
-
Returns the given parent as an IndexedParent.
- getParent(int, int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.IndexedLagGraph
-
Returns the given parent as an IndexedParent.
- getParentDim(int, int) - Method in interface edu.cmu.tetrad.bayes.BayesIm
-
Returns the dimension of the given parent for the given node.
- getParentDim(int, int) - Method in class edu.cmu.tetrad.bayes.DirichletBayesIm
-
Returns the dimension of the given parent for the given node.
- getParentDim(int, int) - Method in class edu.cmu.tetrad.bayes.MlBayesIm
-
Retrieves the value of the parent dimension for a given node and parent index.
- getParentDim(int, int) - Method in class edu.cmu.tetrad.bayes.MlBayesImObs
-
Returns the dimension of the given parent for the given node.
- getParentDim(int, int) - Method in class edu.cmu.tetrad.bayes.UpdatedBayesIm
-
Returns the dimension of the given parent for the given node.
- getParentDims(int) - Method in interface edu.cmu.tetrad.bayes.BayesIm
-
Returns the dimensions of the pararents of the given node.
- getParentDims(int) - Method in class edu.cmu.tetrad.bayes.DirichletBayesIm
-
Returns the dimensions of the pararents of the given node.
- getParentDims(int) - Method in class edu.cmu.tetrad.bayes.MlBayesIm
-
Returns a copy of the dimensions of the parent node at the specified index.
- getParentDims(int) - Method in class edu.cmu.tetrad.bayes.MlBayesImObs
-
Returns the dimensions of the pararents of the given node.
- getParentDims(int) - Method in class edu.cmu.tetrad.bayes.UpdatedBayesIm
-
Returns the dimensions of the pararents of the given node.
- getParents() - Method in class edu.cmu.tetrad.search.Boss
-
Returns the map from nodes to the sets of their parents.
- getParents() - Method in class edu.cmu.tetrad.search.Sp
-
Retrieves a mapping of nodes to their parent nodes.
- getParents() - Method in interface edu.cmu.tetrad.search.SuborderSearch
-
The map from nodes to parents resulting from the search.
- getParents() - Method in class edu.cmu.tetrad.search.utils.Bes.Arrow
-
Returns the set of nodes that are in TNeighbors.
- getParents() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.AbstractNbComponent
-
Returns the parents.
- getParents() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BooleanFunction
-
Returns the parents of this function.
- getParents(int) - Method in interface edu.cmu.tetrad.bayes.BayesIm
-
Returns the parents of the given node.
- getParents(int) - Method in class edu.cmu.tetrad.bayes.DirichletBayesIm
-
Returns the parents of the given node.
- getParents(int) - Method in class edu.cmu.tetrad.bayes.MlBayesIm
-
Returns an array containing the parents of the specified node.
- getParents(int) - Method in class edu.cmu.tetrad.bayes.MlBayesImObs
-
Returns the parents of the given node.
- getParents(int) - Method in class edu.cmu.tetrad.bayes.UpdatedBayesIm
-
Returns the parents of the given node.
- getParents(int) - Method in class edu.cmu.tetrad.search.utils.TeyssierScorer
-
Returns the parents of the node at index p.
- getParents(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.akutsu.RevealOutputGraph
-
Returns the indices of the parent variables for the given variable.
- getParents(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.biolingua.Digraph
-
Returns an array with the indexes of the parents of node i.
- getParents(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.reveal.RevealOutputGraph
-
Returns the indices of the parent variables for the given variable.
- getParents(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.RevealOutputGraph
-
Returns the indices of the parent variables for the given variable.
- getParents(int) - Method in interface edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.OutputGraph
-
Returns the indices of the parent variables for the given variable.
- getParents(Node) - Method in class edu.cmu.tetrad.graph.Dag
-
Retrieves the list of parent nodes for a given node in the graph.
- getParents(Node) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
getParents.
- getParents(Node) - Method in interface edu.cmu.tetrad.graph.Graph
-
getParents.
- getParents(Node) - Method in class edu.cmu.tetrad.graph.LagGraph
-
getParents.
- getParents(Node) - Method in class edu.cmu.tetrad.graph.SemGraph
-
getParents.
- getParents(Node) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Returns the list of parent nodes for the given node.
- getParents(Node) - Method in class edu.cmu.tetrad.search.utils.TeyssierScorer
-
Returns the parents of a node v.
- getParents(Node) - Method in class edu.cmu.tetrad.sem.GeneralizedSemPm
-
Retrieves the list of parent nodes for the given node.
- getParents(String) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ActiveLagGraph
-
Returns the lagged factors which are into the given factor.
- getParents(String) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ManualLagGraph
-
Returns the lagged factors which are into the given factor.
- getParents(String) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BasicLagGraph
-
Returns the lagged factors which are into the given factor.
- getParents(String) - Method in interface edu.cmu.tetrad.study.gene.tetrad.gene.history.LagGraph
-
Returns the lagged factors which are into the given factor.
- getParents(List<Node>, int, Graph, boolean, boolean) - Static method in class edu.cmu.tetrad.graph.Paths
-
Returns the parents of the node at index p, calculated using Pearl's method.
- getParentValue(int, int, int) - Method in interface edu.cmu.tetrad.bayes.BayesIm
-
Returns the given parent value.
- getParentValue(int, int, int) - Method in class edu.cmu.tetrad.bayes.DirichletBayesIm
-
Returns the given parent value.
- getParentValue(int, int, int) - Method in class edu.cmu.tetrad.bayes.MlBayesIm
-
Retrieves the value of the parent node at the specified row and column index.
- getParentValue(int, int, int) - Method in class edu.cmu.tetrad.bayes.MlBayesImObs
-
Returns the given parent value.
- getParentValue(int, int, int) - Method in class edu.cmu.tetrad.bayes.UpdatedBayesIm
-
Returns the given parent value.
- getParentValues(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BooleanFunction
-
getParentValues.
- getParentValues(int[], int) - Method in class edu.cmu.tetrad.search.score.DiscreteBicScoreAdTree
-
Returns an integer array containing the parent values for a given node index and row index.
- getParentValues(int, int) - Method in interface edu.cmu.tetrad.bayes.BayesIm
-
Returns the parents values of the given node.
- getParentValues(int, int) - Method in class edu.cmu.tetrad.bayes.DirichletBayesIm
-
Returns the parents values of the given node.
- getParentValues(int, int) - Method in class edu.cmu.tetrad.bayes.MlBayesIm
-
Returns an integer array containing the parent values for a given node index and row index.
- getParentValues(int, int) - Method in class edu.cmu.tetrad.bayes.MlBayesImObs
-
Returns the parents values of the given node.
- getParentValues(int, int) - Method in class edu.cmu.tetrad.bayes.UpdatedBayesIm
-
Returns the parents values of the given node.
- getParentValues(int, int, int[]) - Method in class edu.cmu.tetrad.search.work_in_progress.ISBDeuScore
-
Computes the parent values for a given node index and row index according to the specified dimensions.
- getParentValues(int, int, int[]) - Method in class edu.cmu.tetrad.search.work_in_progress.ISBicScore
-
Calculates the parent values at given node and row indices based on the provided dimensions.
- getParentValuesForCombination(int, int[]) - Method in class edu.cmu.tetrad.search.work_in_progress.ISBDeuScore
-
Calculates the parent values for a given combination of dimensions.
- getParentValuesForCombination(int, int[]) - Method in class edu.cmu.tetrad.search.work_in_progress.ISBicScore
-
Calculates the parent values for a given row index based on the provided dimensions.
- getPart(int, int, int, int) - Method in class edu.cmu.tetrad.util.Matrix
-
getPart.
- getPath() - Method in interface edu.cmu.tetrad.algcomparison.statistic.utils.SimulationPath
-
getPath.
- getPath() - Method in class edu.cmu.tetrad.data.simulation.LoadDataFromFileWithoutGraph
-
getPath.
- getPath() - Method in class edu.cmu.tetrad.search.utils.PossibleMConnectingPath
-
Getter for the field
path
. - getPath(Map<Node, Node>, Node, Node) - Static method in class edu.cmu.tetrad.search.FciOrientDijkstra
-
Returns the shortest path from the start node to the end node.
- getPathBlockingSetRecursive(Graph, Node, Node, Set<Node>, int, Set<Node>) - Static method in class edu.cmu.tetrad.search.SepsetFinder
-
Finds a set of nodes that blocks all paths from node x to node y in a graph, considering a maximum path length and a set of nodes that must be included in the blocking set.
- getPattern() - Method in class edu.cmu.tetrad.data.DelimiterType
-
Getter for the field
pattern
. - getPc(Node) - Method in class edu.cmu.tetrad.search.work_in_progress.Mmmb
-
Getter for the field
pc
. - getPenaltyDiscount() - Method in class edu.cmu.tetrad.search.score.ConditionalGaussianScore
-
Returns the penalty discount for this score, which is a multiplier on the penalty term of the BIC score.
- getPenaltyDiscount() - Method in class edu.cmu.tetrad.search.score.DegenerateGaussianScore
-
Returns the penalty discount.
- getPenaltyDiscount() - Method in class edu.cmu.tetrad.search.score.GicScores
-
Returns the penalty discount.
- getPenaltyDiscount() - Method in class edu.cmu.tetrad.search.score.SemBicScore
-
Returns the multiplier on the penalty term for this score.
- getPenaltyDiscount() - Method in class edu.cmu.tetrad.search.utils.FgesOrienter
-
For BIC score, a multiplier on the penalty term.
- getPenaltyDiscount() - Method in interface edu.cmu.tetrad.search.utils.HasPenaltyDiscount
-
getPenaltyDiscount.
- getPenaltyDiscount() - Method in class edu.cmu.tetrad.search.work_in_progress.FasLofs
-
Getter for the field
penaltyDiscount
. - getPenaltyDiscount() - Method in class edu.cmu.tetrad.search.work_in_progress.ISBicScore
-
Retrieves the penalty discount associated with this entity.
- getPenaltyDiscount() - Method in class edu.cmu.tetrad.search.work_in_progress.MagCgBicScore
-
getPenaltyDiscount.
- getPenaltyDiscount() - Method in class edu.cmu.tetrad.search.work_in_progress.MagDgBicScore
-
getPenaltyDiscount.
- getPenaltyDiscount() - Method in class edu.cmu.tetrad.search.work_in_progress.MagSemBicScore
-
getPenaltyDiscount.
- getPenaltyDiscount() - Method in class edu.cmu.tetrad.search.work_in_progress.SemBicScoreDeterministic
-
Specialized scoring method for a single parent.
- getPenaltyDiscount() - Method in class edu.cmu.tetrad.study.performance.ComparisonParameters
-
Getter for the field
penaltyDiscount
. - getPercent() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestFisherZPercentIndependent
-
Returns the percentage value.
- getPercentCorrect() - Method in class edu.cmu.tetrad.classify.ClassifierBayesUpdaterDiscrete
-
Getter for the field
percentCorrect
. - getPercentCorrect() - Method in interface edu.cmu.tetrad.classify.ClassifierDiscrete
-
getPercentCorrect.
- getPercentCorrect() - Method in class edu.cmu.tetrad.classify.ClassifierMbDiscrete
-
Getter for the field
percentCorrect
. - getPercentUnregulated() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.LagGraphParams
-
Getter for the field
percentUnregulated
. - getPerms() - Method in class edu.cmu.tetrad.search.work_in_progress.Kpc
-
Gets the getModel number of bootstrap samples used
- getPermutedMatrix() - Method in class edu.cmu.tetrad.search.utils.PermutationMatrixPair
-
Returns W, permuted rowwise by the permutation passed in through the constructor.
- getPi() - Method in class edu.cmu.tetrad.search.Cstar.Record
-
Retrieves the value of pi.
- getPi() - Method in class edu.cmu.tetrad.search.utils.TeyssierScorer
-
Getter for the field
pi
. - getPixelDigitalization() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.MeasurementSimulator
-
Returns the pixel digitalization error.
- getPixelDigitalization() - Method in class edu.cmu.tetrad.study.gene.tetradapp.model.MeasurementSimulatorParams
-
getPixelDigitalization.
- getPolynomial(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.PolynomialFunction
-
Returns the polynomial for the given factor.
- getPopulationTripleType(Node, Node, Node, IndependenceTest, int, Graph, boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.VcPc
-
getPopulationTripleType.
- getPopulationTripleType(Node, Node, Node, IndependenceTest, int, Graph, boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.VcPcFast
-
getPopulationTripleType.
- getPosition() - Method in class edu.cmu.tetrad.calculator.expression.ConstantExpression
-
getPosition.
- getPosition() - Method in class edu.cmu.tetrad.calculator.expression.EvaluationExpression
-
getPosition.
- getPosition() - Method in interface edu.cmu.tetrad.calculator.expression.Expression
-
getPosition.
- getPosition() - Method in interface edu.cmu.tetrad.calculator.expression.ExpressionDescriptor
-
getPosition.
- getPosition() - Method in class edu.cmu.tetrad.calculator.expression.VariableExpression
-
getPosition.
- getPosterior() - Method in class edu.cmu.tetrad.search.test.IndTestProbabilistic
-
Returns the posterior probability of the last independence test.
- getPosterior() - Method in class edu.cmu.tetrad.search.work_in_progress.ProbabilisticMapIndependence
-
Getter for the field
posterior
. - getPower() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.AbstractNbComponent
-
Returns the power.
- getPreamble() - Method in class edu.cmu.tetrad.regression.RegressionResult
-
getPreamble.
- getPrecision() - Method in class edu.cmu.tetrad.search.work_in_progress.Kpc
-
Gets the getModel precision for the Incomplete Cholesky
- getPrecisionAndRecallOnMarkovBlanketGraph(Node, Graph, Graph) - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Calculates the precision and recall on the Markov Blanket graph for a given node.
- getPrecisionAndRecallOnMarkovBlanketGraph2(Node, Graph, Graph) - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Calculates the precision and recall using LocalGraphConfusion (which calculates the combination of Adjacency and ArrowHead) on the Markov Blanket graph for a given node.
- getPrecisionAndRecallOnMarkovBlanketGraphPlotData(Node, Graph, Graph) - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Calculates the precision and recall on the markov blanket graph plot data.
- getPrecisionAndRecallOnMarkovBlanketGraphPlotData2(Node, Graph, Graph) - Method in class edu.cmu.tetrad.search.MarkovCheck
-
This method calculates the precision and recall of a target node's Markov Blanket in the given estimated graph.
- getPredictedValue(double[]) - Method in class edu.cmu.tetrad.regression.RegressionResult
-
getPredictedValue.
- getPrefix(int) - Method in class edu.cmu.tetrad.search.utils.TeyssierScorer
-
Retrieves a prefix of the size specified by the parameter.
- getPrefix(String) - Static method in class edu.cmu.tetrad.search.utils.TsUtils
-
getPrefix.
- getPrefix(String) - Static method in class edu.cmu.tetrad.sem.LargeScaleSimulation
-
getPrefix.
- getPrefix(String) - Static method in class edu.cmu.tetrad.study.performance.Comparison2
-
getPrefix.
- getPriorCount() - Method in class edu.cmu.tetrad.bayes.CptMapCounts
-
Retrieves the prior count for all cells in the CptMapCounts.
- getProb(Proposition) - Method in class edu.cmu.tetrad.bayes.BayesImProbs
-
Calculates the probability of a given proposition.
- getProb(Proposition) - Method in class edu.cmu.tetrad.bayes.CellTableProbs
-
This method calculates the probability of a given proposition.
- getProb(Proposition) - Method in class edu.cmu.tetrad.bayes.DataSetProbs
-
Calculates the probability of the given assertion in the data set.
- getProb(Proposition) - Method in class edu.cmu.tetrad.bayes.DirichletDataSetProbs
-
Retrieves the probability of the given assertion in the DirichletDataSetProbs.
- getProb(Proposition) - Method in class edu.cmu.tetrad.bayes.IntAveDataSetProbs
-
Calculates the probability of a given assertion.
- getProb(Proposition) - Method in class edu.cmu.tetrad.bayes.StoredCellProbs
-
Calculates the probability for the given proposition assertion.
- getProb(Proposition) - Method in class edu.cmu.tetrad.bayes.StoredCellProbsObs
-
getProb.
- getProbability() - Method in class edu.cmu.tetrad.graph.Edge
-
Getter for the field
probability
. - getProbability() - Method in class edu.cmu.tetrad.graph.EdgeTypeProbability
-
Getter for the field
probability
. - getProbability(int) - Method in class edu.cmu.tetrad.bayes.MlBayesImObs
-
getProbability.
- getProbability(int, int, int) - Method in interface edu.cmu.tetrad.bayes.BayesIm
-
Returns the probability for the given cell in the given CPT.
- getProbability(int, int, int) - Method in class edu.cmu.tetrad.bayes.DirichletBayesIm
-
Returns the probability for the given cell in the given CPT.
- getProbability(int, int, int) - Method in class edu.cmu.tetrad.bayes.MlBayesIm
-
Returns the probability for a given node in the table.
- getProbability(int, int, int) - Method in class edu.cmu.tetrad.bayes.MlBayesImObs
-
Returns the probability for the given cell in the given CPT.
- getProbability(int, int, int) - Method in class edu.cmu.tetrad.bayes.UpdatedBayesIm
-
Returns the probability for the given cell in the given CPT.
- getProbs() - Method in class edu.cmu.tetrad.regression.LogisticRegression.Result
-
The array of coefP-values for the regression coefficients.
- getProbTail(double, double) - Method in class edu.cmu.tetrad.data.GeneralAndersonDarlingTest
-
getProbTail.
- getProperties() - Method in class edu.cmu.tetrad.graph.Edge
-
Getter for the field
properties
. - getProperties() - Method in class edu.cmu.tetrad.graph.EdgeTypeProbability
-
Getter for the field
properties
. - getProperties() - Method in class edu.cmu.tetrad.util.TetradProperties
-
getProperties.
- getProposition() - Method in class edu.cmu.tetrad.bayes.Evidence
-
Getter for the field
proposition
. - getProposition() - Method in class edu.cmu.tetrad.sem.SemEvidence
-
Getter for the field
proposition
. - getProtocolDescription() - Static method in class edu.cmu.tetrad.util.NamingProtocol
-
getProtocolDescription.
- getProximalEndpoint(Node) - Method in class edu.cmu.tetrad.graph.Edge
-
getProximalEndpoint.
- getPseudocount(int, int, int) - Method in class edu.cmu.tetrad.bayes.DirichletBayesIm
-
getPseudocount.
- getPurifyTestDescriptions() - Static method in enum class edu.cmu.tetrad.search.utils.BpcTestType
-
Returns the test type descriptions for the Purify algorithm.
- getpValue() - Method in class edu.cmu.tetrad.search.Mimbuild
-
Getter for the field
pValue
. - getpValue() - Method in class edu.cmu.tetrad.search.MimbuildTrek
-
The p-value of the model.
- getPValue() - Method in class edu.cmu.tetrad.search.test.ChiSquareTest.Result
-
Returns the pValue of the result, or NaN if the p-value cannot be determined.
- getPValue() - Method in class edu.cmu.tetrad.search.test.IndependenceResult
-
Returns the p-value of the fact under the null hypothesis of independence.
- getPValue() - Method in class edu.cmu.tetrad.search.test.IndTestConditionalGaussianLrt
-
Returns the probability associated with the most recently executed independence test, of Double.NaN if p value is not meaningful for this test.
- getPValue() - Method in class edu.cmu.tetrad.search.test.IndTestDegenerateGaussianLrt
-
Returns the probability associated with the most recently executed independence test, of Double.NaN if p value is not meaningful for this test.
- getPValue() - Method in class edu.cmu.tetrad.search.test.IndTestGSquare
-
Returns the p value associated with the most recent call of isIndependent.
- getPValue() - Method in class edu.cmu.tetrad.search.test.IndTestIndependenceFacts
-
No p-values are available.
- getPValue() - Method in class edu.cmu.tetrad.search.utils.DeltaTetradTest
-
getPValue.
- getPValue() - Method in class edu.cmu.tetrad.search.utils.Tetrad
-
Getter for the field
pValue
. - getPValue() - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsBeam.Score
-
getPValue.
- getPValue() - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsGes.GraphWithPValue
-
getPValue.
- getPValue() - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsGes.Score
-
Returns the P value.
- getPValue() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestCramerT
-
Calculates the p-value for the independence test.
- getPValue() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestFisherZRecursive
-
getPValue.
- getPValue() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestMixedMultipleTTest
-
Returns the p-value from the last independence test.
- getPValue() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestMultinomialLogisticRegression
-
getPValue.
- getPValue() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestPositiveCorr
-
Calculates the p-value for the independence test.
- getPValue() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestSepsetDci
-
Needed for IndependenceTest interface.
- getPValue() - Method in class edu.cmu.tetrad.sem.DagScorer
-
getPValue.
- getPValue() - Method in interface edu.cmu.tetrad.sem.ISemIm
-
getPValue.
- getPValue() - Method in interface edu.cmu.tetrad.sem.Scorer
-
getPValue.
- getPValue() - Method in class edu.cmu.tetrad.sem.SemIm
-
getPValue.
- getPValue() - Method in class edu.pitt.csb.mgm.IndTestMultinomialLogisticRegressionWald
-
getPValue.
- getPValue(double) - Method in class edu.cmu.tetrad.search.Lofs
-
Calculates the p-value using Fisher's exact test.
- getPValue(double) - Method in class edu.cmu.tetrad.search.test.ConditionalCorrelationIndependence
-
Calculates the p-value for a given score using the cumulative distribution function (CDF) of a standard normal distribution.
- getPValue(double) - Method in class edu.cmu.tetrad.search.work_in_progress.InverseCorrelation
-
getPValue.
- getPValue(Node, Node) - Method in class edu.cmu.tetrad.search.utils.SepsetMap
-
Looks up the p-value for {x, y}
- getPValue(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.test.IndTestChiSquare
-
Returns the pvalue if the fact of X _||_ Y | Z is within the cache of results for independence fact.
- getPValue(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.test.IndTestFisherZ
-
Returns the p-value for x _||_ y | z.
- getPValue(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.utils.DagSepsets
- getPValue(Node, Node, Set<Node>) - Method in interface edu.cmu.tetrad.search.utils.SepsetProducer
-
Calculates the p-value for a statistical test a _||_ b | sepset.
- getPValue(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.utils.SepsetsGreedy
-
Returns the p-value for the independence test between two nodes, given a set of separator nodes.
- getPValue(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.utils.SepsetsMaxP
-
Retrieves the p-value from the result of an independence test between two nodes, given a set of separating nodes.
- getPValue(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.utils.SepsetsMinP
-
Returns the p-value for the independence test between two nodes, given a set of separator nodes.
- getPValue(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.utils.SepsetsPossibleMsep
-
Returns the p-value for the independence test between two nodes, given a set of separator nodes.
- getPValue(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.utils.SepsetsSet
- getPValue(Sextad...) - Method in class edu.cmu.tetrad.search.utils.DeltaSextadTest
-
Takes a list of tetrads for the given data set and returns the chi square value for the test.
- getPValue(Tetrad...) - Method in class edu.cmu.tetrad.search.utils.DeltaTetradTest
-
Returns a p-value for the given list of tetrad.
- getPValue(Parameter, int) - Method in interface edu.cmu.tetrad.sem.ISemIm
-
getPValue.
- getPValue(Parameter, int) - Method in class edu.cmu.tetrad.sem.SemIm
-
getPValue.
- getPValueChisq() - Method in class edu.cmu.tetrad.bayes.EmBayesProperties
-
getPValueChisq.
- getPValueDf() - Method in class edu.cmu.tetrad.bayes.EmBayesProperties
-
Getter for the field
pValueDf
. - getPValues() - Method in class edu.cmu.tetrad.search.BossLingam
-
Returns the p-values of the search.
- getPValues(List<IndependenceResult>) - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Returns the list of p-values for the given list of results.
- getRandomGenerator() - Method in class edu.cmu.tetrad.util.RandomUtil
-
Getter for the field
randomGenerator
. - getRandomGraphClass() - Method in class edu.cmu.tetrad.algcomparison.simulation.BayesNetSimulation
- getRandomGraphClass() - Method in class edu.cmu.tetrad.algcomparison.simulation.ConditionalGaussianSimulation
- getRandomGraphClass() - Method in class edu.cmu.tetrad.algcomparison.simulation.GeneralSemSimulation
- getRandomGraphClass() - Method in class edu.cmu.tetrad.algcomparison.simulation.GeneralSemSimulationSpecial1
- getRandomGraphClass() - Method in class edu.cmu.tetrad.algcomparison.simulation.LeeHastieSimulation
- getRandomGraphClass() - Method in class edu.cmu.tetrad.algcomparison.simulation.LinearFisherModel
- getRandomGraphClass() - Method in class edu.cmu.tetrad.algcomparison.simulation.LinearSineSimulation
- getRandomGraphClass() - Method in class edu.cmu.tetrad.algcomparison.simulation.NLSemSimulation
- getRandomGraphClass() - Method in class edu.cmu.tetrad.algcomparison.simulation.SemSimulation
- getRandomGraphClass() - Method in class edu.cmu.tetrad.algcomparison.simulation.SemThenDiscretize
- getRandomGraphClass() - Method in interface edu.cmu.tetrad.algcomparison.simulation.Simulation
-
Retrieves the class of a random graph for the simulation.
- getRandomGraphClass() - Method in class edu.cmu.tetrad.algcomparison.simulation.SingleDatasetSimulation
-
Returns null, as there is not random graph for this simulation.
- getRandomGraphClass() - Method in class edu.cmu.tetrad.algcomparison.simulation.StandardizedSemSimulation
- getRandomGraphClass() - Method in class edu.cmu.tetrad.algcomparison.simulation.TimeSeriesSemSimulation
- getRandomGraphClass() - Method in class edu.cmu.tetrad.data.simulation.LoadContinuousDataAndGraphs
- getRandomGraphClass() - Method in class edu.cmu.tetrad.data.simulation.LoadContinuousDataAndSingleGraph
- getRandomGraphClass() - Method in class edu.cmu.tetrad.data.simulation.LoadContinuousDataSmithSim
- getRandomGraphClass() - Method in class edu.cmu.tetrad.data.simulation.LoadDataAndGraphs
- getRandomGraphClass() - Method in class edu.cmu.tetrad.data.simulation.LoadDataFromFileWithoutGraph
- getRanks(double[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
getRanks.
- getRawData() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.MeasurementSimulator
-
Returns the raw data that is the result of a simulation, in the form of a three-dimensional double array.
- getRawData() - Method in class edu.cmu.tetrad.study.gene.tetradapp.model.MeasurementSimulatorParams
-
getRawData.
- getReachableNodes(List<Node>, LegalPairs, List<Node>, List<Node>, Graph, int) - Static method in class edu.cmu.tetrad.search.utils.GraphSearchUtils
-
getReachableNodes.
- getRealDistribution(Context) - Method in class edu.cmu.tetrad.calculator.expression.ConstantExpression
-
getRealDistribution.
- getRealDistribution(Context) - Method in class edu.cmu.tetrad.calculator.expression.EvaluationExpression
-
getRealDistribution.
- getRealDistribution(Context) - Method in interface edu.cmu.tetrad.calculator.expression.Expression
-
getRealDistribution.
- getRealDistribution(Context) - Method in class edu.cmu.tetrad.calculator.expression.VariableExpression
-
getRealDistribution.
- getRealEigenvalue(int) - Method in class edu.pitt.csb.mgm.EigenDecomposition
-
Returns the real part of the ith eigenvalue of the original matrix.
- getRealEigenvalues() - Method in class edu.pitt.csb.mgm.EigenDecomposition
-
Gets a copy of the real parts of the eigenvalues of the original matrix.
- getReason() - Method in class edu.cmu.tetrad.search.utils.GraphSearchUtils.LegalMagRet
-
Returns the reason why the graph is not a legal MAG, if not.
- getReason() - Method in class edu.cmu.tetrad.search.utils.GraphSearchUtils.LegalPagRet
-
Returns the reason why the graph is not a legal PAG, if not.
- getRecords() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Cstar
-
Getter for the field
records
. - getRecords(DataSet, List<Node>, List<Node>, int, String) - Method in class edu.cmu.tetrad.search.Cstar
-
Returns records for a set of variables with expected number of false positives bounded by q.
- getReferencedNodes(Node) - Method in class edu.cmu.tetrad.sem.GeneralizedSemPm
-
Retrieves a set of referenced nodes for the given node.
- getReferencedParameters(Node) - Method in class edu.cmu.tetrad.sem.GeneralizedSemPm
-
Retrieves the set of referenced parameters from a given node.
- getReferencingNodes(Node) - Method in class edu.cmu.tetrad.sem.GeneralizedSemPm
-
Retrieves the set of referencing nodes for a given node.
- getReferencingNodes(String) - Method in class edu.cmu.tetrad.sem.GeneralizedSemPm
-
Returns a set of nodes that reference the given parameter.
- getRegressorNames() - Method in class edu.cmu.tetrad.regression.LogisticRegression.Result
-
The variables.
- getRegressorNames() - Method in class edu.cmu.tetrad.regression.RegressionResult
-
Getter for the field
regressorNames
. - getRemap() - Method in class edu.cmu.tetrad.data.DiscreteDiscretizationSpec
-
Getter for the field
remap
. - getRemoves() - Method in class edu.cmu.tetrad.search.work_in_progress.GraphChange
-
Return removes
- getReport() - Method in class edu.cmu.tetrad.sem.GeneralizedSemEstimator
-
Retrieves the report generated by the GeneralizedSemEstimator.
- getRequired() - Method in class edu.cmu.tetrad.search.utils.GrowShrinkTree
-
Getter for the field
required
. - getResamplingDataset(DataSet, int) - Static method in class edu.cmu.tetrad.data.DataTransforms
-
getResamplingDataset.
- getResamplingDataset(DataSet, int, RandomGenerator) - Static method in class edu.cmu.tetrad.data.DataTransforms
-
Get dataset sampled without replacement.
- getResidual() - Method in class edu.cmu.tetrad.search.FactorAnalysis
-
Returns the matrix of residuals.
- getResiduals() - Method in class edu.cmu.tetrad.regression.RegressionResult
-
getResiduals.
- getResiduals() - Method in class edu.cmu.tetrad.search.utils.TsUtils.VarResult
-
Getter for the field
residuals
. - getResidualsWithoutFirstRegressor() - Method in class edu.cmu.tetrad.regression.RegressionDataset
-
getResidualsWithoutFirstRegressor.
- getResultGraph() - Method in class edu.cmu.tetrad.study.performance.ComparisonResult
-
Getter for the field
resultGraph
. - getResults(boolean) - Method in class edu.cmu.tetrad.search.MarkovCheck
-
After the generateResults method has been called, this method returns the results for the Markov or dependency check, depending on the value of the indep parameter.
- getResultsTable() - Method in class edu.cmu.tetrad.regression.RegressionResult
-
getResultsTable.
- getResultType() - Method in class edu.cmu.tetrad.study.performance.ComparisonParameters
-
Getter for the field
resultType
. - getRho() - Method in class edu.cmu.tetrad.search.work_in_progress.Glasso
-
Getter for the field
rho
. - getRmsea() - Method in interface edu.cmu.tetrad.sem.ISemIm
-
getRmsea.
- getRmsea() - Method in class edu.cmu.tetrad.sem.SemIm
-
getRmsea.
- getRootElement(File) - Static method in class edu.cmu.tetrad.graph.GraphSaveLoadUtils
-
getRootElement.
- getRow(boolean[]) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BooleanFunction
-
Returns the row for the given combination of parent values.
- getRow(int) - Method in class edu.cmu.tetrad.util.Matrix
-
getRow.
- getRowCounts(List<DataModel>) - Static method in class edu.cmu.tetrad.util.MultidataUtils
-
getRowCounts.
- getRowIndex(int, int[]) - Method in interface edu.cmu.tetrad.bayes.BayesIm
-
Returns a row index.
- getRowIndex(int, int[]) - Method in class edu.cmu.tetrad.bayes.DirichletBayesIm
-
getRowIndex.
- getRowIndex(int, int[]) - Method in class edu.cmu.tetrad.bayes.MlBayesIm
-
Returns the row index corresponding to the given node index and combination of parent values.
- getRowIndex(int, int[]) - Method in class edu.cmu.tetrad.bayes.MlBayesImObs
-
getRowIndex.
- getRowIndex(int, int[]) - Method in class edu.cmu.tetrad.bayes.UpdatedBayesIm
-
getRowIndex.
- getRowPerm() - Method in class edu.cmu.tetrad.search.utils.PermutationMatrixPair
-
Getter for the field
rowPerm
. - getRowPseudocount(int, int) - Method in class edu.cmu.tetrad.bayes.DirichletBayesIm
-
getRowPseudocount.
- getRows() - Method in class edu.cmu.tetrad.search.test.ConditionalCorrelationIndependence
-
Retrieves the list of row indices currently set for the analysis.
- getRows() - Method in class edu.cmu.tetrad.search.test.IndTestChiSquare
-
Returns the rows used for the test.
- getRows() - Method in class edu.cmu.tetrad.search.test.IndTestConditionalCorrelation
-
Returns the number of orthogonal functions used to do the calculations.
- getRows() - Method in class edu.cmu.tetrad.search.test.IndTestConditionalGaussianLrt
-
Returns the rows used in the test.
- getRows() - Method in class edu.cmu.tetrad.search.test.IndTestDegenerateGaussianLrt
-
Returns the rows used in the test.
- getRows() - Method in class edu.cmu.tetrad.search.test.IndTestFisherZ
-
Returns the rows used in the test.
- getRows() - Method in class edu.cmu.tetrad.search.test.IndTestGSquare
-
Retrieves the list of rows to use for the test.
- getRows() - Method in class edu.cmu.tetrad.search.test.Kci
-
Returns the rows used in the test.
- getRows() - Method in interface edu.cmu.tetrad.search.test.RowsSettable
-
Gets the rows to use for the test.
- getRows() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestFisherZPercentIndependent
-
Retrieves the array of row indices.
- getRows(double[], double[], double, double) - Static method in class edu.cmu.tetrad.util.StatUtils
-
getRows.
- getRows(double[], double, double) - Static method in class edu.cmu.tetrad.util.StatUtils
-
getRows.
- getRowValues(int) - Method in class edu.cmu.tetrad.bayes.MlBayesImObs
-
getRowValues.
- getRuntime() - Method in class edu.cmu.tetrad.search.work_in_progress.Ion
-
Getter for the field
runtime
. - getS() - Method in class edu.cmu.tetrad.search.FastIca.IcaResult
-
Returns the estimated source matrix.
- getSampleCovar() - Method in class edu.cmu.tetrad.sem.DagScorer
-
Getter for the field
sampleCovar
. - getSampleCovar() - Method in interface edu.cmu.tetrad.sem.Scorer
-
getSampleCovar.
- getSampleCovar() - Method in class edu.cmu.tetrad.sem.SemIm
-
getSampleCovar.
- getSamplePrior() - Method in class edu.cmu.tetrad.search.score.BdeuScore
-
Returns the sample prior.
- getSamplePrior() - Method in class edu.cmu.tetrad.search.work_in_progress.ISBDeuScore
-
Retrieves the prior value of the sample.
- getSamplePrior() - Method in class edu.cmu.tetrad.search.work_in_progress.ISBicScore
-
Calculates and returns the sample prior value.
- getSamplePrior() - Method in interface edu.cmu.tetrad.search.work_in_progress.ISScore
-
Retrieves the prior probability assigned to the sample.
- getSamplePrior() - Method in class edu.cmu.tetrad.study.performance.ComparisonParameters
-
Getter for the field
samplePrior
. - getSampleSampleVariability() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.MeasurementSimulator
-
Returns the sample to sample variability, which is the standard deviation of a normal distribution with mean 0 from which errors in measured expression levels due to the microarray being used for measurement are drawn.
- getSampleSampleVariability() - Method in class edu.cmu.tetrad.study.gene.tetradapp.model.MeasurementSimulatorParams
-
getSampleSampleVariability.
- getSampleSize() - Method in class edu.cmu.tetrad.bayes.BayesProperties
-
Returns the sample size.
- getSampleSize() - Method in class edu.cmu.tetrad.data.CorrelationMatrixOnTheFly
-
The size of the sample used to calculated this covariance matrix.
- getSampleSize() - Method in class edu.cmu.tetrad.data.CovarianceMatrix
-
The size of the sample used to calculated this covariance matrix.
- getSampleSize() - Method in class edu.cmu.tetrad.data.CovarianceMatrixOnTheFly
-
The size of the sample used to calculated this covariance matrix.
- getSampleSize() - Method in interface edu.cmu.tetrad.data.ICovarianceMatrix
-
Retrieves the sample size used in the covariance matrix.
- getSampleSize() - Method in class edu.cmu.tetrad.data.SplitCasesSpec
-
Getter for the field
sampleSize
. - getSampleSize() - Method in interface edu.cmu.tetrad.search.IndependenceTest
-
Returns the sample size.
- getSampleSize() - Method in class edu.cmu.tetrad.search.score.BasisFunctionBicScore
-
Retrieves the sample size from the underlying BIC score component.
- getSampleSize() - Method in class edu.cmu.tetrad.search.score.BdeScore
-
Returns the sample size of the data set.
- getSampleSize() - Method in class edu.cmu.tetrad.search.score.BdeuScore
-
Returns the sample size of the data.
- getSampleSize() - Method in class edu.cmu.tetrad.search.score.ConditionalGaussianScore
-
Returns the sample size of the data.
- getSampleSize() - Method in class edu.cmu.tetrad.search.score.DegenerateGaussianScore
-
The sample size of the data.
- getSampleSize() - Method in class edu.cmu.tetrad.search.score.DiscreteBicScore
-
Returns the sample size.
- getSampleSize() - Method in class edu.cmu.tetrad.search.score.DiscreteBicScoreAdTree
-
Returns the sample size.
- getSampleSize() - Method in class edu.cmu.tetrad.search.score.EbicScore
-
Returns the sample size.
- getSampleSize() - Method in class edu.cmu.tetrad.search.score.GicScores
-
Returns the sample size.
- getSampleSize() - Method in class edu.cmu.tetrad.search.score.GraphScore
-
getSampleSize.
- getSampleSize() - Method in class edu.cmu.tetrad.search.score.ImagesScore
-
The sample size of the data.
- getSampleSize() - Method in class edu.cmu.tetrad.search.score.IndTestScore
-
Returns the sample size.
- getSampleSize() - Method in class edu.cmu.tetrad.search.score.MvpScore
-
Returns the sample size.
- getSampleSize() - Method in class edu.cmu.tetrad.search.score.PoissonPriorScore
-
Returns the sample size.
- getSampleSize() - Method in interface edu.cmu.tetrad.search.score.Score
-
The sample size of the data.
- getSampleSize() - Method in class edu.cmu.tetrad.search.score.SemBicScore
-
Returns the sample size.
- getSampleSize() - Method in class edu.cmu.tetrad.search.score.ZsbScore
-
Returns the sample size.
- getSampleSize() - Method in class edu.cmu.tetrad.search.test.IndTestFisherZ
-
Returns the sample size.
- getSampleSize() - Method in class edu.cmu.tetrad.search.test.IndTestTrekSep
-
Returns the sample size used in the covariance matrix.
- getSampleSize() - Method in class edu.cmu.tetrad.search.test.Kci
-
Returns the sample size.
- getSampleSize() - Method in class edu.cmu.tetrad.search.test.ScoreIndTest
-
Returns the sample size.
- getSampleSize() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestFisherZPercentIndependent
-
Retrieves the sample size of the data set.
- getSampleSize() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestFisherZRecursive
-
Returns the sample size.
- getSampleSize() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestPositiveCorr
-
Retrieves the sample size of the covariance matrix.
- getSampleSize() - Method in class edu.cmu.tetrad.search.work_in_progress.ISBDeuScore
-
Retrieves the current sample size.
- getSampleSize() - Method in class edu.cmu.tetrad.search.work_in_progress.ISBicScore
-
Retrieves the current sample size.
- getSampleSize() - Method in interface edu.cmu.tetrad.search.work_in_progress.ISScore
-
Retrieves the sample size used in the score computation.
- getSampleSize() - Method in class edu.cmu.tetrad.search.work_in_progress.MagCgBicScore
-
The sample size of the data.
- getSampleSize() - Method in class edu.cmu.tetrad.search.work_in_progress.MagDgBicScore
-
The sample size of the data.
- getSampleSize() - Method in class edu.cmu.tetrad.search.work_in_progress.MagSemBicScore
-
The sample size of the data.
- getSampleSize() - Method in class edu.cmu.tetrad.search.work_in_progress.MnlrScore
-
Returns the sample size.
- getSampleSize() - Method in class edu.cmu.tetrad.search.work_in_progress.SemBicScoreDeterministic
-
Getter for the field
sampleSize
. - getSampleSize() - Method in class edu.cmu.tetrad.sem.DagScorer
-
getSampleSize.
- getSampleSize() - Method in interface edu.cmu.tetrad.sem.ISemIm
-
getSampleSize.
- getSampleSize() - Method in interface edu.cmu.tetrad.sem.Scorer
-
getSampleSize.
- getSampleSize() - Method in class edu.cmu.tetrad.sem.SemIm
-
Getter for the field
sampleSize
. - getSampleSize() - Method in class edu.cmu.tetrad.sem.StandardizedSemIm
-
Getter for the field
sampleSize
. - getSampleSize() - Method in class edu.cmu.tetrad.study.performance.ComparisonParameters
-
Getter for the field
sampleSize
. - getScaledBHat(PermutationMatrixPair) - Static method in class edu.cmu.tetrad.search.IcaLingD
-
Returns the BHat matrix, permuted to the variable order of the original data and scaled so that the diagonal consists only of 1's.
- getScaledBHats(Matrix) - Method in class edu.cmu.tetrad.search.IcaLingD
-
Performs the LiNG-D algorithm given a W matrix, which needs to be discovered elsewhere.
- getScaledRocPlot() - Method in class edu.cmu.tetrad.util.RocCalculator
-
getScaledRocPlot.
- getScalingFactor() - Method in class edu.cmu.tetrad.search.test.ConditionalCorrelationIndependence
-
Retrieves the kernel scaling factor.
- getScore() - Method in class edu.cmu.tetrad.search.Boss
-
Returns the score being used for the search.
- getScore() - Method in class edu.cmu.tetrad.search.score.ScoredGraph
-
Returns the score.
- getScore() - Method in class edu.cmu.tetrad.search.Sp
-
Retrieves the score associated with this object.
- getScore() - Method in interface edu.cmu.tetrad.search.SuborderSearch
-
The score being used.
- getScore() - Method in class edu.cmu.tetrad.search.test.IndependenceResult
-
Returns the score of the test, which is alpha - p if the test returns a p-value or else a bump if the test is based on a score.
- getScore() - Method in class edu.cmu.tetrad.search.utils.DagSepsets
-
Returns the score of the object.
- getScore() - Method in interface edu.cmu.tetrad.search.utils.SepsetProducer
-
Returns the score of the object.
- getScore() - Method in class edu.cmu.tetrad.search.utils.SepsetsGreedy
-
Calculates the score for the given Sepsets object.
- getScore() - Method in class edu.cmu.tetrad.search.utils.SepsetsMaxP
-
Calculates the score for the given Sepsets object.
- getScore() - Method in class edu.cmu.tetrad.search.utils.SepsetsMinP
-
Calculates the score for the given Sepsets object.
- getScore() - Method in class edu.cmu.tetrad.search.utils.SepsetsPossibleMsep
-
Returns the score of the object.
- getScore() - Method in class edu.cmu.tetrad.search.utils.SepsetsSet
-
Returns the score of the object.
- getScore() - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsBeam.Score
-
getScore.
- getScore() - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsGes.Score
-
Returns the score.
- getScore() - Method in interface edu.cmu.tetrad.sem.ISemIm
-
getScore.
- getScore() - Method in class edu.cmu.tetrad.sem.SemIm
-
The value of the maximum likelihood function for the getModel the model (Bollen 107).
- getScore() - Method in class edu.cmu.tetrad.study.performance.ComparisonParameters
-
Getter for the field
score
. - getScore(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.score.BasisFunctionBicScore
-
Returns true, iff x and y are independent, conditional on z for the given data set.
- getScore(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.score.BdeuScore
-
Returns true, iff x and y are independent, conditional on z for the given data set.
- getScore(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.score.ConditionalGaussianBicScore
-
Returns true, iff x and y are independent, conditional on z for the given data set.
- getScore(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.score.DegenerateGaussianBicScore
-
Returns true, iff x and y are independent, conditional on z for the given data set.
- getScore(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.score.DiscreteBicScore
-
Returns true, iff x and y are independent, conditional on z for the given data set.
- getScore(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.score.EbicScore
-
Returns true, iff x and y are independent, conditional on z for the given data set.
- getScore(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.score.FisherZScore
-
Returns true, iff x and y are independent, conditional on z for the given data set.
- getScore(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.score.GicScores
-
Returns true, iff x and y are independent, conditional on z for the given data set.
- getScore(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.score.MagDgBicScore
-
Returns true, iff x and y are independent, conditional on z for the given data set.
- getScore(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.score.MSeparationScore
-
Returns true, iff x and y are independent, conditional on z for the given data set.
- getScore(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.score.MVPBicScore
-
Returns true, iff x and y are independent, conditional on z for the given data set.
- getScore(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.score.PoissonPriorScore
-
Returns true, iff x and y are independent, conditional on z for the given data set.
- getScore(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.score.PositiveCorrScore
-
Returns true, iff x and y are independent, conditional on z for the given data set.
- getScore(DataModel, Parameters) - Method in interface edu.cmu.tetrad.algcomparison.score.ScoreWrapper
-
Returns true, iff x and y are independent, conditional on z for the given data set.
- getScore(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.score.SemBicScore
-
Returns true, iff x and y are independent, conditional on z for the given data set.
- getScore(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.score.SemBicScoreDeterministic
-
Returns true, iff x and y are independent, conditional on z for the given data set.
- getScore(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.score.ZhangShenBoundScore
-
Calculates the score based on the given data set and parameters.
- getScore(Graph) - Method in class edu.cmu.tetrad.search.SvarFges
-
Returns the score of the given DAG.
- getScore(Graph) - Method in class edu.cmu.tetrad.search.utils.FgesOrienter
-
getScore.
- getScore(Graph) - Method in class edu.cmu.tetrad.search.work_in_progress.ISFges
-
Calculates and returns the score of the provided Directed Acyclic Graph (DAG).
- getScore(IndependenceResult) - Method in class edu.cmu.tetrad.search.test.Kci
-
Returns alpha - p.
- getScoreCount(Node, Set<Node>) - Method in class edu.cmu.tetrad.bayes.BdeMetricCache
-
This is just for testing the operation of the inner class and the map from nodes and parent sets to scores.
- getScoreFact(int, int[], List<Node>) - Static method in class edu.cmu.tetrad.search.utils.LogUtilsSearch
-
getScoreFact.
- getScoreFact(Node, List<Node>) - Static method in class edu.cmu.tetrad.search.utils.LogUtilsSearch
-
getScoreFact.
- getScoreParameters(Algorithm) - Static method in class edu.cmu.tetrad.util.Params
-
getScoreParameters.
- getScoreWrapper() - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.DirectLingam
-
Retrieves the ScoreWrapper object associated with this DirectLingam instance.
- getScoreWrapper() - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.Fask
-
Retrieves the ScoreWrapper object associated with this class.
- getScoreWrapper() - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.FaskOrig
-
Retrieves the ScoreWrapper object associated with this class.
- getScoreWrapper() - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FaskVote
-
Returns the score wrapper.
- getScoreWrapper() - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.Images
-
Retrieves the score wrapper object.
- getScoreWrapper() - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.ImagesBoss
-
Returns the score wrapper.
- getScoreWrapper() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Boss
-
Returns the score wrapper.
- getScoreWrapper() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.BossLingam
-
Returns the score wrapper.
- getScoreWrapper() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Cstar
-
Returns the score wrapper.
- getScoreWrapper() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Fges
-
Returns the score wrapper.
- getScoreWrapper() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.FgesMb
-
Returns the score wrapper.
- getScoreWrapper() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Grasp
-
Returns the score wrapper.
- getScoreWrapper() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.RestrictedBoss
-
Returns the score wrapper.
- getScoreWrapper() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Sp
-
Returns the score wrapper.
- getScoreWrapper() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Bfci
-
Retrieves the ScoreWrapper associated with this algorithm.
- getScoreWrapper() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.BossDumb
-
Retrieves the ScoreWrapper object associated with this method.
- getScoreWrapper() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.BossPag
-
Retrieves the ScoreWrapper object associated with this method.
- getScoreWrapper() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Gfci
-
Retrieves the ScoreWrapper associated with this instance.
- getScoreWrapper() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.GraspFci
-
Retrieves the ScoreWrapper object associated with this method.
- getScoreWrapper() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.LvLite
-
Retrieves the ScoreWrapper object associated with this method.
- getScoreWrapper() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.SpFci
-
Retrieves the ScoreWrapper object associated with this algorithm.
- getScoreWrapper() - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.SvarGfci
-
Retrieves the ScoreWrapper object associated with this algorithm.
- getScoreWrapper() - Method in interface edu.cmu.tetrad.algcomparison.utils.UsesScoreWrapper
-
Returns the score wrapper.
- getSd() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.AbstractNbComponent
-
Returns the standard deviation.
- getSe() - Method in class edu.cmu.tetrad.regression.RegressionResult
-
Getter for the field
se
. - getSecond() - Method in class edu.cmu.tetrad.graph.NodePair
-
Getter for the field
second
. - getSecond() - Method in class edu.cmu.tetrad.graph.OrderedPair
-
Getter for the field
second
. - getSecondEdge() - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsBeam.Move
-
Getter for the field
secondEdge
. - getSelectedIndices() - Method in class edu.cmu.tetrad.data.BoxDataSet
-
getSelectedIndices.
- getSelectedIndices() - Method in interface edu.cmu.tetrad.data.DataSet
-
getSelectedIndices.
- getSelectedIndices() - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
getSelectedIndices.
- getSelectedModel() - Method in class edu.cmu.tetrad.data.DataModelList
-
Getter for the field
selectedModel
. - getSelectedVariableNames() - Method in class edu.cmu.tetrad.data.CorrelationMatrixOnTheFly
-
getSelectedVariableNames.
- getSelectedVariableNames() - Method in class edu.cmu.tetrad.data.CovarianceMatrix
-
getSelectedVariableNames.
- getSelectedVariableNames() - Method in class edu.cmu.tetrad.data.CovarianceMatrixOnTheFly
-
getSelectedVariableNames.
- getSelectedVariableNames() - Method in interface edu.cmu.tetrad.data.ICovarianceMatrix
-
Retrieves a list of names of the currently selected variables.
- getSelectedVariables() - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
getSelectedVariables.
- getSelection(int[]) - Method in class edu.cmu.tetrad.util.Vector
-
viewSelection.
- getSelection(int[], int[]) - Method in class edu.cmu.tetrad.data.CorrelationMatrix
-
Returns a submatrix based on the specified rows and columns.
- getSelection(int[], int[]) - Method in class edu.cmu.tetrad.data.CorrelationMatrixOnTheFly
-
Returns a submatrix based on the specified rows and columns.
- getSelection(int[], int[]) - Method in class edu.cmu.tetrad.data.CovarianceMatrix
-
Returns a submatrix based on the specified rows and columns.
- getSelection(int[], int[]) - Method in class edu.cmu.tetrad.data.CovarianceMatrixOnTheFly
-
Returns a submatrix based on the specified rows and columns.
- getSelection(int[], int[]) - Method in interface edu.cmu.tetrad.data.ICovarianceMatrix
-
Returns a submatrix based on the specified rows and columns.
- getSelection(int[], int[]) - Method in class edu.cmu.tetrad.util.Matrix
-
getSelection.
- getSelection(int[], int[], int[]) - Method in class edu.cmu.tetrad.data.CovarianceMatrixOnTheFly
-
getSelection.
- getSelectionBias() - Method in class edu.cmu.tetrad.data.ContinuousVariable
- getSelectionBias() - Method in class edu.cmu.tetrad.data.DiscreteVariable
- getSelectionBias() - Method in class edu.cmu.tetrad.graph.GraphNode
-
Returns true if this node is selected as a bias node.
- getSelectionBias() - Method in interface edu.cmu.tetrad.graph.Node
-
Returns the selection bias status for this node.
- getSelfLoopCoef() - Method in class edu.cmu.tetrad.sem.LargeScaleSimulation
-
Getter for the field
selfLoopCoef
. - getSelfLoopCoefs(DataSet) - Static method in class edu.cmu.tetrad.search.utils.TsUtils
-
getSelfLoopCoefs.
- getSemIm() - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpc
-
Getter for the field
semIm
. - getSemIm() - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpcFast
-
Getter for the field
semIm
. - getSemIm() - Method in class edu.cmu.tetrad.sem.ParamConstraint
-
Getter for the field
semIm
. - getSemIm() - Method in class edu.cmu.tetrad.sem.SemEvidence
-
Getter for the field
semIm
. - getSemIm() - Method in class edu.cmu.tetrad.sem.SemProposition
-
Retrieves the SemIm object associated with this SemProposition.
- getSemIm() - Method in class edu.cmu.tetrad.sem.SemUpdater
-
Getter for the field
semIm
. - getSemIm(Element) - Static method in class edu.cmu.tetrad.sem.SemXmlParser
-
Takes an xml representation of a SEM IM and reinstantiates the IM
- getSemPm() - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpc
-
Getter for the field
semPm
. - getSemPm() - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpcFast
-
Getter for the field
semPm
. - getSemPm() - Method in class edu.cmu.tetrad.sem.GeneralizedSemIm
-
getSemPm.
- getSemPm() - Method in interface edu.cmu.tetrad.sem.ISemIm
-
getSemPm.
- getSemPm() - Method in class edu.cmu.tetrad.sem.SemEstimator
-
Getter for the field
semPm
. - getSemPm() - Method in class edu.cmu.tetrad.sem.SemEstimatorGibbs
-
Getter for the field
semPm
. - getSemPm() - Method in class edu.cmu.tetrad.sem.SemIm
-
Getter for the field
semPm
. - getSemPm() - Method in class edu.cmu.tetrad.sem.StandardizedSemIm
-
Getter for the field
semPm
. - getSeparatedPairs() - Method in class edu.cmu.tetrad.search.work_in_progress.SepsetMapDci
-
getSeparatedPairs.
- getSeparators(Node[], Map<Node, Set<Node>>) - Static method in class edu.cmu.tetrad.bayes.GraphTools
-
Calculate separator sets in clique tree.
- getSepset() - Method in class edu.cmu.tetrad.search.work_in_progress.Dci
-
Gets the resulting sepsets
- getSepset() - Method in class edu.cmu.tetrad.search.work_in_progress.Kpc
-
Getter for the field
sepset
. - getSepset(Node, Node, boolean, IndependenceTest, int) - Method in class edu.cmu.tetrad.graph.Paths
-
Finds a sepset for x and y, if there is one; otherwise, returns null.
- getSepset(Node, Node, int) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
Retrieves the set of nodes that form the sepset between two given nodes.
- getSepset(Node, Node, int) - Method in class edu.cmu.tetrad.search.utils.DagSepsets
-
Retrieves the sepset, which is the set of common neighbors between two given nodes.
- getSepset(Node, Node, int) - Method in interface edu.cmu.tetrad.search.utils.SepsetProducer
-
Retrieves the sepset, which is the set of common neighbors between two given nodes.
- getSepset(Node, Node, int) - Method in class edu.cmu.tetrad.search.utils.SepsetsGreedy
-
Retrieves the sepset (separating set) between two nodes, or null if no such sepset is found.
- getSepset(Node, Node, int) - Method in class edu.cmu.tetrad.search.utils.SepsetsMaxP
-
Retrieves the sepset (separating set) between two nodes which contains a set of nodes.
- getSepset(Node, Node, int) - Method in class edu.cmu.tetrad.search.utils.SepsetsMinP
-
Retrieves the sepset (separating set) between two nodes, or null if no such sepset is found.
- getSepset(Node, Node, int) - Method in class edu.cmu.tetrad.search.utils.SepsetsPossibleMsep
-
Retrieves the separation set (sepset) between two nodes.
- getSepset(Node, Node, int) - Method in class edu.cmu.tetrad.search.utils.SepsetsSet
-
Retrieves the sepset between two nodes.
- getSepset(Node, Node, IndependenceTest) - Method in class edu.cmu.tetrad.graph.Dag
-
Returns the sepset between two given nodes in the graph.
- getSepset(Node, Node, IndependenceTest) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
Returns the set of nodes that form the separating set between two given nodes.
- getSepset(Node, Node, IndependenceTest) - Method in interface edu.cmu.tetrad.graph.Graph
-
Returns the set of nodes that form the separating set between two given nodes.
- getSepset(Node, Node, IndependenceTest) - Method in class edu.cmu.tetrad.graph.LagGraph
-
Returns the set of nodes that form the separating set between two given nodes.
- getSepset(Node, Node, IndependenceTest) - Method in class edu.cmu.tetrad.graph.SemGraph
-
Returns the set of nodes that form the separating set between two given nodes.
- getSepset(Node, Node, IndependenceTest) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Retrieves the sepset of two nodes in the graph.
- getSepset(IndependenceTest, Node, Node) - Method in class edu.cmu.tetrad.search.utils.PossibleMsepFci
-
Getter for the field
sepset
. - getSepsetContaining(Node, Node, Set<Node>, int) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
Retrieves the set of nodes that form the sepset between two given nodes.
- getSepsetContaining(Node, Node, Set<Node>, int) - Method in class edu.cmu.tetrad.graph.Paths
-
Retrieves a sepset (a set of nodes) between two given nodes.
- getSepsetContaining(Node, Node, Set<Node>, int) - Method in class edu.cmu.tetrad.search.utils.DagSepsets
-
Returns the sepset containing nodes 'a' and 'b' that also contains all the nodes in the given set 's'.
- getSepsetContaining(Node, Node, Set<Node>, int) - Method in interface edu.cmu.tetrad.search.utils.SepsetProducer
-
Retrieves a sepset containing nodes in s from the given set of nodes.
- getSepsetContaining(Node, Node, Set<Node>, int) - Method in class edu.cmu.tetrad.search.utils.SepsetsGreedy
-
Retrieves a sepset (separating set) between two nodes containing a set of nodes, containing the nodes in s, or null if no such sepset is found.
- getSepsetContaining(Node, Node, Set<Node>, int) - Method in class edu.cmu.tetrad.search.utils.SepsetsMaxP
-
Retrieves a sepset (separating set) between two nodes containing a set of nodes containing the nodes in s, or null if no such sepset is found.
- getSepsetContaining(Node, Node, Set<Node>, int) - Method in class edu.cmu.tetrad.search.utils.SepsetsMinP
-
Retrieves a sepset (separating set) between two nodes containing a set of nodes containing the nodes in s, or null if no such sepset is found.
- getSepsetContaining(Node, Node, Set<Node>, int) - Method in class edu.cmu.tetrad.search.utils.SepsetsPossibleMsep
-
Retrieves the separation set (sepset) between two nodes i and k that contains a given set of nodes s.
- getSepsetContaining(Node, Node, Set<Node>, int) - Method in class edu.cmu.tetrad.search.utils.SepsetsSet
-
Retrieves the sepset for a and b, where we are expecting this sepset to contain all the nodes in s.
- getSepsetContainingGreedy(Graph, Node, Node, Set<Node>, IndependenceTest, int) - Static method in class edu.cmu.tetrad.search.SepsetFinder
-
Returns the sepset that contains the greedy test for variables x and y in the given graph.
- getSepsetContainingMaxPHybrid(Graph, Node, Node, Set<Node>, IndependenceTest, int) - Static method in class edu.cmu.tetrad.search.SepsetFinder
-
Returns the set of nodes that act as a separating set between two given nodes (x and y) in a graph.
- getSepsetContainingMinPHybrid(Graph, Node, Node, Set<Node>, IndependenceTest, int) - Static method in class edu.cmu.tetrad.search.SepsetFinder
-
Returns the sepset containing the minimum p-value for the given variables x and y.
- getSepsetPathBlockingOutOfX(Graph, Node, Node, IndependenceTest, int, int, boolean, Set<Node>) - Static method in class edu.cmu.tetrad.search.SepsetFinder
-
Calculates the sepset path blocking out-of operation for a given pair of nodes in a graph.
- getSepsets() - Method in class edu.cmu.tetrad.search.Cfci
-
Returns the map from nodes to their sepsets.
- getSepsets() - Method in class edu.cmu.tetrad.search.Cpc
-
Returns a map for x _||_ y | z1,..,zn from {x, y} to {z1,...,zn}.
- getSepsets() - Method in class edu.cmu.tetrad.search.Fas
-
Returns the sepsets that were discovered in the search.
- getSepsets() - Method in class edu.cmu.tetrad.search.Fasd
-
Returns the map of node pairs to sepsets from the search.
- getSepsets() - Method in class edu.cmu.tetrad.search.Fci
-
Returns the sepset map from FAS.
- getSepsets() - Method in class edu.cmu.tetrad.search.FciMax
-
Retrieves the map from variable pairs to sepsets from the FAS search.
- getSepsets() - Method in interface edu.cmu.tetrad.search.IFas
-
Returns the sepset map discovered during search--that is, the map from node pairs to the sepsets used in the search to remove the corresponding edges from the complete graph.
- getSepsets() - Method in class edu.cmu.tetrad.search.Pc
-
Returns the sepset map from the most recent search.
- getSepsets() - Method in class edu.cmu.tetrad.search.Pcd
-
Getter for the field
sepsets
. - getSepsets() - Method in class edu.cmu.tetrad.search.Rfci
-
Returns the map from node pairs to sepsets found in search.
- getSepsets() - Method in class edu.cmu.tetrad.search.SvarFas
-
Returns a map for x _||_ y | Z from {x, y} to Z.
- getSepsets() - Method in class edu.cmu.tetrad.search.SvarFci
-
Returns the map from node pairs to sepsets.
- getSepsets() - Method in class edu.cmu.tetrad.search.work_in_progress.FasFdr
-
Returns a map for x _||_ y | z1,...,zn of {x, y} to {z1,...,zn},
- getSet(Node, Node) - Method in class edu.cmu.tetrad.search.work_in_progress.SepsetMapDci
-
Retrieves the set of all condioning sets for {x, y} or null if no such set was ever set
- getSetType() - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Returns type of conditioning sets to use in the Markov check.
- getShat() - Method in class edu.cmu.tetrad.sem.Ricf.RicfResult
-
Retrieves the shat matrix.
- getShd() - Method in class edu.cmu.tetrad.graph.GraphUtils.GraphComparison
-
Returns the adjacency precision.
- getShortDescription() - Method in class edu.cmu.tetrad.util.ParamDescription
-
Getter for the field
shortDescription
. - getShortName() - Method in class edu.cmu.tetrad.algcomparison.simulation.BayesNetSimulation
-
Returns the short name of the simulation.
- getShortName() - Method in class edu.cmu.tetrad.algcomparison.simulation.ConditionalGaussianSimulation
-
Returns the short name of the simulation.
- getShortName() - Method in class edu.cmu.tetrad.algcomparison.simulation.GeneralSemSimulation
-
Returns the short name of the simulation.
- getShortName() - Method in class edu.cmu.tetrad.algcomparison.simulation.GeneralSemSimulationSpecial1
-
Returns the short name of the simulation.
- getShortName() - Method in class edu.cmu.tetrad.algcomparison.simulation.LeeHastieSimulation
-
Returns the short name of the simulation.
- getShortName() - Method in class edu.cmu.tetrad.algcomparison.simulation.LinearFisherModel
-
Returns the short name of the simulation.
- getShortName() - Method in class edu.cmu.tetrad.algcomparison.simulation.LinearSineSimulation
-
Returns the short name of the simulation.
- getShortName() - Method in class edu.cmu.tetrad.algcomparison.simulation.NLSemSimulation
-
Returns the short name of the simulation.
- getShortName() - Method in class edu.cmu.tetrad.algcomparison.simulation.SemSimulation
-
Returns the short name of the simulation.
- getShortName() - Method in class edu.cmu.tetrad.algcomparison.simulation.SemThenDiscretize
-
Returns the short name of the simulation.
- getShortName() - Method in interface edu.cmu.tetrad.algcomparison.simulation.Simulation
-
Returns the short name of the simulation.
- getShortName() - Method in class edu.cmu.tetrad.algcomparison.simulation.StandardizedSemSimulation
-
Returns the short name of the simulation.
- getShortName() - Method in class edu.cmu.tetrad.algcomparison.simulation.TimeSeriesSemSimulation
-
Returns the short name of the simulation.
- getShuffledVariables() - Method in class edu.cmu.tetrad.search.utils.TeyssierScorer
-
getShuffledVariables.
- getSignature() - Method in interface edu.cmu.tetrad.calculator.expression.ExpressionDescriptor
-
getSignature.
- getSignature() - Method in interface edu.cmu.tetrad.calculator.expression.ExpressionSignature
-
getSignature.
- getSignificance() - Method in interface edu.cmu.tetrad.search.utils.TetradTest
-
getSignificance.
- getSignificance() - Method in class edu.cmu.tetrad.search.utils.TetradTestContinuous
-
getSignificance.
- getSignificance() - Method in class edu.cmu.tetrad.search.utils.TetradTestDiscrete
-
getSignificance.
- getSignificance() - Method in class edu.cmu.tetrad.search.utils.TetradTestPopulation
-
getSignificance.
- getSignificantModels() - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsGes
-
Getter for the field
significantModels
. - getSimulation() - Method in class edu.cmu.tetrad.algcomparison.algorithm.ExternalAlgorithm
-
Getter for the field
simulation
. - getSimulationClass() - Method in class edu.cmu.tetrad.algcomparison.simulation.BayesNetSimulation
- getSimulationClass() - Method in class edu.cmu.tetrad.algcomparison.simulation.ConditionalGaussianSimulation
- getSimulationClass() - Method in class edu.cmu.tetrad.algcomparison.simulation.GeneralSemSimulation
- getSimulationClass() - Method in class edu.cmu.tetrad.algcomparison.simulation.GeneralSemSimulationSpecial1
- getSimulationClass() - Method in class edu.cmu.tetrad.algcomparison.simulation.LeeHastieSimulation
- getSimulationClass() - Method in class edu.cmu.tetrad.algcomparison.simulation.LinearFisherModel
- getSimulationClass() - Method in class edu.cmu.tetrad.algcomparison.simulation.LinearSineSimulation
- getSimulationClass() - Method in class edu.cmu.tetrad.algcomparison.simulation.NLSemSimulation
- getSimulationClass() - Method in class edu.cmu.tetrad.algcomparison.simulation.SemSimulation
- getSimulationClass() - Method in class edu.cmu.tetrad.algcomparison.simulation.SemThenDiscretize
- getSimulationClass() - Method in interface edu.cmu.tetrad.algcomparison.simulation.Simulation
-
Returns the class of the simulation.
- getSimulationClass() - Method in class edu.cmu.tetrad.algcomparison.simulation.SingleDatasetSimulation
-
Retrieves the class of the simulation.
- getSimulationClass() - Method in class edu.cmu.tetrad.algcomparison.simulation.StandardizedSemSimulation
- getSimulationClass() - Method in class edu.cmu.tetrad.algcomparison.simulation.TimeSeriesSemSimulation
- getSimulationClass() - Method in class edu.cmu.tetrad.data.simulation.LoadContinuousDataAndGraphs
- getSimulationClass() - Method in class edu.cmu.tetrad.data.simulation.LoadContinuousDataAndSingleGraph
- getSimulationClass() - Method in class edu.cmu.tetrad.data.simulation.LoadContinuousDataSmithSim
- getSimulationClass() - Method in class edu.cmu.tetrad.data.simulation.LoadDataAndGraphs
- getSimulationClass() - Method in class edu.cmu.tetrad.data.simulation.LoadDataFromFileWithoutGraph
- getSimulations() - Method in class edu.cmu.tetrad.algcomparison.simulation.Simulations
-
Returns the list of simulations.
- getSimulator() - Method in class edu.cmu.tetrad.study.gene.tetradapp.model.MeasurementSimulatorParams
-
Getter for the field
simulator
. - getSingleCategory(int) - Method in class edu.cmu.tetrad.bayes.Proposition
-
getSingleCategory.
- getSize() - Method in class edu.cmu.tetrad.data.CorrelationMatrixOnTheFly
-
getSize.
- getSize() - Method in class edu.cmu.tetrad.data.CovarianceMatrix
-
getSize.
- getSize() - Method in class edu.cmu.tetrad.data.CovarianceMatrixOnTheFly
-
getSize.
- getSize() - Method in interface edu.cmu.tetrad.data.ICovarianceMatrix
-
Retrieves the size of the matrix.
- getSize() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.akutsu.RevealOutputGraph
-
getSize.
- getSize() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.reveal.RevealOutputGraph
-
getSize.
- getSize() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.RevealOutputGraph
-
getSize.
- getSize() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.BasicGraph
-
Returns the # nodes in this graph
- getSize() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.BasicMatrix
-
Returns # rows ( == # columns) of this matrix
- getSize() - Method in interface edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.OutputGraph
-
Returns the number of variables over which the graph is defined.
- getSize() - Method in class edu.cmu.tetrad.util.Point
-
getSize.
- getSkeleton() - Method in class edu.cmu.tetrad.search.utils.TeyssierScorer
-
getSkeleton.
- getSmallestSubset(Node, Node, Set<Node>, Set<Node>, Graph, boolean) - Static method in class edu.cmu.tetrad.search.SepsetFinder
-
Finds a smallest subset S of
blocking
that renders two nodes x and y conditionally d-separated conditional on S in the given graph. - getSoCalledPoissonShocks(int) - Method in class edu.cmu.tetrad.sem.LargeScaleSimulation
-
getSoCalledPoissonShocks.
- getSolver() - Method in class edu.pitt.csb.mgm.EigenDecomposition
-
Gets a solver for finding the A × X = B solution in exact linear sense.
- getSplitNames() - Method in class edu.cmu.tetrad.data.SplitCasesSpec
-
Getter for the field
splitNames
. - getSquaredDistance(OrderedPair<Node>) - Method in class edu.cmu.tetrad.search.IdaCheck
-
Calculates the squared distance of the true total effect to the [min, max] IDA effect range of the given (x, y) node pair, for x predicting y.
- getSquaredMaxTrueDist(OrderedPair<Node>) - Method in class edu.cmu.tetrad.search.IdaCheck
-
Returns the squared difference between the maximum total effect and the true total effect for the given pair of nodes.
- getSquaredMinTrueDistance(OrderedPair<Node>) - Method in class edu.cmu.tetrad.search.IdaCheck
-
Returns the squared difference between the minimum total effect and the true total effect for the given pair of nodes.
- getSquareRoot() - Method in class edu.pitt.csb.mgm.EigenDecomposition
-
Computes the square-root of the matrix.
- getSs() - Method in class edu.cmu.tetrad.search.work_in_progress.Glasso
-
Getter for the field
ss
. - getStableBHats() - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.IcaLingD
-
Retrieves the list of stable B matrices generated by the algorithm.
- getStableGraphs() - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.IcaLingD
-
Retrieves the list of stable graphs generated by the algorithm.
- getStandardError(Parameter, int) - Method in interface edu.cmu.tetrad.sem.ISemIm
-
getStandardError.
- getStandardError(Parameter, int) - Method in class edu.cmu.tetrad.sem.SemIm
-
getStandardError.
- getStartIm() - Method in class edu.cmu.tetrad.sem.SemEstimatorGibbsParams
-
Getter for the field
startIm
. - getStartingValue() - Method in class edu.cmu.tetrad.sem.Parameter
-
Getter for the field
startingValue
. - getStartsWithParameterEstimationInitializationTemplate(String) - Method in class edu.cmu.tetrad.sem.GeneralizedSemPm
-
Retrieves the initialization template for parameter estimation based on the provided starting string.
- getStartsWithParameterTemplate(String) - Method in class edu.cmu.tetrad.sem.GeneralizedSemPm
-
getStartsWithParameterTemplate.
- getStatistics() - Method in class edu.cmu.tetrad.algcomparison.statistic.Statistics
-
Return the list of statistics.
- getStats() - Method in class edu.cmu.tetrad.search.work_in_progress.Ion
-
Summarizes time and hitting set time and size information for latex
- getStatsListTable(Graph, Graph) - Static method in class edu.cmu.tetrad.algcomparison.CompareTwoGraphs
-
Returns a string representing a table of statistics that can be printed.
- getStatsListTable(Graph, Graph, DataModel, long) - Static method in class edu.cmu.tetrad.algcomparison.CompareTwoGraphs
-
Returns a string representing a table of statistics that can be printed.
- getStdDev(Node, Matrix) - Method in interface edu.cmu.tetrad.sem.ISemIm
-
getStdDev.
- getStdDev(Node, Matrix) - Method in class edu.cmu.tetrad.sem.SemIm
-
getStdDev.
- getStdErrors() - Method in class edu.cmu.tetrad.sem.SemStdErrorEstimator
-
getStdErrors.
- getStdErrs() - Method in class edu.cmu.tetrad.regression.LogisticRegression.Result
-
The array of standard errors for the regression coefficients.
- getStep() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.GeneHistory
-
Returns the getModel step.
- getStepsGenerated() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.MeasurementSimulator
-
Returns the number of steps generated.
- getStepsGenerated() - Method in class edu.cmu.tetrad.study.gene.tetradapp.model.MeasurementSimulatorParams
-
getStepsGenerated.
- getStretch() - Method in class edu.cmu.tetrad.sem.SemEstimatorGibbsParams
-
Getter for the field
stretch
. - getString(String) - Method in class edu.cmu.tetrad.util.Parameters
-
Returns the string value of the given parameter, looking up its default in the ParamDescriptions map.
- getString(String, String) - Method in class edu.cmu.tetrad.util.Parameters
-
Returns the string value of the given parameter, using the given default.
- getStructurePrior() - Method in class edu.cmu.tetrad.search.score.BdeuScore
-
Retrieves the structure prior associated with this BdeuScore object.
- getStructurePrior() - Method in class edu.cmu.tetrad.search.score.SemBicScore
-
Returns the structure prior for this score.
- getStructurePrior() - Method in class edu.cmu.tetrad.search.work_in_progress.ISBDeuScore
-
Retrieves the value of the structure prior.
- getStructurePrior() - Method in class edu.cmu.tetrad.search.work_in_progress.ISBicScore
-
Retrieves the prior probability of the given structure.
- getStructurePrior() - Method in interface edu.cmu.tetrad.search.work_in_progress.ISScore
-
Retrieves the prior value assigned to the structure.
- getStructurePrior() - Method in class edu.cmu.tetrad.study.performance.ComparisonParameters
-
Getter for the field
structurePrior
. - getStructurePrior(int) - Method in class edu.cmu.tetrad.search.score.MvpLikelihood
-
Returns the structure prior.
- getStructurePrior(int) - Method in class edu.cmu.tetrad.search.work_in_progress.MnlrLikelihood
-
Returns the structur prior for k parents.
- getSubCorrMatrix(String[]) - Method in class edu.cmu.tetrad.data.CorrelationMatrix
-
getSubCorrMatrix.
- getSubFunction(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BooleanGlassFunction
-
getSubFunction.
- getSubmatrix(int[]) - Method in class edu.cmu.tetrad.data.CorrelationMatrixOnTheFly
-
getSubmatrix.
- getSubmatrix(int[]) - Method in class edu.cmu.tetrad.data.CovarianceMatrix
-
getSubmatrix.
- getSubmatrix(int[]) - Method in class edu.cmu.tetrad.data.CovarianceMatrixOnTheFly
-
getSubmatrix.
- getSubmatrix(int[]) - Method in interface edu.cmu.tetrad.data.ICovarianceMatrix
-
Returns a submatrix of the covariance matrix, including only the specified variables.
- getSubmatrix(int[], int[]) - Method in class edu.cmu.tetrad.data.CovarianceMatrixOnTheFly
-
getSubmatrix.
- getSubmatrix(String[]) - Method in class edu.cmu.tetrad.data.CorrelationMatrixOnTheFly
-
getSubmatrix.
- getSubmatrix(String[]) - Method in class edu.cmu.tetrad.data.CovarianceMatrix
-
getSubmatrix.
- getSubmatrix(String[]) - Method in class edu.cmu.tetrad.data.CovarianceMatrixOnTheFly
-
getSubmatrix.
- getSubmatrix(String[]) - Method in interface edu.cmu.tetrad.data.ICovarianceMatrix
-
Returns a submatrix of the covariance matrix, including only the specified variables.
- getSubmatrix(List<String>) - Method in class edu.cmu.tetrad.data.CorrelationMatrixOnTheFly
-
getSubmatrix.
- getSubmatrix(List<String>) - Method in class edu.cmu.tetrad.data.CovarianceMatrix
-
getSubmatrix.
- getSubmatrix(List<String>) - Method in class edu.cmu.tetrad.data.CovarianceMatrixOnTheFly
-
getSubmatrix.
- getSubmatrix(List<String>) - Method in interface edu.cmu.tetrad.data.ICovarianceMatrix
-
Returns a submatrix of the covariance matrix, including only the specified variables.
- getSubMatrix(int[], int[]) - Method in interface edu.cmu.tetrad.data.Covariances
-
Returns a submatrix of the covariance matrix for the given rows and columns.
- getSubMatrix(int[], int[]) - Method in class edu.cmu.tetrad.data.CovariancesDoubleForkJoin
-
getSubMatrix.
- getSupportedEvents() - Method in class edu.cmu.tetrad.util.DefaultTetradLoggerConfig
-
getSupportedEvents.
- getSupportedEvents() - Method in class edu.cmu.tetrad.util.TetradLogger.EmptyConfig
-
getSupportedEvents.
- getSupportedEvents() - Method in interface edu.cmu.tetrad.util.TetradLoggerConfig
-
Retrieves the list of supported events.
- getSupportLowerBound() - Method in class edu.cmu.tetrad.sem.EmpiricalCdf
-
Returns the lower bound of the support for the distribution.
- getSupportUpperBound() - Method in class edu.cmu.tetrad.sem.EmpiricalCdf
-
Returns the upper bound of the support for the distribution.
- getT() - Method in class edu.cmu.tetrad.regression.RegressionResult
-
Getter for the field
t
. - getTarget() - Method in class edu.cmu.tetrad.data.Histogram
-
Getter for the field
target
. - getTarget() - Method in class edu.cmu.tetrad.regression.LogisticRegression.Result
-
The target.
- getTargetNode() - Method in class edu.cmu.tetrad.data.Histogram
-
getTargetNode.
- getTargets() - Method in class edu.cmu.tetrad.search.PcMb
-
Return the targets of the most recent search.
- getTargetVariable() - Method in class edu.cmu.tetrad.classify.ClassifierBayesUpdaterDiscrete
-
Getter for the field
targetVariable
. - getTerm(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.Polynomial
-
Returns the coefficient.
- getTest() - Method in class edu.cmu.tetrad.search.PcMb
-
Returns the test used in search.
- getTest() - Method in class edu.cmu.tetrad.search.utils.R0R4StrategyTestBased
-
Retrieves the IndependenceTest object used by the strategy.
- getTest(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.independence.BasisFunctionBicTest
-
Returns an instance of IndependenceTest for the Basis Function BIC test.
- getTest(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.independence.BdeuTest
-
Returns true iff x and y are independent conditional on z for the given data set.
- getTest(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.independence.CciTest
-
Returns true iff x and y are independent conditional on z for the given data set.
- getTest(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.independence.ChiSquare
-
Retrieves an instance of the IndependenceTest interface that performs a Chi Square Test for independence.
- getTest(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.independence.ConditionalGaussianLRT
-
Returns true iff x and y are independent conditional on z for the given data set.
- getTest(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.independence.DegenerateGaussianLRT
-
Returns true iff x and y are independent conditional on z for the given data set.
- getTest(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.independence.DiscreteBicTest
-
Returns true iff x and y are independent conditional on z for the given data set.
- getTest(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.independence.FisherZ
-
Gets an independence test based on the given data model and parameters.
- getTest(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.independence.GICScoreTests
-
Returns true iff x and y are independent conditional on z for the given data set.
- getTest(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.independence.GSquare
-
Returns true iff x and y are independent conditional on z for the given data set.
- getTest(DataModel, Parameters) - Method in interface edu.cmu.tetrad.algcomparison.independence.IndependenceWrapper
-
Returns true iff x and y are independent conditional on z for the given data set.
- getTest(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.independence.Kci
-
Returns true iff x and y are independent conditional on z for the given data set.
- getTest(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.independence.MagSemBicTest
-
Returns true iff x and y are independent conditional on z for the given data set.
- getTest(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.independence.Mnlrlrt
-
Returns true iff x and y are independent conditional on z for the given data set.
- getTest(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.independence.MSeparationTest
-
Returns true iff x and y are independent conditional on z for the given data set.
- getTest(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.independence.MultinomialLogisticRegressionWald
-
Returns true iff x and y are independent conditional on z for the given data set.
- getTest(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.independence.Mvplrt
-
Returns true iff x and y are independent conditional on z for the given data set.
- getTest(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.independence.PoissonPriorTest
-
Returns an instance of IndependenceTest for the Poisson Prior test.
- getTest(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.independence.PositiveCorr
-
Returns true iff x and y are independent conditional on z for the given data set.
- getTest(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.independence.ProbabilisticTest
-
Returns true iff x and y are independent conditional on z for the given data set.
- getTest(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.independence.SemBicDTest
-
Retrieves an IndependenceTest object for testing independence against a given data set and parameters.
- getTest(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.independence.SemBicTest
-
Returns an instance of IndependenceTest for the SEM BIC test.
- getTestData() - Method in class edu.cmu.tetrad.classify.ClassifierBayesUpdaterDiscrete
-
Returns the test data being used.
- getTestDescriptions() - Static method in enum class edu.cmu.tetrad.search.utils.BpcTestType
-
Returns the test type descriptions for the BuildPureClusters algorithm.
- getTestParameters(Algorithm) - Static method in class edu.cmu.tetrad.util.Params
-
getTestParameters.
- getTestType() - Method in class edu.cmu.tetrad.search.utils.TetradTestContinuous
-
getTestType.
- getTetradLoggerConfig() - Method in class edu.cmu.tetrad.util.TetradLoggerEvent
-
getTetradLoggerConfig.
- getThr() - Method in class edu.cmu.tetrad.search.work_in_progress.Glasso
-
Getter for the field
thr
. - getTier(int) - Method in class edu.cmu.tetrad.data.Knowledge
-
getTier.
- getTimeLagGraph() - Method in class edu.cmu.tetrad.graph.Dag
-
getTimeLagGraph.
- getTimeLagGraph() - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
getTimeLagGraph.
- getTimeLagGraph() - Method in interface edu.cmu.tetrad.graph.Graph
-
getTimeLagGraph.
- getTimeLagGraph() - Method in class edu.cmu.tetrad.graph.LagGraph
-
getTimeLagGraph.
- getTimeLagGraph() - Method in class edu.cmu.tetrad.graph.SemGraph
-
getTimeLagGraph.
- getTimeLagGraph() - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Returns the TimeLagGraph object.
- getTimes() - Method in class edu.cmu.tetrad.search.Boss
-
Returns the times.
- getTimeSteps() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.MeasurementSimulator
-
Returns the time steps that will be stored in the simulation.
- getTimeSteps() - Method in class edu.cmu.tetrad.study.gene.tetradapp.model.MeasurementSimulatorParams
-
getTimeSteps.
- getTn() - Method in class edu.cmu.tetrad.algcomparison.statistic.utils.AdjacencyConfusion
-
Returns the true negative count.
- getTn() - Method in class edu.cmu.tetrad.algcomparison.statistic.utils.ArrowConfusion
-
True negatives.
- getTn() - Method in class edu.cmu.tetrad.algcomparison.statistic.utils.BidirectedConfusion
-
Returns the number of true negatives.
- getTn() - Method in class edu.cmu.tetrad.algcomparison.statistic.utils.LocalGraphConfusion
-
Retrieves the value of true negatives (TN) from the LocalGraphConfusion object.
- getTn() - Method in class edu.cmu.tetrad.algcomparison.statistic.utils.OrientationConfusion
-
Getter for the field
tn
. - getTnc() - Method in class edu.cmu.tetrad.algcomparison.statistic.utils.ArrowConfusion
-
True Negatives for common edges.
- getTNeighbors() - Method in class edu.cmu.tetrad.search.utils.Bes.Arrow
-
Returns the set of nodes that are in TNeighbors.
- getTo() - Method in class edu.cmu.tetrad.data.KnowledgeEdge
-
Getter for the field
to
. - getToken() - Method in class edu.cmu.tetrad.calculator.expression.ConstantExpression
-
getToken.
- getToken() - Method in class edu.cmu.tetrad.calculator.expression.EvaluationExpression
-
getToken.
- getToken() - Method in interface edu.cmu.tetrad.calculator.expression.Expression
-
getToken.
- getToken() - Method in interface edu.cmu.tetrad.calculator.expression.ExpressionDescriptor
-
getToken.
- getToken() - Method in class edu.cmu.tetrad.calculator.expression.VariableExpression
-
getToken.
- getTokenAt(int, int) - Method in class edu.cmu.tetrad.util.TextTable
-
getTokenAt.
- getTokenString() - Method in class edu.cmu.tetrad.calculator.parser.ExpressionLexer
-
getTokenString.
- getTolerance() - Method in class edu.cmu.tetrad.sem.SemEstimatorGibbsParams
-
Getter for the field
tolerance
. - getToNode() - Method in class edu.cmu.tetrad.search.utils.R5R9Dijkstra.DijkstraEdge
-
Retrieves to-node represented by this DijkstraEdge.
- getTotalEffect(Node, Node) - Method in class edu.cmu.tetrad.sem.SemIm
-
Calculates the total effect between two nodes.
- getTotalEffects(Node, Node) - Method in class edu.cmu.tetrad.search.Ida
-
Calculates the total effects of node x on node y.
- getTotalUsableCases() - Method in class edu.cmu.tetrad.classify.ClassifierBayesUpdaterDiscrete
-
Returns the number of usable cases for the data.
- getToVariables() - Method in class edu.cmu.tetrad.data.KnowledgeGroup
-
getToVariables.
- getTp() - Method in class edu.cmu.tetrad.algcomparison.statistic.utils.AdjacencyConfusion
-
Returns the true positive count.
- getTp() - Method in class edu.cmu.tetrad.algcomparison.statistic.utils.ArrowConfusion
-
True positives.
- getTp() - Method in class edu.cmu.tetrad.algcomparison.statistic.utils.BidirectedConfusion
-
Returns the number of true positives.
- getTp() - Method in class edu.cmu.tetrad.algcomparison.statistic.utils.LocalGraphConfusion
-
Returns the true positives (TP) value of the LocalGraphConfusion object.
- getTp() - Method in class edu.cmu.tetrad.algcomparison.statistic.utils.OrientationConfusion
-
Getter for the field
tp
. - getTpc() - Method in class edu.cmu.tetrad.algcomparison.statistic.utils.ArrowConfusion
-
True positives for common edges.
- getTrekSource(Graph, List<Node>) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
This method returns the source node of a given trek in a graph.
- getTrial() - Method in class edu.cmu.tetrad.study.performance.ComparisonParameters
-
Getter for the field
trial
. - getTriple(Node) - Method in class edu.cmu.tetrad.search.utils.AlmostCycleRemover
-
Returns the set of triples for the given node.
- getTriplesClassificationTypes() - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
getTriplesClassificationTypes.
- getTriplesClassificationTypes() - Method in interface edu.cmu.tetrad.graph.TripleClassifier
-
getTriplesClassificationTypes.
- getTriplesClassificationTypes() - Method in class edu.cmu.tetrad.graph.Underlines
-
getTriplesClassificationTypes.
- getTriplesLists(Node) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
getTriplesLists.
- getTriplesLists(Node) - Method in interface edu.cmu.tetrad.graph.TripleClassifier
-
getTriplesLists.
- getTriplesLists(Node) - Method in class edu.cmu.tetrad.graph.Underlines
-
getTriplesLists.
- getTrueDag() - Method in class edu.cmu.tetrad.study.performance.ComparisonResult
-
Getter for the field
trueDag
. - getTrueGraph(int) - Method in class edu.cmu.tetrad.algcomparison.simulation.BayesNetSimulation
-
Returns the true graph at the given index.
- getTrueGraph(int) - Method in class edu.cmu.tetrad.algcomparison.simulation.ConditionalGaussianSimulation
-
Returns the true graph at the given index.
- getTrueGraph(int) - Method in class edu.cmu.tetrad.algcomparison.simulation.GeneralSemSimulation
-
Returns the true graph at the specified index.
- getTrueGraph(int) - Method in class edu.cmu.tetrad.algcomparison.simulation.GeneralSemSimulationSpecial1
-
Returns the true graph at the given index.
- getTrueGraph(int) - Method in class edu.cmu.tetrad.algcomparison.simulation.LeeHastieSimulation
-
Returns the true graph at the given index.
- getTrueGraph(int) - Method in class edu.cmu.tetrad.algcomparison.simulation.LinearFisherModel
-
Returns the true graph at the given index.
- getTrueGraph(int) - Method in class edu.cmu.tetrad.algcomparison.simulation.LinearSineSimulation
-
Returns the true graph at the given index.
- getTrueGraph(int) - Method in class edu.cmu.tetrad.algcomparison.simulation.NLSemSimulation
-
Returns the true graph at the given index.
- getTrueGraph(int) - Method in class edu.cmu.tetrad.algcomparison.simulation.SemSimulation
-
Returns the true graph at the specified index.
- getTrueGraph(int) - Method in class edu.cmu.tetrad.algcomparison.simulation.SemThenDiscretize
-
Returns the true graph at the given index.
- getTrueGraph(int) - Method in interface edu.cmu.tetrad.algcomparison.simulation.Simulation
-
Returns the true graph at the given index.
- getTrueGraph(int) - Method in class edu.cmu.tetrad.algcomparison.simulation.SingleDatasetSimulation
-
Gets the true graph for the simulation at the specified index.
- getTrueGraph(int) - Method in class edu.cmu.tetrad.algcomparison.simulation.StandardizedSemSimulation
-
Returns the true graph at the given index.
- getTrueGraph(int) - Method in class edu.cmu.tetrad.algcomparison.simulation.TimeSeriesSemSimulation
-
Returns the true graph at the given index.
- getTrueGraph(int) - Method in class edu.cmu.tetrad.data.simulation.LoadContinuousDataAndGraphs
-
Returns the true graph at the given index.
- getTrueGraph(int) - Method in class edu.cmu.tetrad.data.simulation.LoadContinuousDataAndSingleGraph
-
Returns the true graph at the given index.
- getTrueGraph(int) - Method in class edu.cmu.tetrad.data.simulation.LoadContinuousDataSmithSim
-
Returns the true graph at the given index.
- getTrueGraph(int) - Method in class edu.cmu.tetrad.data.simulation.LoadDataAndGraphs
-
Returns the true graph at the given index.
- getTrueGraph(int) - Method in class edu.cmu.tetrad.data.simulation.LoadDataFromFileWithoutGraph
-
Returns the true graph at the given index.
- getTrueInputs() - Method in class edu.cmu.tetrad.search.work_in_progress.DMSearch
-
Getter for the field
trueInputs
. - getTruePag() - Method in class edu.cmu.tetrad.search.utils.TsDagToPag
-
Getter for the field
truePag
. - getTrueTotalEffect(OrderedPair<Node>) - Method in class edu.cmu.tetrad.search.IdaCheck
-
Calculates the true total effect between two nodes in the graph.
- getTruncLL() - Method in class edu.cmu.tetrad.sem.SemIm
-
The negative of the log likelihood function for the getModel model, with the constant chopped off.
- getTValue(Parameter, int) - Method in interface edu.cmu.tetrad.sem.ISemIm
-
getTValue.
- getTValue(Parameter, int) - Method in class edu.cmu.tetrad.sem.SemIm
-
getTValue.
- getTwoCycleErrors(Graph, Graph) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Returns the TwoCycleErrors object that represents errors for direct feedback loops.
- getTwoCycleFn() - Method in class edu.cmu.tetrad.algcomparison.statistic.utils.ArrowConfusion
-
False negatives for two-cycles.
- getTwoCycleFn() - Method in class edu.cmu.tetrad.algcomparison.statistic.utils.TailConfusion
-
getTwoCycleFn.
- getTwoCycleFp() - Method in class edu.cmu.tetrad.algcomparison.statistic.utils.ArrowConfusion
-
False positives for two-cycles.
- getTwoCycleFp() - Method in class edu.cmu.tetrad.algcomparison.statistic.utils.TailConfusion
-
getTwoCycleFp.
- getTwoCycleTp() - Method in class edu.cmu.tetrad.algcomparison.statistic.utils.ArrowConfusion
-
Two positives for two-cycles.
- getTwoCycleTp() - Method in class edu.cmu.tetrad.algcomparison.statistic.utils.TailConfusion
-
getTwoCycleTp.
- getType() - Method in class edu.cmu.tetrad.data.KnowledgeGroup
-
Getter for the field
type
. - getType() - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsBeam.Move
-
getType.
- getType() - Method in class edu.cmu.tetrad.sem.ParamConstraint
-
Getter for the field
type
. - getType() - Method in class edu.cmu.tetrad.sem.Parameter
-
Getter for the field
type
. - getUncorrelatedShocks(int) - Method in class edu.cmu.tetrad.sem.LargeScaleSimulation
-
getUncorrelatedShocks.
- getUnderlinedTriplesFromGraph(Node, Graph) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Retrieves the underlined triples from the given graph that involve the specified node.
- getUnderLines() - Method in class edu.cmu.tetrad.graph.Dag
-
Retrieves the set of underlined triples.
- getUnderLines() - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
getUnderLines.
- getUnderLines() - Method in interface edu.cmu.tetrad.graph.Graph
-
getUnderLines.
- getUnderLines() - Method in class edu.cmu.tetrad.graph.LagGraph
-
getUnderLines.
- getUnderLines() - Method in class edu.cmu.tetrad.graph.SemGraph
-
getUnderLines.
- getUnderLines() - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Returns a set of Triple objects representing the underlines.
- getUnderLines() - Method in class edu.cmu.tetrad.graph.Underlines
-
getUnderLines.
- getUnparsedExpression() - Method in class edu.cmu.tetrad.calculator.expression.Equation
-
Getter for the field
unparsedExpression
. - getUnshieldedColliders() - Method in class edu.cmu.tetrad.search.Pcd
-
Retrieves the set of unshielded colliders in the graph returned by the method search().
- getUnshieldedColliders() - Method in class edu.cmu.tetrad.search.work_in_progress.Kpc
-
Getter for the field
unshieldedColliders
. - getUnshieldedNoncolliders() - Method in class edu.cmu.tetrad.search.Pcd
-
Retrieves the set of unshielded noncolliders in the graph returned by the method search().
- getUnshieldedNoncolliders() - Method in class edu.cmu.tetrad.search.work_in_progress.Kpc
-
Getter for the field
unshieldedNoncolliders
. - getUnstableBHats() - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.IcaLingD
-
Retrieves the list of unstable B matrices generated by the algorithm.
- getUnstableGraphs() - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.IcaLingD
-
Retrieves the list of unstable graphs generated by the algorithm.
- getUpdatedBayesIm() - Method in class edu.cmu.tetrad.bayes.ApproximateUpdater
-
getUpdatedBayesIm.
- getUpdatedBayesIm() - Method in class edu.cmu.tetrad.bayes.CptInvariantMarginalCalculator
-
Getter for the field
updatedBayesIm
. - getUpdatedBayesIm() - Method in class edu.cmu.tetrad.bayes.CptInvariantUpdater
-
Getter for the field
updatedBayesIm
. - getUpdatedBayesIm() - Method in class edu.cmu.tetrad.bayes.Identifiability
-
The updated BayesIm.
- getUpdatedBayesIm() - Method in class edu.cmu.tetrad.bayes.JunctionTreeUpdater
-
Returns the updated Bayes IM.
- getUpdatedBayesIm() - Method in interface edu.cmu.tetrad.bayes.ManipulatingBayesUpdater
-
Returns the updated Bayes IM.
- getUpdatedBayesIm() - Method in class edu.cmu.tetrad.bayes.RowSummingExactUpdater
-
The updated BayesIm.
- getUpdatedSemIm() - Method in class edu.cmu.tetrad.sem.SemUpdater
-
See http://en.wikipedia.org/wiki/Multivariate_normal_distribution.
- getUpdateFunction() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.GeneHistory
-
Returns the update function.
- getUpperBoundDouble() - Method in class edu.cmu.tetrad.util.ParamDescription
-
Getter for the field
upperBoundDouble
. - getUpperBoundInt() - Method in class edu.cmu.tetrad.util.ParamDescription
-
Getter for the field
upperBoundInt
. - getUpperBoundLong() - Method in class edu.cmu.tetrad.util.ParamDescription
-
Getter for the field
upperBoundLong
. - getV() - Method in class edu.cmu.tetrad.search.utils.DiscriminatingPath
-
Returns the node B in the discriminating path.
- getV() - Method in class edu.pitt.csb.mgm.EigenDecomposition
-
Gets the matrix V of the decomposition.
- getValidOrder(List<Node>, boolean) - Method in class edu.cmu.tetrad.graph.Paths
-
Returns a valid causal order for either a DAG or a CPDAG.
- getValue() - Method in class edu.cmu.tetrad.sem.Mapping
-
getValue.
- getValue() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.AbstractNbComponent
-
Getter for the field
value
. - getValue() - Method in interface edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.NbComponent
-
Returns the parents of this component.
- getValue(int) - Method in class edu.cmu.tetrad.sem.SemProposition
-
Retrieves the value at the specified index.
- getValue(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BooleanFunction
-
Returns the boolean value in a given row of the table.
- getValue(int) - Method in class edu.cmu.tetrad.util.Point
-
getValue.
- getValue(int[]) - Method in interface edu.cmu.tetrad.data.CellTable
-
Returns the value of the cell specified by the given coordinates.
- getValue(int[]) - Method in class edu.cmu.tetrad.data.CellTableAdTree
-
Returns the value of the cell specified by the given coordinates.
- getValue(int[]) - Method in class edu.cmu.tetrad.data.CellTableCountSample
-
Returns the value of the cell specified by the given coordinates.
- getValue(int[]) - Method in class edu.cmu.tetrad.util.MultiDimIntTable
-
Returns the value of the cell at the given coordinates.
- getValue(int, double[][]) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BooleanGlassFunction
-
Returns the value of the function.
- getValue(int, double[][]) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.LinearFunction
-
Returns the value of the function.
- getValue(int, double[][]) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.PolynomialFunction
-
Returns the value of the function.
- getValue(int, double[][]) - Method in interface edu.cmu.tetrad.study.gene.tetrad.gene.history.UpdateFunction
-
Returns the value of the glass function for a given factor.
- getValue(int, int) - Method in class edu.cmu.tetrad.data.CorrelationMatrixOnTheFly
-
Retrieves the value from the covariance matrix at the specified row and column indices.
- getValue(int, int) - Method in class edu.cmu.tetrad.data.CovarianceMatrix
-
Retrieves the value from the covariance matrix at the specified row and column indices.
- getValue(int, int) - Method in class edu.cmu.tetrad.data.CovarianceMatrixOnTheFly
-
Retrieves the value from the covariance matrix at the specified row and column indices.
- getValue(int, int) - Method in interface edu.cmu.tetrad.data.ICovarianceMatrix
-
Retrieves the value from the covariance matrix at the specified row and column indices.
- getValue(int, int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.LTMatrix
-
Returns element (r,c)
- getValue(int, int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.LTMatrixF
-
Returns element (r,c)
- getValue(int, int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.Matrix
-
Returns the value stored at element (r,c)
- getValue(int, int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.MatrixF
-
Returns the value stored at element (r,c)
- getValue(int, int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.SymMatrix
-
Returns element (r,c)
- getValue(int, int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.SymMatrixF
-
Returns element (r,c)
- getValue(int, int) - Method in class edu.cmu.tetrad.util.IndexedMatrix
-
getValue.
- getValue(int, int, int[]) - Method in class edu.cmu.tetrad.data.CovarianceMatrixOnTheFly
-
getValue.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.AdjacencyFn
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.AdjacencyFp
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.AdjacencyFpr
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.AdjacencyPrecision
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.AdjacencyRecall
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.AdjacencyTn
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.AdjacencyTp
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.AdjacencyTpr
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.AncestorF1
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.AncestorPrecision
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.AncestorRecall
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.AncestralPrecision
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.AncestralRecall
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.ArrowheadFn
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.ArrowheadFp
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.ArrowheadFpr
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.ArrowheadPrecision
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.ArrowheadPrecisionCommonEdges
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.ArrowheadRecall
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.ArrowheadRecallCommonEdges
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.ArrowheadTn
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.ArrowheadTp
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.AverageDegreeEst
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.AverageDegreeTrue
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.BicDiff
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.BicDiffPerRecord
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.BicEst
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.BicTrue
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.BidirectedEst
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.BidirectedFP
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.BidirectedLatentPrecision
-
Calculates the percentage of correctly identified bidirected edges in an estimated graph for which a latent confounder exists in the true graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.BidirectedPrecision
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.BidirectedRecall
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.BidirectedTP
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.BidirectedTrue
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.CommonAncestorFalseNegativeBidirected
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.CommonAncestorFalsePositiveBidirected
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.CommonAncestorTruePositiveBidirected
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.CommonMeasuredAncestorRecallBidirected
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.CorrectSkeleton
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.DefiniteDirectedPathPrecision
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.DefiniteDirectedPathRecall
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.DensityEst
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.DensityTrue
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.ElapsedCpuTime
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.F1Adj
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.F1All
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.F1Arrow
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.FalseNegativesAdjacencies
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.FalsePositiveAdjacencies
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.FBetaAdj
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.FractionDependentUnderAlternative
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.FractionDependentUnderNull
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.GraphExactlyRight
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.IdaAverageSquaredDistance
-
Calculates the value of the IDA Average Squared Distance statistic.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.IdaCheckAvgMaxSquaredDiffEstTrue
-
Calculates the average maximum squared difference between the estimated and true values for a given data model and graphs.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.IdaCheckAvgMinSquaredDiffEstTrue
-
Calculates the average minimum squared difference between the estimated and true values for a given data model and graphs.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.IdaCheckAvgSquaredDifference
-
Retrieves the value of the statistic, which is the average squared difference between the estimated and true values for a given data model and graphs.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.IdaMaximumSquaredDifference
-
Calculates the value of the statistic "IDA Average Maximum Squared Difference".
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.IdaMinimumSquaredDifference
-
Calculates the value of the statistic "IDA Average Minimum Squared Difference".
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.ImpliedArrowOrientationRatioEst
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.ImpliedArrowOrientationRatioEst2
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.ImpliedOrientationRatioEst
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.ImpliesLegalMag
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.KnowledgeSatisfied
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.LatentCommonAncestorFalseNegativeBidirected
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.LatentCommonAncestorFalsePositiveBidirected
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.LatentCommonAncestorRecallBidirected
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.LatentCommonAncestorTruePositiveBidirected
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.LegalPag
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.LocalGraphPrecision
-
This method calculates the Local Graph Precision.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.LocalGraphRecall
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.MagCgScore
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.MagDgScore
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.MagSemScore
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckAdPasses
-
Calculates the Anderson Darling p-value > 0.05.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckAdPassesBestOf10
-
Calculates the Anderson Darling p-value > 0.05.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckAndersonDarlingP
-
Calculates the Anderson Darling P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckAndersonDarlingPBestOf10
-
Calculates the Anderson Darling P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckBinomialP
-
Calculates the Binomial P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckBinomialPBestOf10
-
Calculates the Binomial P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckKolmogorovSmirnoffP
-
Calculates the Kolmogorov-Smirnoff P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckKolmogorovSmirnoffPBestOf10
-
Calculates the Kolmogorov-Smirnoff P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckKsPasses
-
Calculates whether Kolmogorov-Smirnoff P > 0.05.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckKsPassesBestOf10
-
Calculates whether Kolmogorov-Smirnoff P > 0.05.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.MathewsCorrAdj
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.MathewsCorrArrow
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.Maximal
-
Checks whether a PAG is maximal.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.MaximalityCondition
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NoAlmostCyclicPathsCondition
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NoCyclicPathsCondition
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NodesInCyclesPrecision
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NodesInCyclesRecall
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NonancestorPrecision
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NonancestorRecall
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NoSemidirectedF1
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NoSemidirectedPrecision
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NoSemidirectedRecall
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumAmbiguousTriples
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumberArrowsEst
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumberArrowsNotInUnshieldedCollidersEst
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumberCollidersEst
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumberEdgesEst
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumberEdgesInCollidersEst
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumberEdgesInUnshieldedCollidersEst
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumberEdgesTrue
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumberOfEdgesEst
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumberOfEdgesTrue
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumberTailsEst
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumberUnshieldedCollidersEst
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumBidirectedBothNonancestorAncestor
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumBidirectedEdgesEst
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumBidirectedEdgesTrue
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumColoredDD
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumColoredNL
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumColoredPD
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumColoredPL
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCommonMeasuredAncestorBidirected
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCompatibleDefiniteDirectedEdgeAncestors
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCompatibleDirectedEdgeConfounded
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCompatibleDirectedEdgeNonAncestors
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCompatibleEdges
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCompatiblePossiblyDirectedEdgeAncestors
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCompatiblePossiblyDirectedEdgeNonAncestors
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCompatibleVisibleNonancestors
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCorrectBidirected
-
Returns the number of bidirected edges for which a latent confounder exists.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCorrectDDAncestors
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCorrectPDAncestors
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCorrectVisibleEdges
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumCoveringAdjacenciesInPag
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumDefinitelyDirected
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumDefinitelyNotDirectedPaths
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumDirectedEdgeAncestors
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumDirectedEdgeBnaMeasuredCounfounded
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumDirectedEdgeNoMeasureAncestors
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumDirectedEdgeNotAncNotRev
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumDirectedEdgeReversed
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumDirectedEdges
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumDirectedPathsEst
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumDirectedPathsTrue
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumDirectedShouldBePartiallyDirected
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumEdgeInEstInTrue
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumGenuineAdjacenciesInPag
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumIncorrectDDAncestors
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumIncorrectPDAncestors
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumIncorrectVisibleAncestors
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumLatentCommonAncestorBidirected
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumNondirectedEdges
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumParametersEst
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumPartiallyOrientedEdges
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumPossiblyDirected
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumUndirectedEdges
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumVisibleEdgeEst
-
Returns the number of X-->Y edges that are visible in the estimated PAG.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumVisibleEdges
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.NumVisibleEdgeTrue
-
Retrieves the number of X-->Y edges for which X-->Y is visible in the true PAG.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.OrientationPrecision
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.OrientationRecall
-
Calculates the Orientation Recall statistic, which measures the accuracy of the estimated orientation of edges in a graph compared to the true graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.PagAdjacencyPrecision
-
Calculates the adjacency precision of the estimated graph compared to the true graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.PagAdjacencyRecall
-
Calculates the adjacency recall compared to the true PAG (Partial Ancestral Graph).
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.ParameterColumn
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.PercentAmbiguous
-
Calculates the percentage of ambiguous triples in the estimated graph compared to the true graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.PercentBidirectedEdges
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.ProportionSemidirectedPathsNotReversedEst
-
Calculates the proportion of semi(X, Y) in the estimated graph for which there is no semi(Y, X) in the true graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.ProportionSemidirectedPathsNotReversedTrue
-
Calculates the proportion of semi(X, Y) paths in the true graph for which there is no semi(Y, Z) path in the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.PvalueDistanceToAlpha
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.PvalueUniformityUnderNull
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.SemidirectedPathF1
-
Calculates the F1 statistic for adjacencies.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.SemidirectedPrecision
-
Calculates the semi-directed precision value.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.SemidirectedRecall
-
Calculates the Semidirected-Rec statistic, which is the proportion of (X, Y) where if there is a semidirected path in the true graph, then there is also a semidirected path in the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in interface edu.cmu.tetrad.algcomparison.statistic.Statistic
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.StructuralHammingDistance
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.TailPrecision
-
Calculates the tail precision, which is the ratio of true positive arrows to the sum of true positive arrows and false positive arrows.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.TailRecall
-
Calculates the tail recall value for a given true graph, estimated graph, and data model.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.TrueDagFalseNegativesArrows
-
Calculates the number of false negatives for arrows compared to the true DAG.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.TrueDagFalseNegativesTails
-
Calculates the number of false negatives for tails compared to the true DAG.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.TrueDagFalsePositiveArrow
-
Calculates the false positives for arrows compared to the true DAG.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.TrueDagFalsePositiveTails
-
Calculates the number of false positives for tails in the estimated graph compared to the true DAG.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.TrueDagPrecisionArrow
-
Calculates the proportion of X*->Y in the estimated graph for which there is no path Y~~>X in the true graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.TrueDagPrecisionTails
-
Calculates the proportion of X-->Y edges in the estimated graph for which there is a path X~~>Y in the true graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.TrueDagRecallArrows
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.TrueDagRecallTails
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.TrueDagTruePositiveArrow
-
Calculates the number of true positives for arrows compared to the true DAG.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.TrueDagTruePositiveDirectedPathNonancestor
-
Calculates the true positives for arrows compared to the true DAG.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.TrueDagTruePositiveTails
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.TwoCycleFalseNegative
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.TwoCycleFalsePositive
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.TwoCyclePrecision
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.TwoCycleRecall
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Graph, Graph, DataModel) - Method in class edu.cmu.tetrad.algcomparison.statistic.TwoCycleTruePositive
-
Returns the value of this statistic, given the true graph and the estimated graph.
- getValue(Node) - Method in class edu.cmu.tetrad.sem.SemProposition
-
Retrieves the value associated with the given node.
- getValue(String) - Method in interface edu.cmu.tetrad.calculator.expression.Context
-
getValue.
- getValue(String) - Method in class edu.cmu.tetrad.sem.GeneralizedSemEstimator.MyContext
-
Get the value of a variable or parameter.
- getValue(String) - Method in class edu.cmu.tetrad.util.TetradProperties
-
getValue.
- getValues(String) - Method in class edu.cmu.tetrad.util.Parameters
-
Returns the values set for the given parameter.
- getVariable() - Method in class edu.cmu.tetrad.calculator.expression.Equation
-
Getter for the field
variable
. - getVariable() - Method in class edu.cmu.tetrad.calculator.expression.VariableExpression
-
Getter for the field
variable
. - getVariable() - Method in class edu.cmu.tetrad.data.Discretizer.Discretization
-
Retrieves the variable associated with the object.
- getVariable(int) - Method in class edu.cmu.tetrad.data.BoxDataSet
-
getVariable.
- getVariable(int) - Method in interface edu.cmu.tetrad.data.DataSet
-
getVariable.
- getVariable(int) - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
getVariable.
- getVariable(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.PolynomialTerm
-
Returns the index'th variable.
- getVariable(Node) - Method in class edu.cmu.tetrad.bayes.BayesPm
-
Returns the variable for the given node.
- getVariable(Node) - Method in class edu.cmu.tetrad.search.IndTestIod
-
Returns the variable associated with the given node in the graph.
- getVariable(Node) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestSepsetDci
-
getVariable.
- getVariable(String) - Method in class edu.cmu.tetrad.algcomparison.score.BasisFunctionBicScore
-
Returns the variable with the given name.
- getVariable(String) - Method in class edu.cmu.tetrad.algcomparison.score.BdeuScore
-
Returns the variable with the given name.
- getVariable(String) - Method in class edu.cmu.tetrad.algcomparison.score.ConditionalGaussianBicScore
-
Returns the variable with the given name.
- getVariable(String) - Method in class edu.cmu.tetrad.algcomparison.score.DegenerateGaussianBicScore
-
Returns the variable with the given name.
- getVariable(String) - Method in class edu.cmu.tetrad.algcomparison.score.DiscreteBicScore
-
Returns the variable with the given name.
- getVariable(String) - Method in class edu.cmu.tetrad.algcomparison.score.EbicScore
-
Returns the variable with the given name.
- getVariable(String) - Method in class edu.cmu.tetrad.algcomparison.score.FisherZScore
-
Returns the variable with the given name.
- getVariable(String) - Method in class edu.cmu.tetrad.algcomparison.score.GicScores
-
Returns the variable with the given name.
- getVariable(String) - Method in class edu.cmu.tetrad.algcomparison.score.MagDgBicScore
-
Returns the variable with the given name.
- getVariable(String) - Method in class edu.cmu.tetrad.algcomparison.score.MSeparationScore
-
Returns the variable with the given name.
- getVariable(String) - Method in class edu.cmu.tetrad.algcomparison.score.MVPBicScore
-
Returns the variable with the given name.
- getVariable(String) - Method in class edu.cmu.tetrad.algcomparison.score.PoissonPriorScore
-
Returns the variable with the given name.
- getVariable(String) - Method in class edu.cmu.tetrad.algcomparison.score.PositiveCorrScore
-
Returns the variable with the given name.
- getVariable(String) - Method in interface edu.cmu.tetrad.algcomparison.score.ScoreWrapper
-
Returns the variable with the given name.
- getVariable(String) - Method in class edu.cmu.tetrad.algcomparison.score.SemBicScore
-
Retrieves the variable with the given name from the data set.
- getVariable(String) - Method in class edu.cmu.tetrad.algcomparison.score.SemBicScoreDeterministic
-
Retrieves the Node with the given name from the data set.
- getVariable(String) - Method in class edu.cmu.tetrad.algcomparison.score.ZhangShenBoundScore
-
Retrieves the variable with the given name from the data set.
- getVariable(String) - Method in class edu.cmu.tetrad.bayes.BayesProperties
-
Returns the variable with the given name (assumed the target).
- getVariable(String) - Method in class edu.cmu.tetrad.bayes.Evidence
-
getVariable.
- getVariable(String) - Method in class edu.cmu.tetrad.data.BoxDataSet
-
getVariable.
- getVariable(String) - Method in class edu.cmu.tetrad.data.CorrelationMatrixOnTheFly
-
Retrieves a Node instance from the covariance matrix corresponding to the specified variable name.
- getVariable(String) - Method in class edu.cmu.tetrad.data.CovarianceMatrix
-
Retrieves a Node instance from the covariance matrix corresponding to the specified variable name.
- getVariable(String) - Method in class edu.cmu.tetrad.data.CovarianceMatrixOnTheFly
-
Retrieves a Node instance from the covariance matrix corresponding to the specified variable name.
- getVariable(String) - Method in interface edu.cmu.tetrad.data.DataModel
-
getVariable.
- getVariable(String) - Method in class edu.cmu.tetrad.data.DataModelList
-
getVariable.
- getVariable(String) - Method in interface edu.cmu.tetrad.data.DataSet
-
getVariable.
- getVariable(String) - Method in interface edu.cmu.tetrad.data.ICovarianceMatrix
-
Retrieves a Node instance from the covariance matrix corresponding to the specified variable name.
- getVariable(String) - Method in class edu.cmu.tetrad.data.IndependenceFacts
-
getVariable.
- getVariable(String) - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
getVariable.
- getVariable(String) - Method in class edu.cmu.tetrad.data.TimeSeriesData
-
getVariable.
- getVariable(String) - Method in interface edu.cmu.tetrad.search.IndependenceTest
-
Returns The variable by the given name.
- getVariable(String) - Method in class edu.cmu.tetrad.search.IndTestIod
-
Retrieves a variable with the given name.
- getVariable(String) - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Returns the variable with the given name.
- getVariable(String) - Method in interface edu.cmu.tetrad.search.score.Score
-
Returns the variable with the given name.
- getVariable(String) - Method in class edu.cmu.tetrad.search.test.IndTestFisherZ
-
Returns the variable with the given name.
- getVariable(String) - Method in class edu.cmu.tetrad.search.test.IndTestHsic
-
Returns the variable with the given name.
- getVariable(String) - Method in class edu.cmu.tetrad.search.test.IndTestIndependenceFacts
-
Retrieves a variable node based on its name.
- getVariable(String) - Method in class edu.cmu.tetrad.search.test.IndTestProbabilistic
-
Retrieves the Node object that matches the given name from the list of nodes.
- getVariable(String) - Method in class edu.cmu.tetrad.search.test.IndTestTrekSep
-
Gets the variable with the given name.
- getVariable(String) - Method in class edu.cmu.tetrad.search.test.Kci
-
Returns the variable of the given name.
- getVariable(String) - Method in class edu.cmu.tetrad.search.test.MsepTest
-
Returns the
Node
object with the given name. - getVariable(String) - Method in class edu.cmu.tetrad.search.test.ScoreIndTest
-
Retrieves the Node object with the specified name.
- getVariable(String) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestFisherZRecursive
-
Returns The variable by the given name.
- getVariable(String) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestPositiveCorr
-
Retrieves the node associated with the given variable name.
- getVariable(String) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestSepsetDci
-
Retrieves the variable with the specified name.
- getVariable(String) - Method in class edu.cmu.tetrad.search.work_in_progress.ISBDeuScore
-
Retrieves a Node from the variables list that matches the specified target name.
- getVariable(String) - Method in class edu.cmu.tetrad.search.work_in_progress.ISBicScore
-
Retrieves a Node from the variables list that matches the specified target name.
- getVariable(String) - Method in interface edu.cmu.tetrad.search.work_in_progress.ISScore
-
Retrieves a variable node by its target name.
- getVariable(String) - Method in class edu.cmu.tetrad.search.work_in_progress.ProbabilisticMapIndependence
-
Returns The variable by the given name.
- getVariableMeans() - Method in class edu.cmu.tetrad.sem.SemIm
-
Getter for the field
variableMeans
. - getVariableName(int) - Method in class edu.cmu.tetrad.data.CorrelationMatrixOnTheFly
-
Retrieves the name of the variable at the specified index from the covariance matrix.
- getVariableName(int) - Method in class edu.cmu.tetrad.data.CovarianceMatrix
-
Retrieves the name of the variable at the specified index from the covariance matrix.
- getVariableName(int) - Method in class edu.cmu.tetrad.data.CovarianceMatrixOnTheFly
-
Retrieves the name of the variable at the specified index from the covariance matrix.
- getVariableName(int) - Method in interface edu.cmu.tetrad.data.ICovarianceMatrix
-
Retrieves the name of the variable at the specified index from the covariance matrix.
- getVariableNames() - Method in interface edu.cmu.tetrad.bayes.BayesIm
-
Returns the list of variable names.
- getVariableNames() - Method in class edu.cmu.tetrad.bayes.BayesPm
-
Returns the variable names.
- getVariableNames() - Method in class edu.cmu.tetrad.bayes.DirichletBayesIm
-
getVariableNames.
- getVariableNames() - Method in class edu.cmu.tetrad.bayes.MlBayesIm
-
getVariableNames.
- getVariableNames() - Method in class edu.cmu.tetrad.bayes.MlBayesImObs
-
getVariableNames.
- getVariableNames() - Method in class edu.cmu.tetrad.bayes.UpdatedBayesIm
-
getVariableNames.
- getVariableNames() - Method in class edu.cmu.tetrad.data.BoxDataSet
-
getVariableNames.
- getVariableNames() - Method in class edu.cmu.tetrad.data.CorrelationMatrixOnTheFly
-
getVariableNames.
- getVariableNames() - Method in class edu.cmu.tetrad.data.CovarianceMatrix
-
getVariableNames.
- getVariableNames() - Method in class edu.cmu.tetrad.data.CovarianceMatrixOnTheFly
-
getVariableNames.
- getVariableNames() - Method in class edu.cmu.tetrad.data.DataModelList
-
getVariableNames.
- getVariableNames() - Method in interface edu.cmu.tetrad.data.DataSet
-
getVariableNames.
- getVariableNames() - Method in interface edu.cmu.tetrad.data.ICovarianceMatrix
-
Retrieves the list of names of the variables in the covariance matrix.
- getVariableNames() - Method in class edu.cmu.tetrad.data.IndependenceFacts
-
getVariableNames.
- getVariableNames() - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
getVariableNames.
- getVariableNames() - Method in class edu.cmu.tetrad.data.TimeSeriesData
-
getVariableNames.
- getVariableNames() - Method in interface edu.cmu.tetrad.data.VariableSource
-
Returns the variable names associated with this getVariableNames.
- getVariableNames() - Method in interface edu.cmu.tetrad.search.IndependenceTest
-
Returns the list of names for the variables in getNodesInEvidence.
- getVariableNode(String) - Method in class edu.cmu.tetrad.sem.SemIm
-
getVariableNode.
- getVariableNodes() - Method in class edu.cmu.tetrad.sem.GeneralizedSemPm
-
Returns the list of variable nodes--that is, node that is not error nodes.
- getVariableNodes() - Method in interface edu.cmu.tetrad.sem.ISemIm
-
getVariableNodes.
- getVariableNodes() - Method in class edu.cmu.tetrad.sem.LargeScaleSimulation
-
Getter for the field
variableNodes
. - getVariableNodes() - Method in class edu.cmu.tetrad.sem.SemIm
-
The list of measured and latent nodes for the semPm.
- getVariableNodes() - Method in class edu.cmu.tetrad.sem.SemPm
-
Getter for the field
variableNodes
. - getVariableNodes() - Method in class edu.cmu.tetrad.sem.StandardizedSemIm
-
getVariableNodes.
- getVariables() - Method in interface edu.cmu.tetrad.bayes.BayesIm
-
Returns the list of variables.
- getVariables() - Method in class edu.cmu.tetrad.bayes.BayesImProbs
-
Getter for the field
variables
. - getVariables() - Method in class edu.cmu.tetrad.bayes.BayesPm
-
getVariables.
- getVariables() - Method in class edu.cmu.tetrad.bayes.CellTableProbs
-
getVariables.
- getVariables() - Method in class edu.cmu.tetrad.bayes.DataSetProbs
-
getVariables.
- getVariables() - Method in class edu.cmu.tetrad.bayes.DirichletBayesIm
-
getVariables.
- getVariables() - Method in class edu.cmu.tetrad.bayes.DirichletDataSetProbs
-
getVariables.
- getVariables() - Method in class edu.cmu.tetrad.bayes.IntAveDataSetProbs
-
getVariables.
- getVariables() - Method in class edu.cmu.tetrad.bayes.MlBayesIm
-
getVariables.
- getVariables() - Method in class edu.cmu.tetrad.bayes.MlBayesImObs
-
getVariables.
- getVariables() - Method in class edu.cmu.tetrad.bayes.StoredCellProbs
-
Getter for the field
variables
. - getVariables() - Method in class edu.cmu.tetrad.bayes.StoredCellProbsObs
-
Getter for the field
variables
. - getVariables() - Method in class edu.cmu.tetrad.bayes.UpdatedBayesIm
-
getVariables.
- getVariables() - Method in class edu.cmu.tetrad.data.BoxDataSet
-
Getter for the field
variables
. - getVariables() - Method in class edu.cmu.tetrad.data.CorrelationMatrixOnTheFly
-
Getter for the field
variables
. - getVariables() - Method in class edu.cmu.tetrad.data.CovarianceMatrix
-
Getter for the field
variables
. - getVariables() - Method in class edu.cmu.tetrad.data.CovarianceMatrixOnTheFly
-
Getter for the field
variables
. - getVariables() - Method in class edu.cmu.tetrad.data.DataModelList
-
getVariables.
- getVariables() - Method in interface edu.cmu.tetrad.data.DataSet
-
getVariables.
- getVariables() - Method in interface edu.cmu.tetrad.data.ICovarianceMatrix
-
Retrieves the list of Node variables for the covariance matrix.
- getVariables() - Method in class edu.cmu.tetrad.data.IndependenceFacts
-
getVariables.
- getVariables() - Method in class edu.cmu.tetrad.data.Knowledge
-
Get a list of variables.
- getVariables() - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
Getter for the field
variables
. - getVariables() - Method in class edu.cmu.tetrad.data.TimeSeriesData
-
getVariables.
- getVariables() - Method in interface edu.cmu.tetrad.data.VariableSource
-
Returns the list of variables associated with this object.
- getVariables() - Method in class edu.cmu.tetrad.search.Boss
-
Returns the variables.
- getVariables() - Method in class edu.cmu.tetrad.search.CompositeIndependenceTest
-
getVariables.
- getVariables() - Method in class edu.cmu.tetrad.search.Grasp
-
Returns the variables.
- getVariables() - Method in interface edu.cmu.tetrad.search.IndependenceTest
-
getVariables.
- getVariables() - Method in class edu.cmu.tetrad.search.IndTestIod
-
Returns the list of TetradNodes over which this independence checker is capable of determining independence relations-- that is, all the variables in the given graph or the given data set.
- getVariables() - Method in class edu.cmu.tetrad.search.PermutationSearch
-
Retrieves the list of variables.
- getVariables() - Method in class edu.cmu.tetrad.search.score.BasisFunctionBicScore
-
Retrieves the list of nodes representing the variables in the basis function score.
- getVariables() - Method in class edu.cmu.tetrad.search.score.BdeScore
-
Returns the variables present in the DataSet associated with this method.
- getVariables() - Method in class edu.cmu.tetrad.search.score.BdeuScore
-
Retrieves the list of variables used in the object.
- getVariables() - Method in class edu.cmu.tetrad.search.score.ConditionalGaussianScore
-
The variables of the score.
- getVariables() - Method in class edu.cmu.tetrad.search.score.DegenerateGaussianScore
-
The variables of the score.
- getVariables() - Method in class edu.cmu.tetrad.search.score.DiscreteBicScore
-
The variables of the score.
- getVariables() - Method in class edu.cmu.tetrad.search.score.DiscreteBicScoreAdTree
-
The variables of the score.
- getVariables() - Method in class edu.cmu.tetrad.search.score.EbicScore
-
The variables of the score.
- getVariables() - Method in class edu.cmu.tetrad.search.score.GicScores
-
The variables of the score.
- getVariables() - Method in class edu.cmu.tetrad.search.score.GraphScore
-
The variables of the score.
- getVariables() - Method in class edu.cmu.tetrad.search.score.ImagesScore
-
The variables of the score.
- getVariables() - Method in class edu.cmu.tetrad.search.score.IndTestScore
-
The variables of the score.
- getVariables() - Method in class edu.cmu.tetrad.search.score.MvpScore
-
The variables of the score.
- getVariables() - Method in class edu.cmu.tetrad.search.score.PoissonPriorScore
-
The variables of the score.
- getVariables() - Method in interface edu.cmu.tetrad.search.score.Score
-
The variables of the score.
- getVariables() - Method in class edu.cmu.tetrad.search.score.SemBicScore
-
Returns the variables of the covariance matrix.
- getVariables() - Method in class edu.cmu.tetrad.search.score.ZsbScore
-
The variables of the score.
- getVariables() - Method in class edu.cmu.tetrad.search.Sp
-
Returns the list of variables associated with this object.
- getVariables() - Method in interface edu.cmu.tetrad.search.SuborderSearch
-
The list of all variables, in order.
- getVariables() - Method in class edu.cmu.tetrad.search.test.IndTestChiSquare
-
Returns the list of variables over which this independence checker is capable of determining independence relations-- that is, all the variables in the given graph or the given data set.
- getVariables() - Method in class edu.cmu.tetrad.search.test.IndTestConditionalCorrelation
-
Returns the list of variables over which this independence checker is capable of determining independence relations-- that is, all the variables in the given graph or the given data set.
- getVariables() - Method in class edu.cmu.tetrad.search.test.IndTestConditionalGaussianLrt
-
Returns the list of variables over which this independence checker is capable of determining independence relations.
- getVariables() - Method in class edu.cmu.tetrad.search.test.IndTestDegenerateGaussianLrt
-
Returns the list of searchVariables over which this independence checker is capable of determinining independence relations.
- getVariables() - Method in class edu.cmu.tetrad.search.test.IndTestFisherZ
-
Returns the list of variables over which this independence checker is capable of determinine independence relations-- that is, all the variables in the given graph or the given data set.
- getVariables() - Method in class edu.cmu.tetrad.search.test.IndTestFisherZConcatenateResiduals
-
Returns the list of variables used in this method.
- getVariables() - Method in class edu.cmu.tetrad.search.test.IndTestFisherZFisherPValue
-
Returns the list of variables over which this independence checker is capable of determinine independence relations-- that is, all the variables in the given graph or the given data set.
- getVariables() - Method in class edu.cmu.tetrad.search.test.IndTestGSquare
-
Return the list of variables over which this independence checker is capable of determining independence relations-- that is, all the variables in the given graph or the given data set.
- getVariables() - Method in class edu.cmu.tetrad.search.test.IndTestHsic
-
Returns the list of variables over which this independence checker is capable of determinine independence relations-- that is, all the variables in the given graph or the given data set.
- getVariables() - Method in class edu.cmu.tetrad.search.test.IndTestIndependenceFacts
-
Returns the list of variables for the facts.
- getVariables() - Method in class edu.cmu.tetrad.search.test.IndTestMulti
-
Retrieves the list of variables associated with this object.
- getVariables() - Method in class edu.cmu.tetrad.search.test.IndTestMvpLrt
-
Returns the list of searchVariables over which this independence checker is capable of determinining independence relations.
- getVariables() - Method in class edu.cmu.tetrad.search.test.IndTestProbabilistic
-
Returns the list of variables used in this object.
- getVariables() - Method in class edu.cmu.tetrad.search.test.IndTestRegression
-
Returns the list of variables associated with this object.
- getVariables() - Method in class edu.cmu.tetrad.search.test.IndTestTrekSep
-
Returns the list of variables over which this independence checker is capable of determinine independence relations-- that is, all the variables in the given graph or the given data set.
- getVariables() - Method in class edu.cmu.tetrad.search.test.Kci
-
Returns the list of variables over which this independence checker is capable of determinining independence relations.
- getVariables() - Method in class edu.cmu.tetrad.search.test.MsepTest
-
Return the list of TetradNodes over which this independence checker is capable of determinine independence relations-- that is, all the variables in the given graph or the given data set.
- getVariables() - Method in class edu.cmu.tetrad.search.test.ScoreIndTest
-
Returns the list of variables over which this independence checker is capable of determinining independence relations.
- getVariables() - Method in class edu.cmu.tetrad.search.utils.Bes
-
Returns the variables being searched over.
- getVariables() - Method in class edu.cmu.tetrad.search.utils.BesPermutation
-
Returns the variables.
- getVariables() - Method in class edu.cmu.tetrad.search.utils.DagSepsets
-
Retrieves the list of variables.
- getVariables() - Method in class edu.cmu.tetrad.search.utils.DeltaSextadTest
-
Returns the variables of the data being used.
- getVariables() - Method in class edu.cmu.tetrad.search.utils.GrowShrinkTree
-
getVariables.
- getVariables() - Method in interface edu.cmu.tetrad.search.utils.SepsetProducer
-
Retrieves the list of variables.
- getVariables() - Method in class edu.cmu.tetrad.search.utils.SepsetsGreedy
-
Retrieves the variables used in the independence test.
- getVariables() - Method in class edu.cmu.tetrad.search.utils.SepsetsMaxP
-
Retrieves the variables used in the independence test.
- getVariables() - Method in class edu.cmu.tetrad.search.utils.SepsetsMinP
-
Retrieves the variables used in the independence test.
- getVariables() - Method in class edu.cmu.tetrad.search.utils.SepsetsPossibleMsep
-
Retrieves the list of variables.
- getVariables() - Method in class edu.cmu.tetrad.search.utils.SepsetsSet
-
Retrieves the list of variables.
- getVariables() - Method in interface edu.cmu.tetrad.search.utils.TetradTest
-
getVariables.
- getVariables() - Method in class edu.cmu.tetrad.search.utils.TetradTestContinuous
-
Getter for the field
variables
. - getVariables() - Method in class edu.cmu.tetrad.search.utils.TetradTestDiscrete
-
getVariables.
- getVariables() - Method in class edu.cmu.tetrad.search.utils.TetradTestPopulation
-
getVariables.
- getVariables() - Method in class edu.cmu.tetrad.search.work_in_progress.GraspTol
-
Getter for the field
variables
. - getVariables() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestCramerT
-
Retrieves the list of variables used in the independence test.
- getVariables() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestFisherZPercentIndependent
-
Getter for the field
variables
. - getVariables() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestFisherZRecursive
-
Getter for the field
variables
. - getVariables() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestMixedMultipleTTest
-
Retrieves the list of variables used in the original data set.
- getVariables() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestMnlrLr
-
getVariables.
- getVariables() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestMultinomialLogisticRegression
-
getVariables.
- getVariables() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestPositiveCorr
-
Retrieves the list of variables used in the independence test.
- getVariables() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestSepsetDci
-
getVariables.
- getVariables() - Method in class edu.cmu.tetrad.search.work_in_progress.ISBDeuScore
-
Retrieves the list of variables associated with this instance.
- getVariables() - Method in class edu.cmu.tetrad.search.work_in_progress.ISBicScore
-
Retrieves the list of variables associated with this ISBicScore instance.
- getVariables() - Method in interface edu.cmu.tetrad.search.work_in_progress.ISScore
-
Retrieves a list of variables represented as nodes.
- getVariables() - Method in class edu.cmu.tetrad.search.work_in_progress.MagCgBicScore
-
The variables of the score.
- getVariables() - Method in class edu.cmu.tetrad.search.work_in_progress.MagDgBicScore
-
The variables of the score.
- getVariables() - Method in class edu.cmu.tetrad.search.work_in_progress.MagSemBicScore
-
The variables of the score.
- getVariables() - Method in class edu.cmu.tetrad.search.work_in_progress.MnlrScore
-
The variables of the score.
- getVariables() - Method in class edu.cmu.tetrad.search.work_in_progress.ProbabilisticMapIndependence
-
getVariables.
- getVariables() - Method in class edu.cmu.tetrad.search.work_in_progress.SemBicScoreDeterministic
-
The variables of the score.
- getVariables() - Method in class edu.cmu.tetrad.sem.DagScorer
-
Getter for the field
variables
. - getVariables() - Method in interface edu.cmu.tetrad.sem.Scorer
-
getVariables.
- getVariables() - Method in class edu.pitt.csb.mgm.IndTestMultinomialLogisticRegressionWald
-
getVariables.
- getVariables(List<Node>, List<Node>, List<Node>) - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Returns the variables of the independence test.
- getVariablesInEvidence() - Method in class edu.cmu.tetrad.bayes.Evidence
-
getVariablesInEvidence.
- getVariablesNotInTiers() - Method in class edu.cmu.tetrad.data.Knowledge
-
getVariablesNotInTiers.
- getVariableSource() - Method in class edu.cmu.tetrad.bayes.Evidence
-
getVariableSource.
- getVariableSource() - Method in class edu.cmu.tetrad.bayes.Proposition
-
Getter for the field
variableSource
. - getVariablesTemplate() - Method in class edu.cmu.tetrad.sem.GeneralizedSemPm
-
Retrieves the variable template.
- getVariableValues(int) - Method in class edu.cmu.tetrad.bayes.StoredCellProbsObs
-
getVariableValues.
- getVariableVectors() - Method in class edu.cmu.tetrad.data.VerticalDoubleDataBox
-
getVariableVectors.
- getVariableVectors() - Method in class edu.cmu.tetrad.data.VerticalIntDataBox
-
getVariableVectors.
- getVariance(Node, Matrix) - Method in interface edu.cmu.tetrad.sem.ISemIm
-
getVariance.
- getVariance(Node, Matrix) - Method in class edu.cmu.tetrad.sem.SemIm
-
Returns the variance for a given node.
- getVarianceParameter(Node) - Method in class edu.cmu.tetrad.sem.SemPm
-
Return the parameter for the variance of the error term for the given node, which is the variance of the node if the node is an error term, and the variance of the node's error term if not.
- getVariances() - Method in class edu.cmu.tetrad.search.work_in_progress.MixtureModel
-
getVariances.
- getVarNames() - Method in interface edu.cmu.tetrad.search.utils.TetradTest
-
getVarNames.
- getVarNames() - Method in class edu.cmu.tetrad.search.utils.TetradTestContinuous
-
getVarNames.
- getVarNames() - Method in class edu.cmu.tetrad.search.utils.TetradTestDiscrete
-
getVarNames.
- getVarNames() - Method in class edu.cmu.tetrad.search.utils.TetradTestPopulation
-
getVarNames.
- getVarNode(Node) - Method in class edu.cmu.tetrad.graph.SemGraph
-
getVarNode.
- getVarRy(int, int[], Matrix, ICovarianceMatrix, boolean, boolean) - Static method in class edu.cmu.tetrad.search.score.SemBicScore
-
Returns the variance of the residual of the regression of the ith variable on its parents.
- getVarsNotInCluster(List<String>) - Method in class edu.cmu.tetrad.data.Clusters
-
getVarsNotInCluster.
- getVarsPerInd() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.LagGraphParams
-
Getter for the field
varsPerInd
. - getVarsPerInd() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ManualLagGraphParams
-
Returns the number of variables per individual.
- getVector() - Method in class edu.cmu.tetrad.util.Point
-
Getter for the field
vector
. - getVicinity(Edge, int) - Method in class edu.cmu.tetrad.simulation.Vicinity
-
getVicinity.
- getVT() - Method in class edu.pitt.csb.mgm.EigenDecomposition
-
Gets the transpose of the matrix V of the decomposition.
- getW() - Method in class edu.cmu.tetrad.search.FastIca.IcaResult
-
Returns the estimated un-mixing matrix.
- getW() - Method in class edu.cmu.tetrad.search.utils.DiscriminatingPath
-
Retrieves the node A in the discriminating path.
- getWeight() - Method in class edu.cmu.tetrad.search.FciOrientDijkstra.DijkstraEdge
-
Returns the weight of the edge.
- getWeight() - Method in class edu.cmu.tetrad.search.utils.R5R9Dijkstra.DijkstraEdge
-
Retrieves the weight of the edge represented by this DijkstraEdge.
- getWeight(Statistic) - Method in class edu.cmu.tetrad.algcomparison.statistic.Statistics
-
The utility weight for the statistic.
- getWeights() - Method in class edu.cmu.tetrad.search.work_in_progress.MixtureModel
-
getWeights.
- getWrappedScore() - Method in class edu.cmu.tetrad.search.test.ScoreIndTest
-
Returns the score object that this test wraps.
- getWThreshold() - Method in class edu.cmu.tetrad.search.Dagma
-
Retrieves the value of the wThreshold field.
- getWwi() - Method in class edu.cmu.tetrad.search.work_in_progress.Glasso.Result
-
Getter for the field
wwi
. - getX() - Method in class edu.cmu.tetrad.graph.IndependenceFact
-
Getter for the field
x
. - getX() - Method in class edu.cmu.tetrad.graph.Triple
-
Getter for the field
x
. - getX() - Method in class edu.cmu.tetrad.search.FastIca.IcaResult
-
Returns the pre-processed data matrix.
- getX() - Method in class edu.cmu.tetrad.search.utils.DiscriminatingPath
-
Returns the node E in the discriminating path.
- getX() - Method in class edu.cmu.tetrad.search.utils.GraphoidAxioms.GraphoidIndFact
-
Returns the set of nodes X.
- getX() - Method in class edu.cmu.tetrad.util.PointXy
-
Getter for the field
x
. - getxMeans() - Method in class edu.cmu.tetrad.regression.LogisticRegression.Result
-
THe array of means.
- getXSquare() - Method in class edu.cmu.tetrad.search.test.ChiSquareTest.Result
-
Returns the chi square value, or NaN if the chi square value cannot be determined.
- getxStdDevs() - Method in class edu.cmu.tetrad.regression.LogisticRegression.Result
-
The array of standard devs.
- gety() - Method in class edu.cmu.tetrad.search.FciOrientDijkstra.DijkstraEdge
-
Returns the node.
- getY() - Method in class edu.cmu.tetrad.graph.IndependenceFact
-
Getter for the field
y
. - getY() - Method in class edu.cmu.tetrad.graph.Triple
-
Getter for the field
y
. - getY() - Method in class edu.cmu.tetrad.search.utils.DiscriminatingPath
-
Returns the node C in the discriminating path.
- getY() - Method in class edu.cmu.tetrad.search.utils.GraphoidAxioms.GraphoidIndFact
-
Returns the set of nodes Y.
- getY() - Method in class edu.cmu.tetrad.util.PointXy
-
Getter for the field
y
. - getZ() - Method in class edu.cmu.tetrad.graph.IndependenceFact
-
getZ.
- getZ() - Method in class edu.cmu.tetrad.graph.Triple
-
Getter for the field
z
. - getZ() - Method in class edu.cmu.tetrad.search.utils.GraphoidAxioms.GraphoidIndFact
-
Returns the set of nodes Z.
- getZForAlpha(double) - Static method in class edu.cmu.tetrad.util.StatUtils
-
getZForAlpha.
- Gfci - Class in edu.cmu.tetrad.algcomparison.algorithm.oracle.pag
-
The Gfci class represents the Greedy Fast Causal Inference algorithm.
- Gfci() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Gfci
-
The Gfci class represents the Greedy Fast Causal Inference algorithm.
- Gfci(IndependenceWrapper, ScoreWrapper) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Gfci
-
Constructs a new instance of Gfci with the given IndependenceWrapper and ScoreWrapper.
- GFci - Class in edu.cmu.tetrad.search
-
Implements a modification of FCI that started by running the FGES algorithm and then fixes that result to be correct for latent variables models.
- GFci(IndependenceTest, Score) - Constructor for class edu.cmu.tetrad.search.GFci
-
Constructs a new GFci algorithm with the given independence test and score.
- GFCI - Enum constant in enum class edu.cmu.tetrad.study.performance.ComparisonParameters.Algorithm
-
Constant for the GFCI algorithm.
- gfciExtraEdgeRemovalStep(Graph, Graph, List<Node>, SepsetProducer, int, boolean) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
The extra-edge removal step for GFCI.
- gfciR0(Graph, Graph, SepsetProducer, Knowledge, boolean, Set<Triple>) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Applies the GFCI-R0 algorithm to orient edges in a pag based on a reference CPDAG, sepsets, and knowledge.
- GIC2 - Enum constant in enum class edu.cmu.tetrad.search.score.GicScores.RuleType
-
The GIC2 rule.
- GIC5 - Enum constant in enum class edu.cmu.tetrad.search.score.GicScores.RuleType
-
The GIC5 rule.
- GIC6 - Enum constant in enum class edu.cmu.tetrad.search.score.GicScores.RuleType
-
The GIC6 rule.
- GicScores - Class in edu.cmu.tetrad.algcomparison.score
-
The GicScores class is an implementation of the ScoreWrapper interface that calculates the Generalized Information Criterion (GIC) scores for a given data model.
- GicScores - Class in edu.cmu.tetrad.search.score
-
Implements scores motivated by the Generalized Information Criterion (GIC) approach as given in Kim et al.
- GicScores() - Constructor for class edu.cmu.tetrad.algcomparison.score.GicScores
-
Constructs a new instance of the algorithm.
- GicScores(DataSet, boolean) - Constructor for class edu.cmu.tetrad.search.score.GicScores
-
Constructs the score using a covariance matrix.
- GicScores(ICovarianceMatrix) - Constructor for class edu.cmu.tetrad.search.score.GicScores
-
Constructs the score using a covariance matrix.
- GicScores.RuleType - Enum Class in edu.cmu.tetrad.search.score
-
Gives the options for the rules to use for calculating the scores.
- GICScoreTests - Class in edu.cmu.tetrad.algcomparison.independence
-
Represents a class for Generalized Information Criterion Score Tests.
- GICScoreTests() - Constructor for class edu.cmu.tetrad.algcomparison.independence.GICScoreTests
-
Represents a class for Generalized Information Criterion Score Tests.
- Glasso - Class in edu.cmu.tetrad.algcomparison.algorithm.other
-
GLASSO.
- Glasso - Class in edu.cmu.tetrad.search.work_in_progress
-
A translation from Tibshirani's 2008 Fortran implementation of glasso.
- Glasso() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.other.Glasso
-
Constructs a new instance of the algorithm.
- Glasso(Matrix) - Constructor for class edu.cmu.tetrad.search.work_in_progress.Glasso
-
Constructor for Glasso.
- Glasso.Result - Class in edu.cmu.tetrad.search.work_in_progress
-
Return value of the algorithm.
- GLOBAL_MARKOV - Enum constant in enum class edu.cmu.tetrad.search.ConditioningSetType
-
Testing all possible independence facts implied by the graph.
- goToBookmark() - Method in class edu.cmu.tetrad.search.utils.TeyssierScorer
-
Retries the bookmark with key = Integer.MIN_VALUE and removes the bookmark.
- goToBookmark(int) - Method in class edu.cmu.tetrad.search.utils.TeyssierScorer
-
Retrieves the bookmarked state for index 'key' and removes that bookmark.
- grabLayout(List<Node>) - Static method in class edu.cmu.tetrad.graph.GraphSaveLoadUtils
-
grabLayout.
- Graph - Enum constant in enum class edu.cmu.tetrad.data.DataType
-
Graph.
- Graph - Interface in edu.cmu.tetrad.graph
-
Implements a graph capable of storing edges of type N1 *-# N2 where * and # are endpoints of type Endpoint.
- Graph(Graph, boolean) - Constructor for class edu.cmu.tetrad.search.FciOrientDijkstra.Graph
-
Represents a graph used in Dijkstra's algorithm.
- Graph(Graph, R5R9Dijkstra.Rule) - Constructor for class edu.cmu.tetrad.search.utils.R5R9Dijkstra.Graph
-
Represents a graph for Dijkstra's algorithm.
- graphAttributesToText(Graph, String) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Converts the attributes of a given graph into a text format.
- GraphChange - Class in edu.cmu.tetrad.search.work_in_progress
-
Provides s a data structure created mainly for use in the ION search algorithm.
- GraphChange() - Constructor for class edu.cmu.tetrad.search.work_in_progress.GraphChange
-
Default constructor, holds no changes.
- GraphChange(GraphChange) - Constructor for class edu.cmu.tetrad.search.work_in_progress.GraphChange
-
Copy constructor.
- graphComparison(Graph, Graph, PrintStream) - Static method in class edu.cmu.tetrad.search.utils.GraphSearchUtils
-
graphComparison.
- GraphComparison(int, int, int, int, int, int, double, double, double, double, int, List<Edge>, List<Edge>, int[][]) - Constructor for class edu.cmu.tetrad.graph.GraphUtils.GraphComparison
-
Constructs a new GraphComparison.
- graphEdgesToText(Graph, String) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Converts the edges of a graph to text representation.
- GraphExactlyRight - Class in edu.cmu.tetrad.algcomparison.statistic
-
Return a 1 if the graph is exactly right, 0 otherwise.
- GraphExactlyRight() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.GraphExactlyRight
-
Constructor for GraphExactlyRight.
- graphFromMGM() - Method in class edu.pitt.csb.mgm.Mgm
-
Converts MGM object to Graph object with edges if edge parameters are non-zero.
- GraphInitializer - Interface in edu.cmu.tetrad.study.gene.tetrad.gene.history
-
Instantiations of this interface know how to randomize lag graphs in particular ways.
- GraphInPag - Class in edu.cmu.tetrad.search.utils
-
Contains methods which can be used to determine whether a directed graph is in the equivalence class determined by the given PAG.
- graphInPagStep0(Graph, Graph) - Static method in class edu.cmu.tetrad.search.utils.GraphInPag
-
This method implements step (1) of the definition.
- graphInPagStep1(Graph, Graph) - Static method in class edu.cmu.tetrad.search.utils.GraphInPag
-
graphInPagStep1.
- graphInPagStep2(Graph, Graph) - Static method in class edu.cmu.tetrad.search.utils.GraphInPag
-
graphInPagStep2.
- graphInPagStep3(Graph, Graph) - Static method in class edu.cmu.tetrad.search.utils.GraphInPag
-
graphInPagStep3.
- graphInPagStep4(Graph, Graph) - Static method in class edu.cmu.tetrad.search.utils.GraphInPag
-
graphInPagStep4.
- graphInPagStep5(Graph, Graph) - Static method in class edu.cmu.tetrad.search.utils.GraphInPag
-
graphInPagStep5.
- GraphNode - Class in edu.cmu.tetrad.graph
-
Implements a basic node in a graph--that is, a node that is not itself a variable.
- GraphNode(GraphNode) - Constructor for class edu.cmu.tetrad.graph.GraphNode
-
Copy constructor.
- GraphNode(String) - Constructor for class edu.cmu.tetrad.graph.GraphNode
-
Constructs a new Tetrad node with the given (non-null) string.
- graphNodeAttributesToText(Graph, String, char) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Converts the attributes of nodes in a graph to text format.
- graphNodesToText(Graph, String, char) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Converts the nodes of a graph to a formatted text representation.
- graphoid() - Method in class edu.cmu.tetrad.search.utils.GraphoidAxioms
-
Checks whether teh IM is a semigraphoid.
- GraphoidAxioms - Class in edu.cmu.tetrad.search.utils
-
Checks the graphoid axioms for a set of Independence Model statements.
- GraphoidAxioms(Set<GraphoidAxioms.GraphoidIndFact>, List<Node>) - Constructor for class edu.cmu.tetrad.search.utils.GraphoidAxioms
-
Constructor.
- GraphoidAxioms(Set<GraphoidAxioms.GraphoidIndFact>, List<Node>, Map<GraphoidAxioms.GraphoidIndFact, String>) - Constructor for class edu.cmu.tetrad.search.utils.GraphoidAxioms
-
Constructor.
- GraphoidAxioms.GraphoidIndFact - Class in edu.cmu.tetrad.search.utils
-
Represents a graphoid independence fact--i.e., a fact in a general independence model (IM) X _||_Y | Z.
- GraphoidIndFact(Set<Node>, Set<Node>, Set<Node>) - Constructor for class edu.cmu.tetrad.search.utils.GraphoidAxioms.GraphoidIndFact
-
Constructor.
- GraphRandomizer - Interface in edu.cmu.tetrad.study.gene.tetrad.gene.history
-
Instantiations of this interface know how to randomize update graphs in particular ways.
- graphRMatrixTxt(Graph) - Static method in class edu.cmu.tetrad.graph.GraphSaveLoadUtils
-
graphRMatrixTxt.
- GraphSampling - Class in edu.cmu.tetrad.util
-
A utility for computing frequency probabilities.
- GraphSaveLoadUtils - Class in edu.cmu.tetrad.graph
-
Methods to load or save graphs.
- GraphScore - Class in edu.cmu.tetrad.search.score
-
Implements a pscudo-"score" that implmenets implements Chickering and Meek's (2002) locally consistent score criterion.
- GraphScore(IndependenceFacts) - Constructor for class edu.cmu.tetrad.search.score.GraphScore
-
Constructs a GraphScore from a list of independence facts.
- GraphScore(Graph) - Constructor for class edu.cmu.tetrad.search.score.GraphScore
-
Constructs a GraphScore from a DAG.
- GraphSearchUtils - Class in edu.cmu.tetrad.search.utils
-
Provides some graph utilities for search algorithm.
- GraphSearchUtils.CpcTripleType - Enum Class in edu.cmu.tetrad.search.utils
-
Gives the options for triple type for a conservative unshielded collider orientation, which may be "collider" or "noncollider" or "ambiguous".
- GraphSearchUtils.LegalMagRet - Class in edu.cmu.tetrad.search.utils
-
Stores a result for checking whether a graph is a legal MAG--(a) whether it is (a boolean), and (b) the reason why it is not, if it is not (a String).
- GraphSearchUtils.LegalPagRet - Class in edu.cmu.tetrad.search.utils
-
Stores a result for checking whether a graph is a legal PAG--(a) whether it is (a boolean), and (b) the reason why it is not, if it is not (a String).
- graphToAmatCpag(Graph) - Static method in class edu.cmu.tetrad.graph.GraphSaveLoadUtils
-
Converts a given graph into an adjacency matrix in CPAG format.
- graphToAmatPag(Graph) - Static method in class edu.cmu.tetrad.graph.GraphSaveLoadUtils
-
Saves a PAG in the "amat.pag" format of PCALG.
- graphToDot(Graph) - Static method in class edu.cmu.tetrad.graph.GraphSaveLoadUtils
-
Converts a graph to a Graphviz .dot file
- graphToDot(Graph, File) - Static method in class edu.cmu.tetrad.graph.GraphSaveLoadUtils
-
graphToDot.
- graphToLagGraph(Graph, int) - Static method in class edu.cmu.tetrad.search.utils.TsUtils
-
graphToLagGraph.
- graphToLavaan(Graph) - Static method in class edu.cmu.tetrad.graph.GraphSaveLoadUtils
-
graphToLavaan.
- graphToMatrix(Graph) - Static method in class edu.pitt.csb.mgm.MixedUtils
-
graphToMatrix.
- graphToMatrix(Graph, double, double) - Static method in class edu.pitt.csb.mgm.MixedUtils
-
graphToMatrix.
- GraphTools - Class in edu.cmu.tetrad.bayes
-
A utility class containing graph function from graph theory.
- graphToPcalg(Graph) - Static method in class edu.cmu.tetrad.graph.GraphSaveLoadUtils
-
graphToPcalg.
- graphToXml(Graph) - Static method in class edu.cmu.tetrad.graph.GraphSaveLoadUtils
-
graphToXml.
- GraphTransforms - Class in edu.cmu.tetrad.graph
-
Transformations that transform one graph into another.
- GraphTypes - Class in edu.cmu.tetrad.algcomparison.graph
-
Jun 4, 2019 3:21:47 PM
- GraphUtils - Class in edu.cmu.tetrad.graph
-
Utility class for working with graphs.
- GraphUtils.GraphComparison - Class in edu.cmu.tetrad.graph
-
Represents a comparison between two graphs.
- GraphUtils.GraphType - Enum Class in edu.cmu.tetrad.graph
-
The GraphType enum represents the types of graphs that can be used in the application.
- GraphUtils.TwoCycleErrors - Class in edu.cmu.tetrad.graph
-
Two-cycle errors.
- GraphWithPValue(Graph, double) - Constructor for class edu.cmu.tetrad.search.work_in_progress.HbsmsGes.GraphWithPValue
-
Constructor for GraphWithPValue.
- grasp(TeyssierScorer) - Method in class edu.cmu.tetrad.search.work_in_progress.GraspTol
-
grasp.
- Grasp - Class in edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag
-
GRaSP (Greedy Relaxations of Sparsest Permutation)
- Grasp - Class in edu.cmu.tetrad.search
-
Implements the GRaSP algorithms, which uses a certain procedure to search in the space of permutations of variables for ones that imply CPDAGs that are especially close to the CPDAG of the true model.
- Grasp() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Grasp
-
Constructor for Grasp.
- Grasp(IndependenceWrapper, ScoreWrapper) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Grasp
-
Constructor for Grasp.
- Grasp(IndependenceTest) - Constructor for class edu.cmu.tetrad.search.Grasp
-
Constructor for a test.
- Grasp(IndependenceTest, Score) - Constructor for class edu.cmu.tetrad.search.Grasp
-
Constructor that takes both a test and a score; only one is used-- the parameter setting will decide which.
- Grasp(Score) - Constructor for class edu.cmu.tetrad.search.Grasp
-
Constructor for a score.
- GRASP - Enum constant in enum class edu.cmu.tetrad.search.FaskOrig.AdjacencyMethod
-
A permutation search with the GRASP algorithm.
- GRASP - Enum constant in enum class edu.cmu.tetrad.search.LvLite.START_WITH
-
Start with GRaSP.
- GRASP_ALG - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
GRASP_ALG="graspAlg"
- GRASP_BREAK_AFTER_IMPROVEMENT - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
GRASP_BREAK_AFTER_IMPROVEMENT="graspBreakAFterImprovement"
- GRASP_CHECK_COVERING - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
GRASP_CHECK_COVERING="graspCheckCovering"
- GRASP_DEPTH - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
GRASP_DEPTH="graspDepth"
- GRASP_FORWARD_TUCK_ONLY - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
GRASP_FORWARD_TUCK_ONLY="graspForwardTuckOnly"
- GRASP_NONSINGULAR_DEPTH - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
GRASP_NONSINGULAR_DEPTH="graspNonSingularDepth"
- GRASP_ORDERED_ALG - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
GRASP_ORDERED_ALG="graspOrderedAlg"
- GRASP_SINGULAR_DEPTH - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
GRASP_SINGULAR_DEPTH="graspSingularDepth"
- GRASP_TOLERANCE_DEPTH - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
GRASP_TOLERANCE_DEPTH="graspToleranceDepth"
- GRASP_USE_RASKUTTI_UHLER - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
GRASP_USE_RASKUTTI_UHLER="graspUseRaskuttiUhler"
- GRASP_USE_SCORE - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
GRASP_USE_SCORE="graspUseScore"
- GRASP_USE_VP_SCORING - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
GRASP_USE_VP_SCORING="graspUseVpScoring"
- GraspFci - Class in edu.cmu.tetrad.algcomparison.algorithm.oracle.pag
-
Adjusts GFCI to use a permutation algorithm (such as BOSS-Tuck) to do the initial steps of finding adjacencies and unshielded colliders.
- GraspFci - Class in edu.cmu.tetrad.search
-
Uses GRaSP in place of FGES for the initial step in the GFCI algorithm.
- GraspFci() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.GraspFci
-
Constructor for GraspFci.
- GraspFci(IndependenceWrapper, ScoreWrapper) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.GraspFci
-
Constructor for GraspFci.
- GraspFci(IndependenceTest, Score) - Constructor for class edu.cmu.tetrad.search.GraspFci
-
Constructs a new GraspFci object.
- GraspTol - Class in edu.cmu.tetrad.search.work_in_progress
-
Implements the GRASP algorithms, with various execution flags.
- GraspTol(IndependenceTest) - Constructor for class edu.cmu.tetrad.search.work_in_progress.GraspTol
-
Constructor for GraspTol.
- GraspTol(IndependenceTest, Score) - Constructor for class edu.cmu.tetrad.search.work_in_progress.GraspTol
-
Constructor for GraspTol.
- GraspTol(Score) - Constructor for class edu.cmu.tetrad.search.work_in_progress.GraspTol
-
Constructor for GraspTol.
- GraspTol(List<Node>) - Constructor for class edu.cmu.tetrad.search.work_in_progress.GraspTol
-
Constructor for GraspTol.
- GREEDY - Enum constant in enum class edu.cmu.tetrad.search.utils.R0R4StrategyTestBased.BlockingType
-
Greedy blocking.
- GrowShrink - Class in edu.cmu.tetrad.search
-
Implements the Grow-Shrink algorithm of Margaritis and Thrun, a simple yet correct and useful Markov blanket search.
- GrowShrink(IndependenceTest) - Constructor for class edu.cmu.tetrad.search.GrowShrink
-
Constructs a new search.
- GrowShrinkTree - Class in edu.cmu.tetrad.search.utils
-
GrowShrinkTree class.
- GrowShrinkTree(Score, Map<Node, Integer>, Node) - Constructor for class edu.cmu.tetrad.search.utils.GrowShrinkTree
-
Constructor for GrowShrinkTree.
- GSquare - Class in edu.cmu.tetrad.algcomparison.independence
-
Wrapper for Fisher Z test.
- GSquare() - Constructor for class edu.cmu.tetrad.algcomparison.independence.GSquare
-
GSquare class represents a wrapper for the G Square test, which is a statistical test for independence between two variables conditional on a third variable.
- GT - Enum constant in enum class edu.cmu.tetrad.sem.ParamConstraintType
-
Represents a parameter constraint type GT (greater than).
- GUARANTEE_ACYCLIC - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
GUARANTEE_ACYCLIC="guaranteeAcyclic"
- GUARANTEE_CPDAG - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
GUARANTEE_CPDAG="guaranteeCpdag"
- GUARANTEE_IID - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
GUARANTEE_IID="guaranteeIid"
- GUARANTEE_PAG - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
GUARANTEE_PAG="guaranteePag"
- guaranteePag(Graph, FciOrient, Knowledge, Set<Triple>, Set<Triple>, boolean, Set<Node>) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Guarantees a legal PAG by repairing deviations of a graph from a legal PAG (partial ancestral graph).
H
- handlesUnmeasuredConfounder(Class) - Method in class edu.cmu.tetrad.annotation.AlgorithmAnnotations
-
Checks if the algorithm handles unmeasured confounders.
- HandleyConvert - Class in edu.cmu.tetrad.study.gene.tetrad.gene.util
-
The purpose of this little converter is to convert "effect" files into "cause" (BasicLagGraph) files.
- hasComplexEigenvalues() - Method in class edu.pitt.csb.mgm.EigenDecomposition
-
Returns whether the calculated eigen values are complex or real.
- hasDimensions(double[][], int, int) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
hasDimensions.
- hashCode() - Method in class edu.cmu.tetrad.annotation.AnnotatedClass
- hashCode() - Method in class edu.cmu.tetrad.bayes.Evidence
-
hashCode.
- hashCode() - Method in class edu.cmu.tetrad.bayes.Manipulation
-
hashCode.
- hashCode() - Method in class edu.cmu.tetrad.bayes.Proposition
-
hashCode.
- hashCode() - Method in class edu.cmu.tetrad.data.Clusters
-
Computes a hashcode.
- hashCode() - Method in class edu.cmu.tetrad.data.ContinuousVariable
-
hashCode.
- hashCode() - Method in class edu.cmu.tetrad.data.DataModelList
-
hashCode.
- hashCode() - Method in class edu.cmu.tetrad.data.DiscreteVariable
-
hashCode.
- hashCode() - Method in class edu.cmu.tetrad.data.Knowledge
-
Computes a hashcode.
- hashCode() - Method in class edu.cmu.tetrad.data.KnowledgeEdge
-
hashCode.
- hashCode() - Method in class edu.cmu.tetrad.data.KnowledgeGroup
-
Computes a hashcode.
- hashCode() - Method in class edu.cmu.tetrad.graph.Edge
-
hashCode.
- hashCode() - Method in class edu.cmu.tetrad.graph.EdgeListGraph
- hashCode() - Method in class edu.cmu.tetrad.graph.GraphNode
-
hashCode.
- hashCode() - Method in class edu.cmu.tetrad.graph.IndependenceFact
-
hashCode.
- hashCode() - Method in interface edu.cmu.tetrad.graph.Node
-
Removes a property change listener.
- hashCode() - Method in class edu.cmu.tetrad.graph.NodePair
-
hashCode.
- hashCode() - Method in class edu.cmu.tetrad.graph.OrderedPair
-
hashCode.
- hashCode() - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Returns the hash code value for this object.
- hashCode() - Method in class edu.cmu.tetrad.graph.Triple
-
hashCode.
- hashCode() - Method in record class edu.cmu.tetrad.search.MarkovCheck.MarkovCheckRecord
-
Returns a hash code value for this object.
- hashCode() - Method in class edu.cmu.tetrad.search.score.ScoredGraph
-
Return s the hashcode of the score.
- hashCode() - Method in record class edu.cmu.tetrad.search.score.SemBicScore.CovAndCoefs
-
Returns a hash code value for this object.
- hashCode() - Method in record class edu.cmu.tetrad.search.test.Kci.EigenReturn
-
Returns a hash code value for this object.
- hashCode() - Method in class edu.cmu.tetrad.search.utils.GraphoidAxioms.GraphoidIndFact
-
Returns the hash code.
- hashCode() - Method in class edu.cmu.tetrad.search.utils.Sextad
-
hashCode.
- hashCode() - Method in class edu.cmu.tetrad.search.utils.Tetrad
-
hashCode.
- hashCode() - Method in class edu.cmu.tetrad.search.work_in_progress.GraphChange
-
hashCode.
- hashCode() - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsGes.GraphWithPValue
-
hashCode.
- hashCode() - Method in class edu.cmu.tetrad.search.work_in_progress.Sextad
-
hashCode.
- hashCode() - Method in class edu.cmu.tetrad.sem.ParameterPair
-
hashCode.
- hashCode() - Method in class edu.cmu.tetrad.sem.SemEvidence
-
hashCode.
- hashCode() - Method in class edu.cmu.tetrad.sem.SemManipulation
-
hashCode.
- hashCode() - Method in class edu.cmu.tetrad.sem.SemProposition
-
Calculates the hash code for this object.
- hashCode() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.LaggedFactor
-
Probably should recheck this later.
- hashCode() - Method in class edu.cmu.tetrad.util.Version
-
hashCode.
- HasKnowledge - Interface in edu.cmu.tetrad.algcomparison.utils
-
Stores a knowledge object.
- hasMoreTokens() - Method in class edu.cmu.tetrad.data.RegexTokenizer
-
hasMoreTokens.
- hasNext() - Method in class edu.cmu.tetrad.search.utils.DagInCpcagIterator
-
Returns true just in case there is still a DAG remaining in the enumeration of DAGs for this CPDAG.
- hasNext() - Method in class edu.cmu.tetrad.search.utils.DagIterator
-
Returns true just in case there is still a DAG remaining in the enumeration of DAGs for this pattern.
- hasNext() - Method in class edu.cmu.tetrad.util.CombinationIterator
-
hasNext.
- hasNoEvidence(int) - Method in class edu.cmu.tetrad.bayes.Evidence
-
hasNoEvidence.
- HasParameters - Interface in edu.cmu.tetrad.algcomparison.utils
-
Tags a gadget as having parameters
- HasParameterValues - Interface in edu.cmu.tetrad.algcomparison.utils
-
Tags a gadget as having parameters values.
- HasPenaltyDiscount - Interface in edu.cmu.tetrad.search.utils
-
Provides an interface for an algorithm can can get/set a value for penalty disoucnt.
- Hbsms - Interface in edu.cmu.tetrad.search.work_in_progress
-
Interface for Bff (Heuristic Best Significant Model Search) algorithm.
- HbsmsBeam - Class in edu.cmu.tetrad.search.work_in_progress
-
Heuristic Best Significant Model Search using a beam search.
- HbsmsBeam(Graph, CovarianceMatrix, Knowledge) - Constructor for class edu.cmu.tetrad.search.work_in_progress.HbsmsBeam
-
Constructor for HbsmsBeam.
- HbsmsBeam(Graph, DataSet, Knowledge) - Constructor for class edu.cmu.tetrad.search.work_in_progress.HbsmsBeam
-
Constructor for HbsmsBeam.
- HbsmsBeam.Move - Class in edu.cmu.tetrad.search.work_in_progress
-
A move.
- HbsmsBeam.Move.Type - Enum Class in edu.cmu.tetrad.search.work_in_progress
-
Types of moves the algorithm can make.
- HbsmsBeam.Score - Class in edu.cmu.tetrad.search.work_in_progress
-
The score.
- HbsmsGes - Class in edu.cmu.tetrad.search.work_in_progress
-
Heuristic Best Significant Model Search using the GES algorithm.
- HbsmsGes(Graph, DataSet) - Constructor for class edu.cmu.tetrad.search.work_in_progress.HbsmsGes
-
Constructor for HbsmsGes.
- HbsmsGes.GraphWithPValue - Class in edu.cmu.tetrad.search.work_in_progress
-
A graph with a P value.
- HbsmsGes.Score - Class in edu.cmu.tetrad.search.work_in_progress
-
The score of a model.
- hermite1(int, double) - Static method in class edu.cmu.tetrad.util.StatUtils
-
Computes the (statitician's) Hermite polynomial of a given index and value.
- hermite2(int, double) - Static method in class edu.cmu.tetrad.util.StatUtils
-
Computes the (physicis's) Hermite polynomial of a given index and value.
- HEURISTIC_1 - Enum constant in enum class edu.cmu.tetrad.search.utils.PcCommon.PcHeuristicType
-
Sort nodes alphabetically.
- HEURISTIC_2 - Enum constant in enum class edu.cmu.tetrad.search.utils.PcCommon.PcHeuristicType
-
Sort edges by p-value.
- HEURISTIC_3 - Enum constant in enum class edu.cmu.tetrad.search.utils.PcCommon.PcHeuristicType
-
Sort edges in reverse order using p-values of associated independence facts.
- Highest - Enum constant in enum class edu.pitt.dbmi.algo.resampling.ResamplingEdgeEnsemble
-
Choose an edge iff its prob.
- histogram(List<Double>, double[]) - Static method in class edu.cmu.tetrad.simulation.GdistanceUtils
-
Calculates the histogram of a given list of input values based on thresholds.
- Histogram - Class in edu.cmu.tetrad.data
-
Model for a conditional histogram for mixed continuous and discrete variables.
- Histogram(DataSet, String, boolean) - Constructor for class edu.cmu.tetrad.data.Histogram
-
This histogram is for variables in a particular data set.
- Hsim - Class in edu.cmu.tetrad.simulation
-
Hsim class.
- Hsim(Dag, Set<Node>, DataSet) - Constructor for class edu.cmu.tetrad.simulation.Hsim
-
Constructor for Hsim.
- HsimAutoC - Class in edu.cmu.tetrad.simulation
-
Created by Erich on 3/28/2016.
- HsimAutoC(DataSet) - Constructor for class edu.cmu.tetrad.simulation.HsimAutoC
-
Constructor for HsimAutoC.
- HsimAutoC(String, char) - Constructor for class edu.cmu.tetrad.simulation.HsimAutoC
-
Constructor for HsimAutoC.
- HsimAutoRun - Class in edu.cmu.tetrad.simulation
-
Created by Erich on 3/28/2016.
- HsimAutoRun(DataSet) - Constructor for class edu.cmu.tetrad.simulation.HsimAutoRun
-
Constructor for HsimAutoRun.
- HsimAutoRun(String, char) - Constructor for class edu.cmu.tetrad.simulation.HsimAutoRun
-
Constructor for HsimAutoRun.
- HsimCompareRepeat - Class in edu.cmu.tetrad.simulation
-
Created by Erich on 7/15/2016.
- HsimContinuous - Class in edu.cmu.tetrad.simulation
-
Created by Erich on 3/27/2016.
- HsimContinuous(Dag, Set<Node>, DataSet) - Constructor for class edu.cmu.tetrad.simulation.HsimContinuous
-
Constructor for HsimContinuous.
- HsimEvalFromData - Class in edu.cmu.tetrad.simulation
-
Created by ekummerfeld on 1/26/2017.
- HsimRepeatAC - Class in edu.cmu.tetrad.simulation
-
Created by Erich on 4/29/2016.
- HsimRepeatAC(DataSet) - Constructor for class edu.cmu.tetrad.simulation.HsimRepeatAC
-
Constructor for HsimRepeatAC.
- HsimRepeatAC(String, char) - Constructor for class edu.cmu.tetrad.simulation.HsimRepeatAC
-
Constructor for HsimRepeatAC.
- HsimRepeatAuto - Class in edu.cmu.tetrad.simulation
-
Created by Erich on 3/28/2016.
- HsimRepeatAutoRun - Class in edu.cmu.tetrad.simulation
-
Created by Erich on 4/29/2016.
- HsimRepeatAutoRun(DataSet) - Constructor for class edu.cmu.tetrad.simulation.HsimRepeatAutoRun
-
Constructor for HsimRepeatAutoRun.
- HsimRepeatAutoRun(String, char) - Constructor for class edu.cmu.tetrad.simulation.HsimRepeatAutoRun
-
Constructor for HsimRepeatAutoRun.
- HsimRobustCompare - Class in edu.cmu.tetrad.simulation
-
generate data from random graph, generated from parameters.
- HsimRun - Class in edu.cmu.tetrad.simulation
-
Created by Erich on 3/28/2016.
- HsimSchedule - Class in edu.cmu.tetrad.simulation
-
Created by Erich on 4/29/2016.
- HsimStudy - Class in edu.cmu.tetrad.simulation
-
Created by Erich on 3/28/2016.
- HsimStudyAuto - Class in edu.cmu.tetrad.simulation
-
Created by Erich on 3/28/2016.
- HsimUtils - Class in edu.cmu.tetrad.simulation
-
Created by Erich on 4/22/2016.
- HsimUtils() - Constructor for class edu.cmu.tetrad.simulation.HsimUtils
-
Constructor for HsimUtils.
- HungarianAlgorithm - Class in edu.cmu.tetrad.search.utils
-
Provides an implemetation of the Kuhn–Munkres assignment algorithm of the year 1957.
- HungarianAlgorithm(double[][]) - Constructor for class edu.cmu.tetrad.search.utils.HungarianAlgorithm
-
Trying to find lowest-cost assignment.
- hybridsimulate() - Method in class edu.cmu.tetrad.simulation.Hsim
-
hybridsimulate.
- hybridsimulate() - Method in class edu.cmu.tetrad.simulation.HsimContinuous
-
hybridsimulate.
I
- IA - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
IA="ia"
- Iamb - Class in edu.cmu.tetrad.search.work_in_progress
-
Implements IAMB.
- Iamb(IndependenceTest) - Constructor for class edu.cmu.tetrad.search.work_in_progress.Iamb
-
Constructs a new search.
- IambnPc - Class in edu.cmu.tetrad.search.work_in_progress
-
Created by IntelliJ IDEA.
- IambnPc(IndependenceTest) - Constructor for class edu.cmu.tetrad.search.work_in_progress.IambnPc
-
Constructs a new search.
- IcaLingam - Class in edu.cmu.tetrad.algcomparison.algorithm.continuous.dag
-
IcaLingam class implements the Algorithm and ReturnsBootstrapGraphs interface.
- IcaLingam - Class in edu.cmu.tetrad.search
-
Implements the ICA-LiNGAM algorithm.
- IcaLingam() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.IcaLingam
-
Constructs a new instance of the IcaLingam algorithm.
- IcaLingam() - Constructor for class edu.cmu.tetrad.search.IcaLingam
-
Constructor.
- IcaLingD - Class in edu.cmu.tetrad.algcomparison.algorithm.continuous.dag
-
IcaLingD is an implementation of the Algorithm interface that performs the ICA-LiNG-D algorithm for discovering causal models for the linear non-Gaussian case where the underlying model might be cyclic.
- IcaLingD - Class in edu.cmu.tetrad.search
-
Implements the ICA-LiNG-D algorithm as well as a some auxiliary methods for ICA-LiNG-D and ICA-LiNGAM.
- IcaLingD() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.IcaLingD
-
Constructs a new instance of the IcaLingD algorithm.
- IcaLingD() - Constructor for class edu.cmu.tetrad.search.IcaLingD
-
Constructor.
- IcaResult(Matrix, Matrix, Matrix, Matrix) - Constructor for class edu.cmu.tetrad.search.FastIca.IcaResult
-
Constructs an instance of the IcaResult class, taking as arguments the four matrices that are the result of the Fast ICA algorithm.
- ICovarianceMatrix - Interface in edu.cmu.tetrad.data
-
Interface for covariance matrices.
- Ida - Class in edu.cmu.tetrad.search
-
Implements the IDA algorithm.
- Ida(DataSet, Graph, List<Node>) - Constructor for class edu.cmu.tetrad.search.Ida
-
Constructor.
- Ida.NodeEffects - Class in edu.cmu.tetrad.search
-
Gives a list of nodes (parents or children) and corresponding minimum effects for the IDA algorithm.
- IdaAverageSquaredDistance - Class in edu.cmu.tetrad.algcomparison.statistic
-
The IDA average squared distance.
- IdaAverageSquaredDistance(SemIm) - Constructor for class edu.cmu.tetrad.algcomparison.statistic.IdaAverageSquaredDistance
-
The IDA Average Squared Distance.
- IdaCheck - Class in edu.cmu.tetrad.search
-
This calculates total effects and absolute total effects for an MPDAG G for all pairs distinct (x, y) of variables, where the total effect is obtained by regressing y on x ∪ S and reporting the regression coefficient.
- IdaCheck(Graph, DataSet, SemIm) - Constructor for class edu.cmu.tetrad.search.IdaCheck
-
Constructs a new IDA check for the given MPDAG and data set.
- IdaCheckAvgMaxSquaredDiffEstTrue - Class in edu.cmu.tetrad.algcomparison.statistic
-
IdaCheckAvgMaxSquaredDiffEstTrue calculates the average maximum squared difference between the estimated and true values for a given data model and graphs.
- IdaCheckAvgMaxSquaredDiffEstTrue() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.IdaCheckAvgMaxSquaredDiffEstTrue
-
Calculates the average maximum squared difference between the estimated and true values for a given data model and graphs.
- IdaCheckAvgMinSquaredDiffEstTrue - Class in edu.cmu.tetrad.algcomparison.statistic
-
Represents a statistic that calculates the average minimum squared difference between the estimated and true values for a given data model and graphs.
- IdaCheckAvgMinSquaredDiffEstTrue() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.IdaCheckAvgMinSquaredDiffEstTrue
-
Calculates the average minimum squared difference between the estimated and true values for a given data model and graphs.
- IdaCheckAvgSquaredDifference - Class in edu.cmu.tetrad.algcomparison.statistic
-
IdaCheckAvgSquaredDifference is a class that implements the Statistic interface.
- IdaCheckAvgSquaredDifference() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.IdaCheckAvgSquaredDifference
-
IdaCheckAvgSquaredDifference is a class that implements the Statistic interface.
- IdaMaximumSquaredDifference - Class in edu.cmu.tetrad.algcomparison.statistic
-
IdaMaximumSquaredDifference is a statistic that calculates the "IDA Average Maximum Squared Difference" between a true graph and an estimated graph.
- IdaMaximumSquaredDifference(SemIm) - Constructor for class edu.cmu.tetrad.algcomparison.statistic.IdaMaximumSquaredDifference
-
Initializes a new instance of the
IdaMaximumSquaredDifference
class. - IdaMinimumSquaredDifference - Class in edu.cmu.tetrad.algcomparison.statistic
-
IdaMinimumSquaredDifference is a statistic that calculates the "IDA Average Minimum Squared Difference" between a true graph and an estimated graph.
- IdaMinimumSquaredDifference(SemIm) - Constructor for class edu.cmu.tetrad.algcomparison.statistic.IdaMinimumSquaredDifference
-
Constructs an instance of the
IdaMinimumSquaredDifference
class with the specified SEM IM. - Identifiability - Class in edu.cmu.tetrad.bayes
-
Identifiability, based on RowSummingExactUpdater
- Identifiability(BayesIm) - Constructor for class edu.cmu.tetrad.bayes.Identifiability
-
Constructs a new updater for the given Bayes net.
- Identifiability(BayesIm, Evidence) - Constructor for class edu.cmu.tetrad.bayes.Identifiability
-
Constructor for Identifiability.
- identity(int) - Static method in class edu.cmu.tetrad.util.Matrix
-
identity.
- identity(int) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
identity.
- identity(int) - Static method in class edu.cmu.tetrad.util.TetradAlgebra
-
identity.
- IFas - Interface in edu.cmu.tetrad.search
-
Gives an interface for fast adjacency searches (i.e., PC adjacency searches).
- igamma(double, double) - Static method in class edu.cmu.tetrad.util.StatUtils
-
Calculates the incomplete gamma function for two doubles
- IGCI - Enum constant in enum class edu.cmu.tetrad.search.Lofs.Rule
-
The IGCI rule.
- IGFci - Class in edu.cmu.tetrad.search.work_in_progress
-
Instance-specific GFci given in Fattaneh Jabbari's dissertation (Pages 144-147)
- IGFci(IndependenceTest, ISScore) - Constructor for class edu.cmu.tetrad.search.work_in_progress.IGFci
-
Constructs an instance of IGFci with the provided independence test and score.
- IGFci(IndependenceTest, ISScore, Graph) - Constructor for class edu.cmu.tetrad.search.work_in_progress.IGFci
-
Constructs an instance of IGFci with the provided independence test, score, and population graph.
- IGraphSearch - Interface in edu.cmu.tetrad.search
-
Gives an interface for a search method that searches and returns a graph.
- Im - Interface in edu.cmu.tetrad.util
-
Tagging interface for instantiated models.
- Images - Class in edu.cmu.tetrad.algcomparison.algorithm.multi
-
Wraps the IMaGES algorithm for continuous variables.
- Images() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.multi.Images
-
Constructor for Images.
- Images(ScoreWrapper) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.multi.Images
-
Constructor for Images.
- IMAGES_META_ALG - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
IMAGES_META_ALG="imagesMetaAlg"
- ImagesBoss - Class in edu.cmu.tetrad.algcomparison.algorithm.multi
-
Wraps the IMaGES algorithm for continuous variables.
- ImagesBoss() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.multi.ImagesBoss
-
Constructor for ImagesBoss.
- ImagesBoss(ScoreWrapper) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.multi.ImagesBoss
-
Constructor for ImagesBoss.
- ImagesScore - Class in edu.cmu.tetrad.search.score
-
Implements a score to average results over multiple scores.
- ImagesScore(List<Score>) - Constructor for class edu.cmu.tetrad.search.score.ImagesScore
-
Constructs an IMaGES score using the given list of individual scores.
- IMbSearch - Interface in edu.cmu.tetrad.search
-
Gives an interface for Markov blanket searches.
- ImpliedArrowOrientationRatioEst - Class in edu.cmu.tetrad.algcomparison.statistic
-
The Implied Arrow Orientation Ratio Est statistic calculates the ratio of the number of implied arrows to the number of arrows in unshielded colliders in the estimated graph.
- ImpliedArrowOrientationRatioEst() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.ImpliedArrowOrientationRatioEst
-
Constructs the statistic.
- ImpliedArrowOrientationRatioEst2 - Class in edu.cmu.tetrad.algcomparison.statistic
-
The Implied Arrow Orientation Ratio Est statistic calculates the ratio of the number of implied arrows to the number of arrows in unshielded colliders in the estimated graph.
- ImpliedArrowOrientationRatioEst2() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.ImpliedArrowOrientationRatioEst2
-
Constructs the statistic.
- impliedCovar(Matrix, Matrix) - Static method in class edu.cmu.tetrad.util.MatrixUtils
- ImpliedOrientationRatioEst - Class in edu.cmu.tetrad.algcomparison.statistic
-
The Implied Arrow Orientation Ratio Est statistic calculates the ratio of the number of implied arrows to the number of arrows in unshielded colliders in the estimated graph.
- ImpliedOrientationRatioEst() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.ImpliedOrientationRatioEst
-
Constructs the statistic.
- ImpliesLegalMag - Class in edu.cmu.tetrad.algcomparison.statistic
-
Implies Legal MAG
- ImpliesLegalMag() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.ImpliesLegalMag
-
Constructor for LegalPag.
- INCLUDE_NEGATIVE_COEFS - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
INCLUDE_NEGATIVE_COEFS="includeNegativeCoefs"
- INCLUDE_NEGATIVE_SKEWS_FOR_BETA - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
INCLUDE_NEGATIVE_SKEWS_FOR_BETA="includeNegativeSkewsForBeta"
- INCLUDE_POSITIVE_COEFS - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
INCLUDE_POSITIVE_COEFS="includePositiveCoefs"
- INCLUDE_POSITIVE_SKEWS_FOR_BETA - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
INCLUDE_POSITIVE_SKEWS_FOR_BETA="includePositiveSkewsForBeta"
- INCLUDE_STRUCTURE_MODEL - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
INCLUDE_STRUCTURE_MODEL="include_structure_model"
- incompleteCholeskyGramMatrix(List<Kernel>, DataSet, List<Node>, double) - Static method in class edu.cmu.tetrad.search.utils.KernelUtils
-
Approximates Gram matrix using incomplete Cholesky factorization
- increment(int[], int) - Method in class edu.cmu.tetrad.util.MultiDimIntTable
-
Increments the value at the given coordinates by the specified amount, returning the new value.
- independenceFact(Node, Node, Set<Node>) - Static method in class edu.cmu.tetrad.search.utils.LogUtilsSearch
-
independenceFact.
- IndependenceFact - Class in edu.cmu.tetrad.graph
-
Stores a triple (x, y, z) of nodes.
- IndependenceFact(Node, Node, Node...) - Constructor for class edu.cmu.tetrad.graph.IndependenceFact
-
Constructor for IndependenceFact.
- IndependenceFact(Node, Node, Set<Node>) - Constructor for class edu.cmu.tetrad.graph.IndependenceFact
-
Constructor for IndependenceFact.
- independenceFactMsg(Node, Node, Set<Node>, double) - Static method in class edu.cmu.tetrad.search.utils.LogUtilsSearch
-
independenceFactMsg.
- IndependenceFacts - Class in edu.cmu.tetrad.data
-
Stores a list of independence facts.
- IndependenceFacts() - Constructor for class edu.cmu.tetrad.data.IndependenceFacts
-
Constructor for IndependenceFacts.
- IndependenceFacts(IndependenceFacts) - Constructor for class edu.cmu.tetrad.data.IndependenceFacts
-
Constructor for IndependenceFacts.
- IndependenceFacts(Graph) - Constructor for class edu.cmu.tetrad.data.IndependenceFacts
-
Constructor for IndependenceFacts.
- IndependenceResult - Class in edu.cmu.tetrad.search.test
-
Stores a single conditional independence result, e.g., whether X _||_ Y | Z1,...,Zn holds or does not, and the p-value of the test.
- IndependenceResult(IndependenceFact, boolean, double, double) - Constructor for class edu.cmu.tetrad.search.test.IndependenceResult
-
Constructor.
- IndependenceResult(IndependenceFact, boolean, double, double, boolean) - Constructor for class edu.cmu.tetrad.search.test.IndependenceResult
-
Constructor.
- IndependenceTest - Interface in edu.cmu.tetrad.search
-
Gives an interface that can be implemented by classes that do conditional independence testing.
- IndependenceTestDescriptions - Class in edu.cmu.tetrad.util
-
May 14, 2019 11:25:02 AM
- IndependenceWrapper - Interface in edu.cmu.tetrad.algcomparison.independence
-
Interface that algorithm must implement.
- independent - Enum constant in enum class edu.pitt.dbmi.algo.bayesian.constraint.inference.BCInference.OP
-
The operation is independent.
- INDEPENDENT - Enum constant in enum class edu.pitt.dbmi.algo.bayesian.constraint.inference.BCCausalInference.OP
-
The operation is independent.
- index(Node) - Method in class edu.cmu.tetrad.search.utils.TeyssierScorer
-
Return the index of v in the current permutation.
- IndexedConnectivity - Class in edu.cmu.tetrad.study.gene.tetrad.gene.history
-
Stores a "shapshot" of the indexedConnectivity of a lag graph, using indices rather than Strings to refer to factors.
- IndexedConnectivity(LagGraph) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.history.IndexedConnectivity
-
Constructs an indexed connectivity for the getModel state of the given lag graph, including all edges.
- IndexedConnectivity(LagGraph, boolean) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.history.IndexedConnectivity
-
Constructs an indexed connectivity for the getModel state of the given lag graph.
- IndexedLagGraph - Class in edu.cmu.tetrad.study.gene.tetrad.gene.history
-
Stores a "shapshot" of the indexedLagGraph of a lag graph, using indices rather than Strings to refer to factors.
- IndexedLagGraph(LagGraph) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.history.IndexedLagGraph
-
Constructs an indexed lag graph for the getModel state of the given lag graph, including all edges.
- IndexedLagGraph(LagGraph, boolean) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.history.IndexedLagGraph
-
Constructs an indexed lag graph for the getModel state of the given lag graph.
- IndexedMatrix - Class in edu.cmu.tetrad.util
-
Indexed matrix.
- IndexedMatrix(double[][]) - Constructor for class edu.cmu.tetrad.util.IndexedMatrix
-
Constructs a new IndexedMatrix for the given matrix.
- IndexedParent - Class in edu.cmu.tetrad.study.gene.tetrad.gene.history
-
Holds an ordered pair (index, lag) to represent a causal parent of a factor, where the factor at the given index is independently known.
- IndexedParent(int, int) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.history.IndexedParent
-
Constructs a new index parent.
- Indicator - Class in edu.cmu.tetrad.util.dist
-
Created by IntelliJ IDEA.
- IndTestChiSquare - Class in edu.cmu.tetrad.search.test
-
Checks the conditional independence X _||_ Y | S, where S is a set of discrete variable, and X and Y are discrete variable not in S, by applying a conditional Chi Square test.
- IndTestChiSquare(DataSet, double) - Constructor for class edu.cmu.tetrad.search.test.IndTestChiSquare
-
Constructs a new independence checker to check conditional independence facts for discrete data using a g square test.
- IndTestConditionalCorrelation - Class in edu.cmu.tetrad.search.test
-
Checks conditional independence of variable in a continuous data set using a conditional correlation test for the nonlinear nonGaussian with the additive error case.
- IndTestConditionalCorrelation(DataSet, double, double, int, int, double) - Constructor for class edu.cmu.tetrad.search.test.IndTestConditionalCorrelation
-
Constructs a new Independence test which checks independence facts based on the correlation data implied by the given data set (must be continuous).
- IndTestConditionalGaussianLrt - Class in edu.cmu.tetrad.search.test
-
Performs a test of conditional independence X _||_ Y | Z1...Zn where all searchVariables are either continuous or discrete.
- IndTestConditionalGaussianLrt(DataSet, double, boolean) - Constructor for class edu.cmu.tetrad.search.test.IndTestConditionalGaussianLrt
-
Constructor.
- IndTestCramerT - Class in edu.cmu.tetrad.search.work_in_progress
-
Checks conditional independence for continuous variables using Cramer's T-test formula (Cramer, Mathematical Methods of Statistics (1951), page 413).
- IndTestCramerT(CorrelationMatrix, double) - Constructor for class edu.cmu.tetrad.search.work_in_progress.IndTestCramerT
-
Constructs a new independence test that will determine conditional independence facts using the given correlation matrix and the given significance level.
- IndTestCramerT(DataSet, double) - Constructor for class edu.cmu.tetrad.search.work_in_progress.IndTestCramerT
-
Constructs a new Independence test which checks independence facts based on the correlation matrix implied by the given data set (must be continuous).
- IndTestCramerT(ICovarianceMatrix, double) - Constructor for class edu.cmu.tetrad.search.work_in_progress.IndTestCramerT
-
Constructs a new independence test that will determine conditional independence facts using the given correlation matrix and the given significance level.
- IndTestDegenerateGaussianLrt - Class in edu.cmu.tetrad.search.test
-
Implements a degenerate Gaussian score as a LRT.
- IndTestDegenerateGaussianLrt(DataSet) - Constructor for class edu.cmu.tetrad.search.test.IndTestDegenerateGaussianLrt
-
Constructs the score using a covariance matrix.
- IndTestDegenerateGaussianLrt.Ret - Class in edu.cmu.tetrad.search.test
-
Stores a return value for a likelihood--i.e., a likelihood value and the degrees of freedom for it.
- IndTestFisherZ - Class in edu.cmu.tetrad.search.test
-
Checks conditional independence of variable in a continuous data set using Fisher's Z test.
- IndTestFisherZ(DataSet, double) - Constructor for class edu.cmu.tetrad.search.test.IndTestFisherZ
-
Constructs a new Independence test which checks independence facts based on the correlation matrix implied by the given data set (must be continuous).
- IndTestFisherZ(ICovarianceMatrix, double) - Constructor for class edu.cmu.tetrad.search.test.IndTestFisherZ
-
Constructs a new independence test that will determine conditional independence facts using the given correlation matrix and the given significance level.
- IndTestFisherZ(Matrix, List<Node>, double) - Constructor for class edu.cmu.tetrad.search.test.IndTestFisherZ
-
Constructs a new Fisher Z independence test with the listed arguments.
- IndTestFisherZConcatenateResiduals - Class in edu.cmu.tetrad.search.test
-
Calculates independence from pooled residuals using the Fisher Z method.
- IndTestFisherZConcatenateResiduals(List<DataSet>, double) - Constructor for class edu.cmu.tetrad.search.test.IndTestFisherZConcatenateResiduals
-
Constructor.
- IndTestFisherZFisherPValue - Class in edu.cmu.tetrad.search.test
-
Calculates independence from multiple datasets from using the Fisher method of pooling independence results.
- IndTestFisherZFisherPValue(List<DataSet>, double) - Constructor for class edu.cmu.tetrad.search.test.IndTestFisherZFisherPValue
-
Constructor.
- IndTestFisherZPercentIndependent - Class in edu.cmu.tetrad.search.work_in_progress
-
Calculates independence from pooled residuals.
- IndTestFisherZPercentIndependent(List<DataSet>, double) - Constructor for class edu.cmu.tetrad.search.work_in_progress.IndTestFisherZPercentIndependent
-
Initializes an object of the class IndTestFisherZPercentIndependent.
- IndTestFisherZRecursive - Class in edu.cmu.tetrad.search.work_in_progress
-
Checks conditional independence of variable in a continuous data set using Fisher's Z test.
- IndTestFisherZRecursive(DataSet, double) - Constructor for class edu.cmu.tetrad.search.work_in_progress.IndTestFisherZRecursive
-
Constructs a new Independence test which checks independence facts based on the correlation matrix implied by the given data set (must be continuous).
- IndTestFisherZRecursive(ICovarianceMatrix, double) - Constructor for class edu.cmu.tetrad.search.work_in_progress.IndTestFisherZRecursive
-
Constructs a new independence test that will determine conditional independence facts using the given correlation matrix and the given significance level.
- IndTestFisherZRecursive(Matrix, List<Node>, double) - Constructor for class edu.cmu.tetrad.search.work_in_progress.IndTestFisherZRecursive
-
Constructs a new Fisher Z independence test with the listed arguments.
- IndTestFromString(String, DataSet, double) - Static method in class edu.pitt.csb.mgm.MixedUtils
-
Returns independence tests by name located in edu.cmu.tetrad.search and edu.pitt.csb.mgm also supports shorthand for LRT ("lrt) and t-tests ("tlin" for prefer linear (fastest) or "tlog" for prefer logistic)
- IndTestGSquare - Class in edu.cmu.tetrad.search.test
-
Checks the conditional independence X _||_ Y | S, where S is a set of discrete variable, and X and Y are discrete variable not in S, by applying a conditional G Square test.
- IndTestGSquare(DataSet, double) - Constructor for class edu.cmu.tetrad.search.test.IndTestGSquare
-
Constructs a new independence checker to check conditional independence facts for discrete data using a g square test.
- IndTestHsic - Class in edu.cmu.tetrad.search.test
-
Checks the conditional independence X _||_ Y | S, where S is a set of continuous variable, and X and Y are discrete variable not in S, using the Hilbert-Schmidth Independence Criterion (HSIC), a kernel based nonparametric test for conditional independence.
- IndTestHsic(DataSet, double) - Constructor for class edu.cmu.tetrad.search.test.IndTestHsic
-
Constructs a new HSIC Independence test.
- IndTestHsic(Matrix, List<Node>, double) - Constructor for class edu.cmu.tetrad.search.test.IndTestHsic
-
Constructs a new HSIC Independence test.
- IndTestIndependenceFacts - Class in edu.cmu.tetrad.search.test
-
Checks conditional independence against a list of conditional independence facts, manually entered.
- IndTestIndependenceFacts(IndependenceFacts) - Constructor for class edu.cmu.tetrad.search.test.IndTestIndependenceFacts
-
Constructor.
- IndTestIod - Class in edu.cmu.tetrad.search
-
Checks independence results by listing all tests with those variables, testing each one, and returning the resolution of these test results.
- IndTestIod(List<IndependenceTest>) - Constructor for class edu.cmu.tetrad.search.IndTestIod
-
Constructs a new pooled independence test from the given list of independence tests.
- IndTestMixedMultipleTTest - Class in edu.cmu.tetrad.search.work_in_progress
-
Performs a test of conditional independence X _||_ Y | Z1...Zn where all searchVariables are either continuous or discrete.
- IndTestMixedMultipleTTest(DataSet, double) - Constructor for class edu.cmu.tetrad.search.work_in_progress.IndTestMixedMultipleTTest
-
Constructor for IndTestMixedMultipleTTest.
- IndTestMnlrLr - Class in edu.cmu.tetrad.search.work_in_progress
-
Performs a test of conditional independence X _||_ Y | Z1...Zn where all searchVariables are either continuous or discrete.
- IndTestMnlrLr(DataSet, double) - Constructor for class edu.cmu.tetrad.search.work_in_progress.IndTestMnlrLr
-
Constructs a new independence test for the given data set and significance level.
- IndTestMulti - Class in edu.cmu.tetrad.search.test
-
A class that represents a pooled independence test for multiple data sets.
- IndTestMulti(List<IndependenceTest>, ResolveSepsets.Method) - Constructor for class edu.cmu.tetrad.search.test.IndTestMulti
-
Constructs a new pooled independence test for the given data sets.
- IndTestMultinomialLogisticRegression - Class in edu.cmu.tetrad.search.work_in_progress
-
Performs a test of conditional independence X _||_ Y | Z1...Zn where all searchVariables are either continuous or discrete.
- IndTestMultinomialLogisticRegression(DataSet, double) - Constructor for class edu.cmu.tetrad.search.work_in_progress.IndTestMultinomialLogisticRegression
-
Constructor for IndTestMultinomialLogisticRegression.
- IndTestMultinomialLogisticRegressionWald - Class in edu.pitt.csb.mgm
-
Performs a test of conditional independence X _||_ Y | Z1...Zn where all searchVariables are either continuous or discrete.
- IndTestMultinomialLogisticRegressionWald(DataSet, double, boolean) - Constructor for class edu.pitt.csb.mgm.IndTestMultinomialLogisticRegressionWald
-
Constructs a new instance of IndTestMultinomialLogisticRegressionWald with the specified parameters.
- IndTestMvpLrt - Class in edu.cmu.tetrad.search.test
-
Performs a test of conditional independence X _||_ Y | Z1...Zn where all variables are either continuous or discrete.
- IndTestMvpLrt(DataSet, double, int, boolean) - Constructor for class edu.cmu.tetrad.search.test.IndTestMvpLrt
-
Constructor.
- IndTestPositiveCorr - Class in edu.cmu.tetrad.search.work_in_progress
-
Checks conditional independence of variable in a continuous data set using Fisher's Z test.
- IndTestPositiveCorr(DataSet, double) - Constructor for class edu.cmu.tetrad.search.work_in_progress.IndTestPositiveCorr
-
Constructs a new Independence test which checks independence facts based on the correlation matrix implied by the given data set (must be continuous).
- IndTestProbabilistic - Class in edu.cmu.tetrad.search.test
-
Uses BCInference by Cooper and Bui to calculate probabilistic conditional independence judgments.
- IndTestProbabilistic(DataSet) - Constructor for class edu.cmu.tetrad.search.test.IndTestProbabilistic
-
Initializes the test using a discrete data sets.
- IndTestRegression - Class in edu.cmu.tetrad.search.test
-
Checks independence of X _||_ Y | Z for variables X and Y and list Z of variables by regressing X on {Y} U Z and testing whether the coefficient for Y is zero.
- IndTestRegression(DataSet, double) - Constructor for class edu.cmu.tetrad.search.test.IndTestRegression
-
Constructs a new Independence test which checks independence facts based on the correlation matrix implied by the given data set (must be continuous).
- IndTestScore - Class in edu.cmu.tetrad.search.score
-
Gives a method of interpreting a test as a score.
- IndTestScore(IndependenceTest) - Constructor for class edu.cmu.tetrad.search.score.IndTestScore
-
Constructs the score using a covariance matrix.
- IndTestSepsetDci - Class in edu.cmu.tetrad.search.work_in_progress
-
Checks independence facts for variables associated with a sepset by simply querying the sepset
- IndTestSepsetDci(SepsetMapDci, List<Node>) - Constructor for class edu.cmu.tetrad.search.work_in_progress.IndTestSepsetDci
-
Constructs a new independence test that returns d-separation facts for the given graph as independence results.
- indTestSubset(List<Node>) - Method in interface edu.cmu.tetrad.search.IndependenceTest
-
Returns an Independence test for a sublist of the variables.
- indTestSubset(List<Node>) - Method in class edu.cmu.tetrad.search.IndTestIod
-
Calculates the independence test for a subset of variables.
- indTestSubset(List<Node>) - Method in class edu.cmu.tetrad.search.test.IndTestChiSquare
-
Checks conditional independence between variables in a subset.
- indTestSubset(List<Node>) - Method in class edu.cmu.tetrad.search.test.IndTestConditionalCorrelation
-
Constructs a new Independence test which checks independence facts based on the correlation data implied by the given data set (must be continuous).
- indTestSubset(List<Node>) - Method in class edu.cmu.tetrad.search.test.IndTestConditionalGaussianLrt
-
This method returns an instance of the IndependenceTest interface that can test the independence of a subset of variables.
- indTestSubset(List<Node>) - Method in class edu.cmu.tetrad.search.test.IndTestDegenerateGaussianLrt
-
Subsets the variables used in the independence test.
- indTestSubset(List<Node>) - Method in class edu.cmu.tetrad.search.test.IndTestFisherZ
-
Creates a new independence test instance for a subset of the variables.
- indTestSubset(List<Node>) - Method in class edu.cmu.tetrad.search.test.IndTestFisherZConcatenateResiduals
-
Returns an Independence test for a sublist of the variables.
- indTestSubset(List<Node>) - Method in class edu.cmu.tetrad.search.test.IndTestFisherZFisherPValue
-
Returns an Independence test for a sublist of the variables.
- indTestSubset(List<Node>) - Method in class edu.cmu.tetrad.search.test.IndTestGSquare
-
Performs an independence test on a subset of variables.
- indTestSubset(List<Node>) - Method in class edu.cmu.tetrad.search.test.IndTestHsic
-
Subset of variables for independence testing.
- indTestSubset(List<Node>) - Method in class edu.cmu.tetrad.search.test.IndTestIndependenceFacts
-
Returns an
IndependenceTest
object for a sublist of variables. - indTestSubset(List<Node>) - Method in class edu.cmu.tetrad.search.test.IndTestMulti
-
Returns an Independence test for a sublist of the variables.
- indTestSubset(List<Node>) - Method in class edu.cmu.tetrad.search.test.IndTestMvpLrt
-
Returns an Independence test for a sublist of the variables.
- indTestSubset(List<Node>) - Method in class edu.cmu.tetrad.search.test.IndTestProbabilistic
-
Returns an Independence test for a sublist of the variables.
- indTestSubset(List<Node>) - Method in class edu.cmu.tetrad.search.test.IndTestRegression
-
Performs an independence test for a sublist of variables.
- indTestSubset(List<Node>) - Method in class edu.cmu.tetrad.search.test.IndTestTrekSep
-
Determines independence between variables in a given subset.
- indTestSubset(List<Node>) - Method in class edu.cmu.tetrad.search.test.Kci
- indTestSubset(List<Node>) - Method in class edu.cmu.tetrad.search.test.MsepTest
-
Conducts an independence test on a subset of variables.
- indTestSubset(List<Node>) - Method in class edu.cmu.tetrad.search.test.ScoreIndTest
-
Tests the independence between variables in a given sublist.
- indTestSubset(List<Node>) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestCramerT
-
This method performs an independence test based on a given sublist of variables.
- indTestSubset(List<Node>) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestFisherZPercentIndependent
-
Performs an independence test on a subset of variables.
- indTestSubset(List<Node>) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestFisherZRecursive
-
Returns an Independence test for a sublist of the variables.
- indTestSubset(List<Node>) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestMixedMultipleTTest
- indTestSubset(List<Node>) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestMnlrLr
-
This method returns an independence test for a sublist of variables.
- indTestSubset(List<Node>) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestMultinomialLogisticRegression
-
Performs an independence test for a sublist of variables.
- indTestSubset(List<Node>) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestPositiveCorr
-
Performs an independence test on a subset of variables.
- indTestSubset(List<Node>) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestSepsetDci
-
Determines independence between a subset of variables.
- indTestSubset(List<Node>) - Method in class edu.cmu.tetrad.search.work_in_progress.ProbabilisticMapIndependence
-
Returns an Independence test for a sublist of the variables.
- indTestSubset(List<Node>) - Method in class edu.pitt.csb.mgm.IndTestMultinomialLogisticRegressionWald
-
Tests the conditional independence between two variables given a sublist of variables.
- IndTestTrekSep - Class in edu.cmu.tetrad.search.test
-
Checks d-separations in a structural model using t-separations over indicators.
- IndTestTrekSep(ICovarianceMatrix, double, List<List<Node>>, List<Node>) - Constructor for class edu.cmu.tetrad.search.test.IndTestTrekSep
-
Constructs a new independence test that will determine conditional independence facts using the given correlation matrix and the given significance level.
- inferFunction(int, SortedSet<ItkPredictorSearch.Gene>) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.ideker.ItkPredictorSearch
-
inferFunction.
- INFIX - Enum constant in enum class edu.cmu.tetrad.calculator.expression.ExpressionDescriptor.Position
-
The expression can occur in the infix position.
- info(String) - Method in class edu.cmu.tetrad.util.LogUtils
-
info.
- INITIAL_GRAPH - Enum constant in enum class edu.cmu.tetrad.search.LvLite.START_WITH
-
Starts with an initial CPDAG over the variables of the independence test that is given in the constructor.
- initialize() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.GeneHistory
-
Initializes the history array.
- initialize(double[][]) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BasalInitializer
-
Sets the expression of each unregulated gene in the given history at time step 0 to a random value drawn from N(basalExpression, initStDev), sets the expression level at time step 0 of each regulated gene to zero, and then copies the values at history[0][j] to history[i][j] for all i > 0 less than the maximum time lag.
- initialize(double[][]) - Method in interface edu.cmu.tetrad.study.gene.tetrad.gene.history.Initializer
-
Initializes a history array.
- initialize(LagGraph) - Method in interface edu.cmu.tetrad.study.gene.tetrad.gene.history.GraphInitializer
-
Randomizes the given lag graph--in other words, chooses random edges for the graph according to a particlar scheme (see instantiations).
- initialize(LagGraph) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.PreviousStepOnly
-
Randomizes the given lag graph--in other words, chooses random edges for the graph according to a particlar scheme (see instantiations).
- initialize(LagGraph) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.SimpleRandomizer
-
Randomizes the given lag graph--in other words, chooses random edges for the graph according to a particlar scheme (see instantiations).
- INITIALIZE_FROM_DATA - Enum constant in enum class edu.cmu.tetrad.sem.StandardizedSemIm.Initialization
-
Initialize the SEM from data
- Initializer - Interface in edu.cmu.tetrad.study.gene.tetrad.gene.history
-
Initializes a history array.
- initializeValues() - Method in class edu.cmu.tetrad.sem.SemIm
-
Iterates through all freeParameters, picking values for them from the distributions that have been set for them.
- innerProduct(double[], double[]) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
innerProduct.
- IntAveDataSetProbs - Class in edu.cmu.tetrad.bayes
-
Estimates probabilities directly from data on the fly using maximum likelihood method, with the exception that if rows do not exist in the data satisfying a required condition because certain values are unattested, an attempt is made to remove each relevant column in turn, record the estimated probability with column removed from the condition (if it is defined), and then return the average over the estimated probabilities calculated this way.
- IntAveDataSetProbs(DataSet) - Constructor for class edu.cmu.tetrad.bayes.IntAveDataSetProbs
-
Creates a cell count table for the given data set.
- IntDataBox - Class in edu.cmu.tetrad.data
-
Stores a 2D array of integer data.
- IntDataBox(int[][]) - Constructor for class edu.cmu.tetrad.data.IntDataBox
-
Constructs a new data box using the given 2D short data array as data.
- IntDataBox(int, int) - Constructor for class edu.cmu.tetrad.data.IntDataBox
-
Constructs an 2D short array consisting entirely of missing values (-99).
- Integrator - Class in edu.cmu.tetrad.util
-
Integrates under a function from one endpoint to another.
- InterIamb - Class in edu.cmu.tetrad.search.work_in_progress
-
Implements the Inter-IAMB algorithm.
- InterIamb(IndependenceTest) - Constructor for class edu.cmu.tetrad.search.work_in_progress.InterIamb
-
Constructs a new search.
- intersection() - Method in class edu.cmu.tetrad.search.utils.GraphoidAxioms
-
Checks if intersection holds--e.g., (X ⊥⊥ Y | (Z ∪ W)) ∧ (X ⊥⊥ W | (Z ∪ Y)) ==> X ⊥⊥ (Y ∪ W) |Z
- INTERVAL_BETWEEN_RECORDINGS - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
INTERVAL_BETWEEN_RECORDINGS="intervalBetweenRecordings"
- INTERVAL_BETWEEN_SHOCKS - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
INTERVAL_BETWEEN_SHOCKS="intervalBetweenShocks"
- INTERVENTION_STATUS - Enum constant in enum class edu.cmu.tetrad.graph.NodeVariableType
-
The node variable type is intervened on with a specific status, such as treatment or control.
- INTERVENTION_VALUE - Enum constant in enum class edu.cmu.tetrad.graph.NodeVariableType
-
The node variable type is intervened on with a specific value.
- inverse() - Method in class edu.cmu.tetrad.util.Matrix
-
Returns the inverse of the matrix.
- inverse(double[][]) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
Calculates the inverse of a given matrix.
- InverseCorrelation - Class in edu.cmu.tetrad.search.work_in_progress
-
Returns edges whose entries in the precision matrix exceed a certain threshold.
- InverseCorrelation(DataSet, double) - Constructor for class edu.cmu.tetrad.search.work_in_progress.InverseCorrelation
-
Constructor for InverseCorrelation.
- inverseCumulativeProbability(double) - Method in class edu.cmu.tetrad.sem.EmpiricalCdf
-
Calculates the inverse cumulative probability of a given point.
- invoke(boolean, double) - Method in class edu.cmu.tetrad.search.test.TopEigenvalues
-
Performs eigendecomposition on a given matrix and optionally stores the top eigenvalues and (optionaly) eigenvectors.
- invVech(double[]) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
invVech.
- Ion - Class in edu.cmu.tetrad.search.work_in_progress
-
Implements the ION (Integration of Overlapping Networks) algorithm for distributed causal inference.
- Ion(List<Graph>) - Constructor for class edu.cmu.tetrad.search.work_in_progress.Ion
-
Constructs a new instance of the ION search from the input PAGs
- IonHittingSet - Class in edu.cmu.tetrad.search.work_in_progress
-
Provides a static method which implements a correct version of Reiter's hitting set algorithm as described by Greiner, Smith, and Wilkerson in "A Correction to the Algorithm in Reiter's Theory of Diagnosis" Artificial Intellegence 41 (1989) (see for detailed specification).
- IPEN - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
IPEN="ipen"
- IPurify - Interface in edu.cmu.tetrad.search.utils
-
Provides an interface for Purify algorithm.
- IS - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
IS="is"
- isAccommodateNewCategories() - Method in class edu.cmu.tetrad.data.DiscreteVariable
-
isAccommodateNewCategories.
- isAcyclic(Matrix) - Method in class edu.cmu.tetrad.search.IcaLingam
-
Determines whether a BHat matrix parses to an acyclic graph.
- isAdjacentTo(Node, Node) - Method in class edu.cmu.tetrad.graph.Dag
-
Determines whether two nodes are adjacent in the graph.
- isAdjacentTo(Node, Node) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
isAdjacentTo.
- isAdjacentTo(Node, Node) - Method in interface edu.cmu.tetrad.graph.Graph
-
isAdjacentTo.
- isAdjacentTo(Node, Node) - Method in class edu.cmu.tetrad.graph.LagGraph
-
isAdjacentTo.
- isAdjacentTo(Node, Node) - Method in class edu.cmu.tetrad.graph.SemGraph
-
isAdjacentTo.
- isAdjacentTo(Node, Node) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Determines whether two nodes are adjacent in the graph.
- isAllowed(int, int) - Method in class edu.cmu.tetrad.bayes.Proposition
-
isAllowed.
- isAmbiguousTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.Dag
-
Determines if a triple of nodes is ambiguous.
- isAmbiguousTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
States whether r-s-r is an underline triple or not.
- isAmbiguousTriple(Node, Node, Node) - Method in interface edu.cmu.tetrad.graph.Graph
-
States whether r-s-r is an underline triple or not.
- isAmbiguousTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.LagGraph
-
States whether r-s-r is an underline triple or not.
- isAmbiguousTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.SemGraph
-
States whether r-s-r is an underline triple or not.
- isAmbiguousTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Checks whether a triple of nodes is ambiguous.
- isAmbiguousTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.Underlines
-
States whether r-s-r is an underline triple or not.
- isAncestor(Node, Set<Node>) - Method in class edu.cmu.tetrad.graph.Paths
-
Return true if b is an ancestor of any node in z
- isAncestorOf(Node, Node) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
Determines whether one node is an ancestor of another.
- isAncestorOf(Node, Node) - Method in interface edu.cmu.tetrad.graph.Graph
-
Determines whether one node is an ancestor of another.
- isAncestorOf(Node, Node) - Method in class edu.cmu.tetrad.graph.LagGraph
-
isAncestorOf.
- isAncestorOf(Node, Node) - Method in class edu.cmu.tetrad.graph.Paths
-
Determines whether one node is an ancestor of another.
- isAntilogCalculated() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.MeasurementSimulator
-
Returns true iff the antilog of each expression level should be calculated.
- isAntilogCalculated() - Method in class edu.cmu.tetrad.study.gene.tetradapp.model.MeasurementSimulatorParams
-
isAntilogCalculated.
- isApplyR1() - Method in class edu.cmu.tetrad.search.Ccd
-
Returns true iff the R1 rule should be applied.
- isArrowheadAllowed(Node, Node, Graph, Knowledge) - Static method in class edu.cmu.tetrad.search.utils.FciOrient
-
Determines whether an arrowhead is allowed between two nodes in a graph, based on specific conditions.
- isArrowheadAllowed(Object, Object, Knowledge) - Static method in class edu.cmu.tetrad.search.utils.GraphSearchUtils
-
Checks if an arrowhead is allowed by background knowledge.
- isArrowheadAllowed1(Node, Node, Knowledge) - Static method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpcFast
-
isArrowheadAllowed1.
- isArrowheadAllowed1(Node, Node, Knowledge) - Static method in class edu.cmu.tetrad.search.work_in_progress.VcPc
-
isArrowheadAllowed1.
- ISBDeuScore - Class in edu.cmu.tetrad.search.work_in_progress
-
Added by Fattaneh Calculates the Instance-Specific BDeu score.
- ISBDeuScore(DataSet, DataSet) - Constructor for class edu.cmu.tetrad.search.work_in_progress.ISBDeuScore
-
Initializes the ISBDeuScore with the given dataset and test case.
- ISBicScore - Class in edu.cmu.tetrad.search.work_in_progress
-
A class representing the ISBicScore, which calculates BIC scores for a Bayesian network considering different structural changes and their impacts using an information-sharing mechanism.
- ISBicScore(DataSet, DataSet) - Constructor for class edu.cmu.tetrad.search.work_in_progress.ISBicScore
-
Constructs an ISBicScore instance with the provided data sets.
- isBidirectedEdge(Edge) - Static method in class edu.cmu.tetrad.graph.Edges
-
isBidirectedEdge.
- isBinary(DataSet, int) - Static method in class edu.cmu.tetrad.data.DataUtils
-
States whether the given column of the given data set is binary.
- isBoundsEnforced() - Method in class edu.cmu.tetrad.bayes.DirichletDataSetProbs
-
True iff bounds checking is performed on variable values indices.
- isCanalyzing() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BooleanFunction
-
Determines whether the getModel function is canalyzing, according to Kaufmann's definition in Oridins of Order: "I define as a canalyzing Boolean function any Boolean function having the property that it has at least one input having at least one value (1 or 0) which suffices to guarantee that the regulated element assumes a specific value (1 or 0)" (page 203-4).
- isCanceled() - Method in class edu.cmu.tetrad.util.TaskManager
-
isCanceled.
- isCategoryNamesDisplayed() - Method in class edu.cmu.tetrad.data.DiscreteVariable
-
isCategoryNamesDisplayed.
- isCheckingCycles() - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsBeam
-
isCheckingCycles.
- isChildOf(Node, Node) - Method in class edu.cmu.tetrad.graph.Dag
-
Checks if the given node1 is a child of node2 in the graph.
- isChildOf(Node, Node) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
isChildOf.
- isChildOf(Node, Node) - Method in interface edu.cmu.tetrad.graph.Graph
-
isChildOf.
- isChildOf(Node, Node) - Method in class edu.cmu.tetrad.graph.LagGraph
-
isChildOf.
- isChildOf(Node, Node) - Method in class edu.cmu.tetrad.graph.SemGraph
-
isChildOf.
- isChildOf(Node, Node) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Checks if a given node is a child of another node in the graph.
- isClique(Collection<Node>, Graph) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Checks if the given set of nodes forms a clique in the specified graph.
- isColinear(DataSet, boolean) - Static method in class edu.pitt.csb.mgm.MixedUtils
-
Check each pair of variables to see if correlation is 1.
- isCompleteRuleSetUsed() - Method in class edu.cmu.tetrad.search.Cfci
-
Returns true if Zhang's complete rule set should be used, false if only R1-T1 (the rule set of the original FCI) should be used.
- isCompleteRuleSetUsed() - Method in class edu.cmu.tetrad.search.SpFci
-
Returns whether the complete rule set is used.
- isCompleteRuleSetUsed() - Method in class edu.cmu.tetrad.search.SvarFci
-
Returns whether Zhang's complete rule set is to be used.
- isCompleteRuleSetUsed() - Method in class edu.cmu.tetrad.search.utils.DagToPag
-
isCompleteRuleSetUsed.
- isCompleteRuleSetUsed() - Method in class edu.cmu.tetrad.search.utils.FciOrient
-
Checks if the complete rule set is being used.
- isCompleteRuleSetUsed() - Method in class edu.cmu.tetrad.search.utils.TsDagToPag
-
isCompleteRuleSetUsed.
- isCompleteRuleSetUsed() - Method in class edu.cmu.tetrad.search.work_in_progress.IGFci
-
Checks if the complete rule set is being used in the IGFci algorithm.
- isConditioned(int) - Method in class edu.cmu.tetrad.bayes.Proposition
-
isConditioned.
- isConfoundingTrek(Graph, List<Node>, Node, Node) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Checks if the given trek in a graph is a confounding trek.
- isConsistent(GraphChange) - Method in class edu.cmu.tetrad.search.work_in_progress.GraphChange
-
Consistency check, nonexhaustive, but catches the most blatant inconsistencies.
- isContinuous() - Method in class edu.cmu.tetrad.data.BoxDataSet
-
isContinuous.
- isContinuous() - Method in class edu.cmu.tetrad.data.CorrelationMatrixOnTheFly
-
isContinuous.
- isContinuous() - Method in class edu.cmu.tetrad.data.CovarianceMatrix
-
isContinuous.
- isContinuous() - Method in class edu.cmu.tetrad.data.CovarianceMatrixOnTheFly
-
isContinuous.
- isContinuous() - Method in interface edu.cmu.tetrad.data.DataModel
-
isContinuous.
- isContinuous() - Method in class edu.cmu.tetrad.data.DataModelList
-
isContinuous.
- isContinuous() - Method in interface edu.cmu.tetrad.data.DataSet
-
isContinuous.
- isContinuous() - Method in class edu.cmu.tetrad.data.IndependenceFacts
-
isContinuous.
- isContinuous() - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
isContinuous.
- isContinuous() - Method in class edu.cmu.tetrad.data.TimeSeriesData
-
isContinuous.
- isCopyData() - Method in class edu.cmu.tetrad.algcomparison.TimeoutComparison
-
isCopyData.
- isCorrectBidirectedEdge(Edge, Graph) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Determines if the given bidirected edge has a latent confounder in the true graph--that is, whether for X <-> Y there is a latent node Z such that X <- (Z) -> Y.
- isCoveringAdjacency(Graph, Graph, Node, Node) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Determines whether an edge between two nodes in the estimated graph is covering a collider or noncollider in the true graph.
- isCyclic() - Method in interface edu.cmu.tetrad.sem.ISemIm
-
isCyclic.
- isCyclic() - Method in class edu.cmu.tetrad.sem.SemIm
-
isCyclic.
- isDag(Graph) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Determines if the given graph is a directed acyclic graph (DAG).
- isDataFromFile() - Method in class edu.cmu.tetrad.study.performance.ComparisonParameters
-
isDataFromFile.
- isDefaultToKnowledgeLayout() - Method in class edu.cmu.tetrad.data.Knowledge
-
isDefaultToKnowledgeLayout.
- isDefCollider(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.Dag
-
Checks if there is a definite collider between three nodes in the graph.
- isDefCollider(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
Added by ekorber, 2004/6/9.
- isDefCollider(Node, Node, Node) - Method in interface edu.cmu.tetrad.graph.Graph
-
Added by ekorber, 2004/6/9.
- isDefCollider(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.LagGraph
-
Added by ekorber, 2004/6/9.
- isDefCollider(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.SemGraph
-
Added by ekorber, 2004/6/9.
- isDefCollider(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Determines if there is a definite collider relationship between the given nodes.
- isDefNoncollider(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.Dag
-
Checks if three given nodes form a definite non-collider in a graph.
- isDefNoncollider(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
Added by ekorber, 2004/6/9.
- isDefNoncollider(Node, Node, Node) - Method in interface edu.cmu.tetrad.graph.Graph
-
Added by ekorber, 2004/6/9.
- isDefNoncollider(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.LagGraph
-
Added by ekorber, 2004/6/9.
- isDefNoncollider(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.SemGraph
-
Added by ekorber, 2004/6/9.
- isDefNoncollider(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Determines if the given nodes form a definite noncollider in the graph.
- isDemixed() - Method in class edu.cmu.tetrad.search.work_in_progress.Demixer
-
isDemixed.
- isDependent() - Method in class edu.cmu.tetrad.search.test.IndependenceResult
-
Returns whether the fact fails to hold--i.e.
- isDescendentOf(Node, Node) - Method in class edu.cmu.tetrad.graph.Paths
-
Determines whether one node is a descendent of another.
- isDetermined(int[], double) - Method in class edu.cmu.tetrad.search.test.ChiSquareTest
-
Returns a judgment of whether a set of parent variables determines a child variables.
- isDirected() - Method in class edu.cmu.tetrad.graph.Edge
-
isDirected.
- isDirected(Node, Node) - Method in class edu.cmu.tetrad.graph.Paths
-
Checks if there is a directed edge from node1 to node2 in the graph.
- isDirectedEdge(Edge) - Static method in class edu.cmu.tetrad.graph.Edges
-
isDirectedEdge.
- isDiscrete() - Method in class edu.cmu.tetrad.data.BoxDataSet
-
isDiscrete.
- isDiscrete() - Method in class edu.cmu.tetrad.data.CorrelationMatrixOnTheFly
-
isDiscrete.
- isDiscrete() - Method in class edu.cmu.tetrad.data.CovarianceMatrix
-
isDiscrete.
- isDiscrete() - Method in class edu.cmu.tetrad.data.CovarianceMatrixOnTheFly
-
isDiscrete.
- isDiscrete() - Method in interface edu.cmu.tetrad.data.DataModel
-
isDiscrete.
- isDiscrete() - Method in class edu.cmu.tetrad.data.DataModelList
-
isDiscrete.
- isDiscrete() - Method in interface edu.cmu.tetrad.data.DataSet
-
isDiscrete.
- isDiscrete() - Method in class edu.cmu.tetrad.data.IndependenceFacts
-
isDiscrete.
- isDiscrete() - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
isDiscrete.
- isDiscrete() - Method in class edu.cmu.tetrad.data.TimeSeriesData
-
isDiscrete.
- isDisplayLogEnabled() - Method in class edu.cmu.tetrad.util.TetradLogger
-
States whether to display the log display.
- isDoOrientation() - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpc
-
isDoOrientation.
- isDoOrientation() - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpcFast
-
isDoOrientation.
- isDoOrientation() - Method in class edu.cmu.tetrad.search.work_in_progress.VcPcAlt
-
isDoOrientation.
- isDoubleMissingValue(double) - Static method in class edu.cmu.tetrad.data.ContinuousVariable
-
Determines whether the argument is equal to the missing value marker.
- isEffectEdge(double) - Method in class edu.cmu.tetrad.search.score.BasisFunctionBicScore
-
Determines if the given bump value represents an effect edge.
- isEffectEdge(double) - Method in class edu.cmu.tetrad.search.score.BdeScore
-
Determines if an edge has an effect.
- isEffectEdge(double) - Method in class edu.cmu.tetrad.search.score.BdeuScore
-
Determines whether the bump exceeds zero.
- isEffectEdge(double) - Method in class edu.cmu.tetrad.search.score.ConditionalGaussianScore
-
Returns true iff the edge between x and y is an effect edge.
- isEffectEdge(double) - Method in class edu.cmu.tetrad.search.score.DegenerateGaussianScore
-
Returns true iff the edge between x and y is an effect edge.
- isEffectEdge(double) - Method in class edu.cmu.tetrad.search.score.DiscreteBicScore
-
Returns true iff the edge between x and y is an effect edge.
- isEffectEdge(double) - Method in class edu.cmu.tetrad.search.score.DiscreteBicScoreAdTree
-
Returns true iff the edge between x and y is an effect edge.
- isEffectEdge(double) - Method in class edu.cmu.tetrad.search.score.EbicScore
-
Returns true iff the edge between x and y is an effect edge.
- isEffectEdge(double) - Method in class edu.cmu.tetrad.search.score.GicScores
-
Returns true iff the edge between x and y is an effect edge.
- isEffectEdge(double) - Method in class edu.cmu.tetrad.search.score.GraphScore
-
Returns true iff the edge between x and y is an effect edge.
- isEffectEdge(double) - Method in class edu.cmu.tetrad.search.score.ImagesScore
-
Returns true iff the edge between x and y is an effect edge.
- isEffectEdge(double) - Method in class edu.cmu.tetrad.search.score.IndTestScore
-
Returns true iff the edge between x and y is an effect edge.
- isEffectEdge(double) - Method in class edu.cmu.tetrad.search.score.MvpScore
-
Returns true iff the edge between x and y is an effect edge.
- isEffectEdge(double) - Method in class edu.cmu.tetrad.search.score.PoissonPriorScore
-
Returns true iff the edge between x and y is an effect edge.
- isEffectEdge(double) - Method in interface edu.cmu.tetrad.search.score.Score
-
Returns true iff the edge between x and y is an effect edge.
- isEffectEdge(double) - Method in class edu.cmu.tetrad.search.score.SemBicScore
-
Returns true iff the edge between x and y is an effect edge.
- isEffectEdge(double) - Method in class edu.cmu.tetrad.search.score.ZsbScore
-
Returns true iff the edge between x and y is an effect edge.
- isEffectEdge(double) - Method in class edu.cmu.tetrad.search.work_in_progress.ISBDeuScore
-
Must be called directly after the corresponding scoring call.
- isEffectEdge(double) - Method in class edu.cmu.tetrad.search.work_in_progress.ISBicScore
-
Must be called directly after the corresponding scoring call.
- isEffectEdge(double) - Method in interface edu.cmu.tetrad.search.work_in_progress.ISScore
-
Determines whether the edge has a significant effect based on the given bump value.
- isEffectEdge(double) - Method in class edu.cmu.tetrad.search.work_in_progress.MagCgBicScore
-
Returns true iff the edge between x and y is an effect edge.
- isEffectEdge(double) - Method in class edu.cmu.tetrad.search.work_in_progress.MagDgBicScore
-
Returns true iff the edge between x and y is an effect edge.
- isEffectEdge(double) - Method in class edu.cmu.tetrad.search.work_in_progress.MagSemBicScore
-
Returns true iff the edge between x and y is an effect edge.
- isEffectEdge(double) - Method in class edu.cmu.tetrad.search.work_in_progress.MnlrScore
-
Returns true iff the edge between x and y is an effect edge.
- isEffectEdge(double) - Method in class edu.cmu.tetrad.search.work_in_progress.SemBicScoreDeterministic
-
Returns true iff the edge between x and y is an effect edge.
- isEffective() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BooleanFunction
-
Determines whether each input parent has an influence on the outcome--that is, whether for each parent there is a combination of states for the other parents for which the function would be different if the given parent were true as opposed to false.
- ISemIm - Interface in edu.cmu.tetrad.sem
-
An interface for SemIM's; see implementations.
- isEmpty() - Method in class edu.cmu.tetrad.data.Clusters
-
isEmpty.
- isEmpty() - Method in class edu.cmu.tetrad.data.DataModelList
- isEmpty() - Method in class edu.cmu.tetrad.data.Knowledge
-
true if there is no background knowledge recorded.
- isEmpty() - Method in class edu.cmu.tetrad.data.KnowledgeGroup
-
States whether this group is empty, that is there is no edges in it (Note there may be some partial information though).
- isErrorEdge(Edge) - Static method in class edu.cmu.tetrad.graph.SemGraph
-
isErrorEdge.
- isEstimated() - Method in interface edu.cmu.tetrad.sem.ISemIm
-
isEstimated.
- isEstimated() - Method in class edu.cmu.tetrad.sem.SemIm
-
isEstimated.
- isEventActive(String) - Method in class edu.cmu.tetrad.util.DefaultTetradLoggerConfig
-
States whether the event associated with the given id is active, that is whether it should be logged or not.
- isEventActive(String) - Method in class edu.cmu.tetrad.util.TetradLogger.EmptyConfig
-
isEventActive.
- isEventActive(String) - Method in interface edu.cmu.tetrad.util.TetradLoggerConfig
-
States whether the event associated with the given id is active, that is whether it should be logged or not.
- isExogenous(Node) - Method in class edu.cmu.tetrad.graph.Dag
-
Checks whether a given node is exogenous.
- isExogenous(Node) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
isExogenous.
- isExogenous(Node) - Method in interface edu.cmu.tetrad.graph.Graph
-
isExogenous.
- isExogenous(Node) - Method in class edu.cmu.tetrad.graph.LagGraph
-
isExogenous.
- isExogenous(Node) - Method in class edu.cmu.tetrad.graph.SemGraph
-
isExogenous.
- isExogenous(Node) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Checks if a given node is exogenous.
- isFaithfulnessAssumed() - Method in class edu.cmu.tetrad.search.utils.FgesOrienter
-
isFaithfulnessAssumed.
- isFaithfulnessAssumed() - Method in class edu.cmu.tetrad.search.work_in_progress.ISFges
-
Returns the faithfulness assumption status for the current instance.
- isFdr() - Method in class edu.cmu.tetrad.search.Pcd
-
True iff the algorithm should be run with False Discovery Rate tests.
- ISFges - Class in edu.cmu.tetrad.search.work_in_progress
-
GesSearch is an implementation of the GES algorithm, as specified in Chickering (2002) "Optimal structure identification with greedy search" Journal of Machine Learning Research.
- ISFges(ISScore) - Constructor for class edu.cmu.tetrad.search.work_in_progress.ISFges
-
Construct a Score and pass it in here.
- isFileLoggingEnabled() - Method in class edu.cmu.tetrad.util.TetradLogger
-
States whether file logging is enabled or not.
- isFixed() - Method in class edu.cmu.tetrad.sem.Parameter
-
isFixed.
- isFlatPrior() - Method in class edu.cmu.tetrad.sem.SemEstimatorGibbsParams
-
isFlatPrior.
- isForbidden(Node) - Method in class edu.cmu.tetrad.search.utils.GrowShrinkTree
-
isForbidden.
- isForbidden(String, String) - Method in class edu.cmu.tetrad.data.Knowledge
-
Determines whether the edge var1 --> var2 is forbidden.
- isForbiddenByGroups(String, String) - Method in class edu.cmu.tetrad.data.Knowledge
-
Legacy.
- isForbiddenByTiers(String, String) - Method in class edu.cmu.tetrad.data.Knowledge
-
Determines whether the edge var1 --> var2 is forbidden by the temporal tiers.
- isGuaranteeCpdag() - Method in class edu.cmu.tetrad.search.Pcd
-
Returns whether the algorithm should prevent cycles during the search.
- isGuaranteeCpdag() - Method in class edu.cmu.tetrad.search.utils.PcCommon
-
Checks if the current object guarantees a complete directed acyclic graph (CPDAG).
- isGuaranteeCpdag() - Method in class edu.cmu.tetrad.search.work_in_progress.Kpc
-
Checks if guaranteeCpdag is set to true.
- isGuaranteeCpdag() - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpcFast
-
isMeekPreventCycles.
- isHighlighted() - Method in class edu.cmu.tetrad.graph.Edge
-
isHighlighted.
- isIa() - Method in class edu.cmu.tetrad.search.work_in_progress.Glasso
-
isIa.
- isIncludeDishAndChipColumns() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.MeasurementSimulator
-
isIncludeDishAndChipColumns.
- isIncludeDishAndChipVariables() - Method in class edu.cmu.tetrad.study.gene.tetradapp.model.MeasurementSimulatorParams
-
isIncludeDishAndChipVariables.
- isIncompatibleWith(VariableSource) - Method in class edu.cmu.tetrad.bayes.Evidence
-
Returna true just in case this evidence has a list of variables equal to those of the given variable source.
- isIncomplete(int) - Method in interface edu.cmu.tetrad.bayes.BayesIm
-
Returns true iff the given node has a Double.NaN value in it.
- isIncomplete(int) - Method in class edu.cmu.tetrad.bayes.DirichletBayesIm
-
Returns true iff the given node has a Double.NaN value in it.
- isIncomplete(int) - Method in class edu.cmu.tetrad.bayes.MlBayesIm
-
Checks if the specified table has any incomplete rows.
- isIncomplete(int) - Method in class edu.cmu.tetrad.bayes.MlBayesImObs
-
Returns true iff the given node has a Double.NaN value in it.
- isIncomplete(int) - Method in class edu.cmu.tetrad.bayes.UpdatedBayesIm
-
Returns true iff the given node has a Double.NaN value in it.
- isIncomplete(int, int) - Method in interface edu.cmu.tetrad.bayes.BayesIm
-
Returns true iff the given row in the given node has a Double.NaN value in it.
- isIncomplete(int, int) - Method in class edu.cmu.tetrad.bayes.DirichletBayesIm
-
Returns true iff the given row in the given node has a Double.NaN value in it.
- isIncomplete(int, int) - Method in class edu.cmu.tetrad.bayes.MlBayesIm
-
Checks if the specified row of a table is incomplete, i.e., if any of the columns have a NaN value.
- isIncomplete(int, int) - Method in class edu.cmu.tetrad.bayes.MlBayesImObs
-
Returns true iff the given row in the given node has a Double.NaN value in it.
- isIncomplete(int, int) - Method in class edu.cmu.tetrad.bayes.UpdatedBayesIm
-
Returns true iff the given row in the given node has a Double.NaN value in it.
- isIndep() - Method in class edu.cmu.tetrad.search.test.ChiSquareTest.Result
-
Returns whether the conditional independence holds or not.
- isIndependent() - Method in class edu.cmu.tetrad.search.test.IndependenceResult
-
Returns true if the judgment is for independence, false if for dependence.
- isIndependent(Node, Node, Node...) - Method in class edu.cmu.tetrad.data.IndependenceFacts
-
isIndependent.
- isIndependent(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.data.IndependenceFacts
-
isIndependent.
- isIndependent(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.test.ConditionalCorrelationIndependence
-
Determines whether two given nodes are independent given a set of conditioning nodes, and calculates a score.
- isIndependent(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.utils.DagSepsets
-
Checks if node d is independent of node c given the set of nodes in sepset.
- isIndependent(Node, Node, Set<Node>) - Method in interface edu.cmu.tetrad.search.utils.SepsetProducer
-
Checks if node d is independent of node c given the set of nodes in sepset.
- isIndependent(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.utils.SepsetsGreedy
-
Checks if node d is independent of node c given the set of nodes in sepset.
- isIndependent(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.utils.SepsetsMaxP
-
Determines if two nodes are independent given a set of separating nodes.
- isIndependent(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.utils.SepsetsMinP
-
Determines if two nodes are independent given a set of separating nodes.
- isIndependent(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.utils.SepsetsPossibleMsep
-
Checks if node d is independent of node c given the set of nodes in sepset.
- isIndependent(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.utils.SepsetsSet
-
Checks if node d is independent of node c given the set of nodes in sepset.
- isIndependentPooled(ResolveSepsets.Method, List<IndependenceTest>, Node, Node, Set<Node>) - Static method in class edu.cmu.tetrad.search.utils.ResolveSepsets
-
Tests for independence using one of the pooled methods
- isIndependentPooled(ResolveSepsetsDci.Method, List<IndependenceTest>, Node, Node, Set<Node>) - Static method in class edu.cmu.tetrad.search.work_in_progress.ResolveSepsetsDci
-
Tests for independence using one of the pooled methods
- isIndependentPooledAverage(List<IndependenceTest>, Node, Node, Set<Node>) - Static method in class edu.cmu.tetrad.search.utils.ResolveSepsets
-
Checks independence from pooled samples by taking the average p value
- isIndependentPooledAverage(List<IndependenceTest>, Node, Node, Set<Node>) - Static method in class edu.cmu.tetrad.search.work_in_progress.ResolveSepsetsDci
-
Checks independence from pooled samples by taking the average p value
- isIndependentPooledAverageTest(List<IndependenceTest>, Node, Node, Set<Node>) - Static method in class edu.cmu.tetrad.search.utils.ResolveSepsets
-
Checks independence from pooled samples by taking the average test statistic CURRENTLY ONLY WORKS FOR CHISQUARE TEST
- isIndependentPooledAverageTest(List<IndependenceTest>, Node, Node, Set<Node>) - Static method in class edu.cmu.tetrad.search.work_in_progress.ResolveSepsetsDci
-
Checks independence from pooled samples by taking the average test statistic CURRENTLY ONLY WORKS FOR CHISQUARE TEST
- isIndependentPooledFisher(List<IndependenceTest>, Node, Node, Set<Node>) - Static method in class edu.cmu.tetrad.search.utils.ResolveSepsets
-
Checks independence from pooled samples using Fisher's method.
- isIndependentPooledFisher(List<IndependenceTest>, Node, Node, Set<Node>) - Static method in class edu.cmu.tetrad.search.work_in_progress.ResolveSepsetsDci
-
Checks independence from pooled samples using Fisher's method.
- isIndependentPooledFisher2(List<IndependenceTest>, Node, Node, Set<Node>) - Static method in class edu.cmu.tetrad.search.utils.ResolveSepsets
-
Eliminates from considerations independence tests that cannot be evaluated (due to missing variables mainly).
- isIndependentPooledFisher2(List<IndependenceTest>, Node, Node, Set<Node>) - Static method in class edu.cmu.tetrad.search.work_in_progress.ResolveSepsetsDci
-
Eliminates from considerations independence tests that cannot be evaluated (due to missing variables mainly).
- isIndependentPooledMudholkerGeorge(List<IndependenceTest>, Node, Node, Set<Node>) - Static method in class edu.cmu.tetrad.search.utils.ResolveSepsets
-
Checks independence from pooled samples using Mudholker and George's method
- isIndependentPooledMudholkerGeorge(List<IndependenceTest>, Node, Node, Set<Node>) - Static method in class edu.cmu.tetrad.search.work_in_progress.ResolveSepsetsDci
-
Checks independence from pooled samples using Mudholker and George's method
- isIndependentPooledMudholkerGeorge2(List<IndependenceTest>, Node, Node, Set<Node>) - Static method in class edu.cmu.tetrad.search.utils.ResolveSepsets
-
The same as isIndepenentPooledMudholkerGeoerge, except that only available independence tests are used.
- isIndependentPooledMudholkerGeorge2(List<IndependenceTest>, Node, Node, Set<Node>) - Static method in class edu.cmu.tetrad.search.work_in_progress.ResolveSepsetsDci
-
The same as isIndepenentPooledMudholkerGeoerge, except that only available independence tests are used.
- isIndependentPooledRandom(List<IndependenceTest>, Node, Node, Set<Node>) - Static method in class edu.cmu.tetrad.search.utils.ResolveSepsets
-
Checks independence from pooled samples by randomly selecting a p value
- isIndependentPooledRandom(List<IndependenceTest>, Node, Node, Set<Node>) - Static method in class edu.cmu.tetrad.search.work_in_progress.ResolveSepsetsDci
-
Checks independence from pooled samples by randomly selecting a p value
- isIndependentPooledStouffer(List<IndependenceTest>, Node, Node, Set<Node>) - Static method in class edu.cmu.tetrad.search.utils.ResolveSepsets
-
Checks independence from pooled samples using Stouffer et al.'s method
- isIndependentPooledStouffer(List<IndependenceTest>, Node, Node, Set<Node>) - Static method in class edu.cmu.tetrad.search.work_in_progress.ResolveSepsetsDci
-
Checks independence from pooled samples using Stouffer et al.'s method
- isIndependentPooledTippett(List<IndependenceTest>, Node, Node, Set<Node>) - Static method in class edu.cmu.tetrad.search.utils.ResolveSepsets
-
Checks independence from pooled samples using Tippett's method
- isIndependentPooledTippett(List<IndependenceTest>, Node, Node, Set<Node>) - Static method in class edu.cmu.tetrad.search.work_in_progress.ResolveSepsetsDci
-
Checks independence from pooled samples using Tippett's method
- isIndependentPooledWilkinson(List<IndependenceTest>, Node, Node, Set<Node>, int) - Static method in class edu.cmu.tetrad.search.utils.ResolveSepsets
-
Checks independence from pooled samples using Wilkinson's method
- isIndependentPooledWilkinson(List<IndependenceTest>, Node, Node, Set<Node>, int) - Static method in class edu.cmu.tetrad.search.work_in_progress.ResolveSepsetsDci
-
Checks independence from pooled samples using Wilkinson's method
- isIndependentPooledWorsleyFriston(List<IndependenceTest>, Node, Node, Set<Node>) - Static method in class edu.cmu.tetrad.search.utils.ResolveSepsets
-
Checks independence from pooled samples using Worsley and Friston's method
- isIndependentPooledWorsleyFriston(List<IndependenceTest>, Node, Node, Set<Node>) - Static method in class edu.cmu.tetrad.search.work_in_progress.ResolveSepsetsDci
-
Checks independence from pooled samples using Worsley and Friston's method
- isInitializedRandomly() - Method in class edu.cmu.tetrad.sem.Parameter
-
isInitializedRandomly.
- isInitSync() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.MeasurementSimulator
-
Returns 'true' if cells in the simulation will be synchronized, 'false' if not.
- isInitSync() - Method in class edu.cmu.tetrad.study.gene.tetradapp.model.MeasurementSimulatorParams
-
isInitSync.
- isInWhichTier(Node) - Method in class edu.cmu.tetrad.data.Knowledge
-
Returns the index of the tier of node if it's in a tier, otherwise -1.
- isIpen() - Method in class edu.cmu.tetrad.search.work_in_progress.Glasso
-
isIpen.
- isIs() - Method in class edu.cmu.tetrad.search.work_in_progress.Glasso
-
isIs.
- isItr() - Method in class edu.cmu.tetrad.search.work_in_progress.Glasso
-
isItr.
- isJointMarginalSupported() - Method in class edu.cmu.tetrad.bayes.ApproximateUpdater
-
isJointMarginalSupported.
- isJointMarginalSupported() - Method in interface edu.cmu.tetrad.bayes.BayesUpdater
-
Returns the joint marginal probability of the given variables taking the given values, given the evidence.
- isJointMarginalSupported() - Method in class edu.cmu.tetrad.bayes.CptInvariantUpdater
-
isJointMarginalSupported.
- isJointMarginalSupported() - Method in class edu.cmu.tetrad.bayes.Identifiability
-
isJointMarginalSupported.
- isJointMarginalSupported() - Method in class edu.cmu.tetrad.bayes.JunctionTreeUpdater
-
Returns the joint marginal probability of the given variables taking the given values, given the evidence.
- isJointMarginalSupported() - Method in class edu.cmu.tetrad.bayes.RowSummingExactUpdater
-
isJointMarginalSupported.
- isLatentVariableAlgorithmByAnnotation(Algorithm) - Static method in class edu.cmu.tetrad.search.utils.GraphSearchUtils
-
Checks if the provided algorithm is a latent variable algorithm by inspecting the associated annotation.
- isLegalCpdag() - Method in class edu.cmu.tetrad.graph.Paths
-
Checks if the current graph is a legal CPDAG (completed partially directed acyclic graph).
- isLegalDag() - Method in class edu.cmu.tetrad.graph.Paths
-
Checks if the graph passed as parameter is a legal directed acyclic graph (DAG).
- isLegalFirstEdge(Node, Node) - Method in interface edu.cmu.tetrad.search.utils.LegalPairs
-
isLegalFirstEdge.
- isLegalMag() - Method in class edu.cmu.tetrad.graph.Paths
-
Checks if the given graph is a legal mag.
- isLegalMag() - Method in class edu.cmu.tetrad.search.utils.GraphSearchUtils.LegalMagRet
-
Returns whether the graph is a legal MAG.
- isLegalMag(Graph, Set<Node>) - Static method in class edu.cmu.tetrad.search.utils.GraphSearchUtils
-
Determines whether the given graph is a legal Mixed Ancestral Graph (MAG).
- isLegalMpag() - Method in class edu.cmu.tetrad.graph.Paths
-
Checks if the given Maximal Ancestral Graph (MPAG) is legal.
- isLegalMpdag() - Method in class edu.cmu.tetrad.graph.Paths
-
Checks if the given graph is a legal Maximal Partial Directed Acyclic Graph (MPDAG).
- isLegalName(String) - Static method in class edu.cmu.tetrad.util.NamingProtocol
-
isLegalName.
- isLegalPag() - Method in class edu.cmu.tetrad.graph.Paths
-
Checks if the given Directed Acyclic Graph (DAG) is a Legal Partial Ancestral Graph (PAG).
- isLegalPag() - Method in class edu.cmu.tetrad.search.utils.GraphSearchUtils.LegalPagRet
-
Returns whether the graph is a legal PAG.
- isLegalPag(Graph, Set<Node>) - Static method in class edu.cmu.tetrad.search.utils.GraphSearchUtils
-
Checks if the provided Directed Acyclic Graph (PAG) is a legal PAG.
- isLegalPair(Node, Node, Node, List<Node>, List<Node>) - Method in interface edu.cmu.tetrad.search.utils.LegalPairs
-
isLegalPair.
- isLog() - Method in class edu.cmu.tetrad.search.utils.FgesOrienter
-
True iff log output should be produced.
- isLogging() - Method in class edu.cmu.tetrad.util.TetradLogger
-
States whether the logger is turned on or not.
- isManipulated(int) - Method in class edu.cmu.tetrad.bayes.Evidence
-
isManipulated.
- isManipulated(int) - Method in class edu.cmu.tetrad.bayes.Manipulation
-
isManipulated.
- isManipulated(int) - Method in class edu.cmu.tetrad.sem.SemEvidence
-
isManipulated.
- isManipulated(int) - Method in class edu.cmu.tetrad.sem.SemManipulation
-
isManipulated.
- isMConnectedTo(Node, Node, Set<Node>, boolean) - Method in class edu.cmu.tetrad.graph.Paths
-
Determmines whether x and y are d-connected given z.
- isMConnectedTo(Node, Node, Set<Node>, Map<Node, Set<Node>>, boolean) - Method in class edu.cmu.tetrad.graph.Paths
-
Detemrmines whether x and y are d-connected given z.
- isMConnectingPath(List<Node>, Set<Node>, boolean) - Method in class edu.cmu.tetrad.graph.Paths
-
Checks if the given path is an m-connecting path.
- isMConnectingPath(List<Node>, Set<Node>, Map<Node, Set<Node>>, boolean) - Method in class edu.cmu.tetrad.graph.Paths
-
Checks if the given path is an m-connecting path.
- isMeasuredDataSaved() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.MeasurementSimulator
-
Returns 'true' if measured data is being saved out for the getModel simulation, 'false' if not.
- isMeekPreventCycles() - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpc
-
isMeekPreventCycles.
- isMeekPreventCycles() - Method in class edu.cmu.tetrad.search.work_in_progress.VcPc
-
isMeekPreventCycles.
- isMeekPreventCycles() - Method in class edu.cmu.tetrad.search.work_in_progress.VcPcAlt
-
isMeekPreventCycles.
- isMeekPreventCycles() - Method in class edu.cmu.tetrad.search.work_in_progress.VcPcFast
-
isMeekPreventCycles.
- isMissingValue(Object) - Method in class edu.cmu.tetrad.data.AbstractVariable
-
Tests whether the given value is the missing data marker.
- isMissingValue(Object) - Method in class edu.cmu.tetrad.data.ContinuousVariable
-
Tests whether the given value is the missing data marker.
- isMissingValue(Object) - Method in class edu.cmu.tetrad.data.DiscreteVariable
-
Tests whether the given value is the missing data marker.
- isMissingValue(Object) - Method in interface edu.cmu.tetrad.data.Variable
-
Tests whether the given value is the missing data marker.
- isMixed() - Method in class edu.cmu.tetrad.data.BoxDataSet
-
isMixed.
- isMixed() - Method in class edu.cmu.tetrad.data.CorrelationMatrixOnTheFly
-
isMixed.
- isMixed() - Method in class edu.cmu.tetrad.data.CovarianceMatrix
-
isMixed.
- isMixed() - Method in class edu.cmu.tetrad.data.CovarianceMatrixOnTheFly
-
isMixed.
- isMixed() - Method in interface edu.cmu.tetrad.data.DataModel
-
isMixed.
- isMixed() - Method in class edu.cmu.tetrad.data.DataModelList
-
isMixed.
- isMixed() - Method in interface edu.cmu.tetrad.data.DataSet
-
isMixed.
- isMixed() - Method in class edu.cmu.tetrad.data.IndependenceFacts
-
isMixed.
- isMixed() - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
isMixed.
- isMixed() - Method in class edu.cmu.tetrad.data.TimeSeriesData
-
isMixed.
- isMpdag() - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Checks whether the given graph is a CPDAG (Completed Partially Directed Acyclic Graph).
- isMSeparated(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.test.MsepTest
-
Auxiliary method to calculate msep(x, y | z) directly from nodes instead of from variables.
- isMSeparatedFrom(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
Determines whether x and y are d-separated given z.
- isMSeparatedFrom(Node, Node, Set<Node>, boolean) - Method in class edu.cmu.tetrad.graph.Paths
-
Determines whether one n ode is d-separated from another.
- isMSeparatedFrom(Node, Node, Set<Node>, Map<Node, Set<Node>>, boolean) - Method in class edu.cmu.tetrad.graph.Paths
-
Checks if two nodes are M-separated.
- isNoData() - Method in class edu.cmu.tetrad.study.performance.ComparisonParameters
-
isNoData.
- isNondirectedEdge(Edge) - Static method in class edu.cmu.tetrad.graph.Edges
-
isNondirectedEdge.
- isNull() - Method in class edu.cmu.tetrad.graph.Edge
-
isNull.
- isOneEdgeFaithfulnessAssumed() - Method in class edu.cmu.tetrad.study.performance.ComparisonParameters
-
isOneEdgeFaithfulnessAssumed.
- isOnlyCanCauseNextTier(int) - Method in class edu.cmu.tetrad.data.Knowledge
-
isOnlyCanCauseNextTier.
- isParallelized() - Method in class edu.cmu.tetrad.algcomparison.TimeoutComparison
-
isParallelized.
- isParameterBoundsEnforced() - Method in interface edu.cmu.tetrad.sem.ISemIm
-
isParameterBoundsEnforced.
- isParameterBoundsEnforced() - Method in class edu.cmu.tetrad.sem.SemIm
-
isParameterBoundsEnforced.
- isParameterizable(Node) - Method in class edu.cmu.tetrad.graph.Dag
-
Checks if the given node is parameterizable.
- isParameterizable(Node) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
isParameterizable.
- isParameterizable(Node) - Method in interface edu.cmu.tetrad.graph.Graph
-
isParameterizable.
- isParameterizable(Node) - Method in class edu.cmu.tetrad.graph.LagGraph
-
isParameterizable.
- isParameterizable(Node) - Method in class edu.cmu.tetrad.graph.SemGraph
-
isParameterizable.
- isParameterizable(Node) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Checks if a node is parameterizable.
- isParent(int, int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.biolingua.BiolinguaDigraph
-
Returns true if node p is parent of node c.
- isParentOf(Node, Node) - Method in class edu.cmu.tetrad.graph.Dag
-
Determines if a given node is a parent of another node in the graph.
- isParentOf(Node, Node) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
Determines whether node1 is a parent of node2.
- isParentOf(Node, Node) - Method in interface edu.cmu.tetrad.graph.Graph
-
Determines whether node1 is a parent of node2.
- isParentOf(Node, Node) - Method in class edu.cmu.tetrad.graph.LagGraph
-
Determines whether node1 is a parent of node2.
- isParentOf(Node, Node) - Method in class edu.cmu.tetrad.graph.SemGraph
-
Determines whether node1 is a parent of node2.
- isParentOf(Node, Node) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Determines if a given node is a parent of another node in the graph.
- isPartiallyOrientedEdge(Edge) - Static method in class edu.cmu.tetrad.graph.Edges
-
isPartiallyOrientedEdge.
- isPermissibleCombination(int[]) - Method in class edu.cmu.tetrad.bayes.Proposition
-
isPermissibleCombination.
- isPositiveDefinite(Matrix) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
Return true if the given matrix is symmetric positive definite--that is, if it would make a valid covariance matrix.
- isPossibleMsepSearchDone() - Method in class edu.cmu.tetrad.search.Cfci
-
Whether to do the discriminating path rule.
- isRawDataSaved() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.MeasurementSimulator
-
Returns true if raw data is being saved in the getModel simulation, false if not.
- isRawDataSaved() - Method in class edu.cmu.tetrad.study.gene.tetradapp.model.MeasurementSimulatorParams
-
isRawDataSaved.
- isRequired(Node) - Method in class edu.cmu.tetrad.search.utils.GrowShrinkTree
-
isRequired.
- isRequired(String, String) - Method in class edu.cmu.tetrad.data.Knowledge
-
Determines whether the edge var1 --> var2 is required.
- isRequiredByGroups(String, String) - Method in class edu.cmu.tetrad.data.Knowledge
-
Legacy.
- isSatisfyBackDoorCriterion(Graph, Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.graph.Paths
-
Check to see if a set of variables Z satisfies the back-door criterion relative to node x and node y.
- isSaveCPDAGs() - Method in class edu.cmu.tetrad.algcomparison.Comparison
-
Checks if the CPDAGs are saved.
- isSaveCPDAGs() - Method in class edu.cmu.tetrad.algcomparison.TimeoutComparison
-
isSaveCPDAGs.
- isSaveData() - Method in class edu.cmu.tetrad.algcomparison.Comparison
-
Returns the status of whether data is being saved or not.
- isSaveGraphs() - Method in class edu.cmu.tetrad.algcomparison.TimeoutComparison
-
isSaveGraphs.
- isSavePags() - Method in class edu.cmu.tetrad.algcomparison.Comparison
-
Checks if the "savePags" variable is true or false.
- isSavePags() - Method in class edu.cmu.tetrad.algcomparison.TimeoutComparison
-
isSavePags.
- ISScore - Interface in edu.cmu.tetrad.search.work_in_progress
-
Interface for a score suitable for FGES
- isSelected(Node) - Method in class edu.cmu.tetrad.data.BoxDataSet
-
isSelected.
- isSelected(Node) - Method in class edu.cmu.tetrad.data.CorrelationMatrixOnTheFly
-
Checks if the specified node is selected in the covariance matrix.
- isSelected(Node) - Method in class edu.cmu.tetrad.data.CovarianceMatrix
-
Checks if the specified node is selected in the covariance matrix.
- isSelected(Node) - Method in class edu.cmu.tetrad.data.CovarianceMatrixOnTheFly
-
Checks if the specified node is selected in the covariance matrix.
- isSelected(Node) - Method in interface edu.cmu.tetrad.data.DataSet
-
isSelected.
- isSelected(Node) - Method in interface edu.cmu.tetrad.data.ICovarianceMatrix
-
Checks if the specified node is selected in the covariance matrix.
- isSelected(Node) - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
isSelected.
- isShowErrorTerms() - Method in class edu.cmu.tetrad.graph.SemGraph
-
isShowErrorTerms.
- isShowUtilities() - Method in class edu.cmu.tetrad.algcomparison.Comparison
-
Checks if the utilities are currently being shown.
- isShowUtilities() - Method in class edu.cmu.tetrad.algcomparison.TimeoutComparison
-
isShowUtilities.
- isSimulatedPositiveDataOnly() - Method in interface edu.cmu.tetrad.sem.ISemIm
-
isSimulatedPositiveDataOnly.
- isSimulatedPositiveDataOnly() - Method in class edu.cmu.tetrad.sem.SemIm
-
isSimulatedPositiveDataOnly.
- isSingular() - Method in class edu.cmu.tetrad.data.CovarianceMatrix
-
isSingular.
- isSortByUtility() - Method in class edu.cmu.tetrad.algcomparison.Comparison
-
Returns whether utility does the sorting.
- isSortByUtility() - Method in class edu.cmu.tetrad.algcomparison.TimeoutComparison
-
isSortByUtility.
- isSquare() - Method in class edu.cmu.tetrad.util.Matrix
-
isSquare.
- isSquare(double[][]) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
isSquare.
- isStable(Matrix) - Static method in class edu.cmu.tetrad.search.IcaLingD
-
Whether the BHat matrix represents a stable model.
- isSubtrek(List<Node>, List<Node>) - Method in class edu.cmu.tetrad.search.work_in_progress.Dci
-
Determines whether one trek is a subtrek of another trek
- isSupportConnected() - Method in class edu.cmu.tetrad.sem.EmpiricalCdf
-
Returns a boolean indicating whether the support of the distribution is connected or not.
- isSupportLowerBoundInclusive() - Method in class edu.cmu.tetrad.sem.EmpiricalCdf
-
Deprecated.This method is deprecated and will be removed in a future release.
- isSupportUpperBoundInclusive() - Method in class edu.cmu.tetrad.sem.EmpiricalCdf
-
Deprecated.This method is deprecated and will be removed in a future release.
- isSymmetric(double) - Method in class edu.cmu.tetrad.util.Matrix
-
isSymmetric.
- isSymmetric(double[][], double) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
isSymmetric.
- isSymmetricFirstStep() - Method in class edu.cmu.tetrad.search.work_in_progress.ISFges
-
Checks if the first step of the algorithm is symmetric.
- isTabDelimitedTables() - Method in class edu.cmu.tetrad.algcomparison.TimeoutComparison
-
isTabDelimitedTables.
- isTierForbiddenWithin(int) - Method in class edu.cmu.tetrad.data.Knowledge
-
Checks whether it is the case that any variable is forbidden by any other variable within a given tier.
- isTimeLagModel() - Method in class edu.cmu.tetrad.graph.Dag
-
isTimeLagModel.
- isTimeLagModel() - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
isTimeLagModel.
- isTimeLagModel() - Method in interface edu.cmu.tetrad.graph.Graph
-
isTimeLagModel.
- isTimeLagModel() - Method in class edu.cmu.tetrad.graph.LagGraph
-
isTimeLagModel.
- isTimeLagModel() - Method in class edu.cmu.tetrad.graph.SemGraph
-
isTimeLagModel.
- isTimeLagModel() - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Checks if the model is based on time lag.
- isTruthAdj() - Method in class edu.cmu.tetrad.algcomparison.statistic.utils.ArrowConfusion
-
Returns true if the truth graph is used to determine adjacency for arrowhead FP's.
- isUnderlineTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.Dag
-
Determines if a triple of nodes is underlined.
- isUnderlineTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
States whether r-s-r is an underline triple or not.
- isUnderlineTriple(Node, Node, Node) - Method in interface edu.cmu.tetrad.graph.Graph
-
States whether r-s-r is an underline triple or not.
- isUnderlineTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.LagGraph
-
States whether r-s-r is an underline triple or not.
- isUnderlineTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.SemGraph
-
States whether r-s-r is an underline triple or not.
- isUnderlineTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Checks whether a given triple (x, y, z) is an underline triple.
- isUnderlineTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.Underlines
-
States whether r-s-r is an underline triple or not.
- isUndirected(Node, Node) - Method in class edu.cmu.tetrad.graph.Paths
-
Checks if the edge between two nodes in the graph is undirected.
- isUndirectedEdge(Edge) - Static method in class edu.cmu.tetrad.graph.Edges
-
isUndirectedEdge.
- isUnshieldedCollider(Graph, Node, Node, Node) - Method in interface edu.cmu.tetrad.search.utils.R0R4Strategy
-
Determines if a given triple is an unshielded collider based on an examination of the data.
- isUnshieldedCollider(Graph, Node, Node, Node) - Method in class edu.cmu.tetrad.search.utils.R0R4StrategyScoreBased
-
Checks if a collider is unshielded or not.
- isUnshieldedCollider(Graph, Node, Node, Node) - Method in class edu.cmu.tetrad.search.utils.R0R4StrategyTestBased
-
Checks if a collider is unshielded or not.
- isUnshieldedCollider(Node, Node, Node, int) - Method in class edu.cmu.tetrad.search.utils.DagSepsets
-
isUnshieldedCollider.
- isUnshieldedCollider(Node, Node, Node, int) - Method in interface edu.cmu.tetrad.search.utils.SepsetProducer
-
isUnshieldedCollider.
- isUnshieldedCollider(Node, Node, Node, int) - Method in class edu.cmu.tetrad.search.utils.SepsetsGreedy
-
isUnshieldedCollider.
- isUnshieldedCollider(Node, Node, Node, int) - Method in class edu.cmu.tetrad.search.utils.SepsetsMaxP
-
Determines if a node is an unshielded collider between two other nodes.
- isUnshieldedCollider(Node, Node, Node, int) - Method in class edu.cmu.tetrad.search.utils.SepsetsMinP
-
Checks if a given collider node is unshielded between two other nodes.
- isUnshieldedCollider(Node, Node, Node, int) - Method in class edu.cmu.tetrad.search.utils.SepsetsPossibleMsep
-
isUnshieldedCollider.
- isUnshieldedCollider(Node, Node, Node, int) - Method in class edu.cmu.tetrad.search.utils.SepsetsSet
-
isUnshieldedCollider.
- isValid() - Method in class edu.cmu.tetrad.search.test.ChiSquareTest.Result
-
Returns whether the result is valid or not.
- isValid() - Method in class edu.cmu.tetrad.search.test.IndependenceResult
-
Returns whether the result is valid or not.
- isVariableListEqual(int[]) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.PolynomialTerm
-
Returns true iff the given variable list is equal to the variable list of this term.
- isVerbose() - Method in class edu.cmu.tetrad.cluster.KMeans
-
isVerbose.
- isVerbose() - Method in class edu.cmu.tetrad.data.CorrelationMatrixOnTheFly
-
isVerbose.
- isVerbose() - Method in class edu.cmu.tetrad.data.CovarianceMatrixOnTheFly
-
isVerbose.
- isVerbose() - Method in class edu.cmu.tetrad.search.Cfci
-
Whether verbose output (about independencies) is output.
- isVerbose() - Method in class edu.cmu.tetrad.search.CompositeIndependenceTest
-
Returns true if the test prints verbose output.
- isVerbose() - Method in class edu.cmu.tetrad.search.Fasd
-
Returns the current value of the verbose flag.
- isVerbose() - Method in interface edu.cmu.tetrad.search.IndependenceTest
-
Returns true if the test prints verbose output.
- isVerbose() - Method in class edu.cmu.tetrad.search.IndTestIod
-
Returns true if the test is verbose.
- isVerbose() - Method in class edu.cmu.tetrad.search.Pcd
-
True iff the algorithm should be run with verbose output.
- isVerbose() - Method in class edu.cmu.tetrad.search.Rfci
-
Returns whether verbose output should be printed.
- isVerbose() - Method in class edu.cmu.tetrad.search.score.GicScores
-
Returns true if verbose output should be sent to out.
- isVerbose() - Method in class edu.cmu.tetrad.search.score.IndTestScore
-
Returns true if verbose output should be sent to out.
- isVerbose() - Method in class edu.cmu.tetrad.search.score.SemBicScore
-
Returns true if verbose output should be sent to out.
- isVerbose() - Method in class edu.cmu.tetrad.search.SvarFci
-
Returns whether verbose output is to be printed.
- isVerbose() - Method in class edu.cmu.tetrad.search.test.IndTestChiSquare
-
Checks if the verbosity flag is enabled.
- isVerbose() - Method in class edu.cmu.tetrad.search.test.IndTestConditionalCorrelation
-
Returns true if verbose output should be printed.
- isVerbose() - Method in class edu.cmu.tetrad.search.test.IndTestConditionalGaussianLrt
-
Returns true iff verbose output should be printed.
- isVerbose() - Method in class edu.cmu.tetrad.search.test.IndTestDegenerateGaussianLrt
-
Returns true iff verbose output should be printed.
- isVerbose() - Method in class edu.cmu.tetrad.search.test.IndTestFisherZ
-
Returns true iff verbose output should be printed.
- isVerbose() - Method in class edu.cmu.tetrad.search.test.IndTestFisherZConcatenateResiduals
-
Return True if verbose output should be printed.
- isVerbose() - Method in class edu.cmu.tetrad.search.test.IndTestFisherZFisherPValue
-
Returns True if verbose output should be printed.
- isVerbose() - Method in class edu.cmu.tetrad.search.test.IndTestGSquare
-
Returns whether verbose output is enabled or not.
- isVerbose() - Method in class edu.cmu.tetrad.search.test.IndTestHsic
-
Determines if the verbose mode is enabled.
- isVerbose() - Method in class edu.cmu.tetrad.search.test.IndTestIndependenceFacts
-
Returns whether verbose output is to be printed.
- isVerbose() - Method in class edu.cmu.tetrad.search.test.IndTestMulti
-
Returns true if the test prints verbose output.
- isVerbose() - Method in class edu.cmu.tetrad.search.test.IndTestMvpLrt
-
Returns whether verbose output should be printed.
- isVerbose() - Method in class edu.cmu.tetrad.search.test.IndTestProbabilistic
-
Returns the verbose flag indicating whether verbose output should be printed.
- isVerbose() - Method in class edu.cmu.tetrad.search.test.IndTestRegression
-
Returns true if the test prints verbose output.
- isVerbose() - Method in class edu.cmu.tetrad.search.test.IndTestTrekSep
-
Checks whether verbose output is enabled.
- isVerbose() - Method in class edu.cmu.tetrad.search.test.Kci
-
Returns the value of the verbose flag.
- isVerbose() - Method in class edu.cmu.tetrad.search.test.MsepTest
-
Returns True just in case verbose output should be printed.
- isVerbose() - Method in class edu.cmu.tetrad.search.test.ScoreIndTest
-
Returns a boolean indicating whether verbose output is enabled.
- isVerbose() - Method in class edu.cmu.tetrad.search.utils.SepsetsGreedy
-
Returns whether the object is in verbose mode.
- isVerbose() - Method in class edu.cmu.tetrad.search.utils.SepsetsMaxP
-
Returns whether the object is in verbose mode.
- isVerbose() - Method in class edu.cmu.tetrad.search.utils.SepsetsMinP
-
Returns whether the object is in verbose mode.
- isVerbose() - Method in class edu.cmu.tetrad.search.utils.SepsetsPossibleMsep
-
isVerbose.
- isVerbose() - Method in class edu.cmu.tetrad.search.utils.SepsetsSet
-
isVerbose.
- isVerbose() - Method in class edu.cmu.tetrad.search.utils.TsDagToPag
-
True iff verbose output should be printed.
- isVerbose() - Method in class edu.cmu.tetrad.search.work_in_progress.GraspTol
-
isVerbose.
- isVerbose() - Method in class edu.cmu.tetrad.search.work_in_progress.IGFci
-
Checks if verbose output is enabled.
- isVerbose() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestCramerT
-
Determines if verbose output is enabled or disabled.
- isVerbose() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestFisherZPercentIndependent
-
Returns the value of the verbose flag.
- isVerbose() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestFisherZRecursive
-
isVerbose.
- isVerbose() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestMixedMultipleTTest
-
Returns whether verbose output should be printed.
- isVerbose() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestMnlrLr
-
Determines if the test prints verbose output.
- isVerbose() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestMultinomialLogisticRegression
-
Returns true if the test prints verbose output.
- isVerbose() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestPositiveCorr
-
Returns whether the verbose mode is enabled.
- isVerbose() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestSepsetDci
-
isVerbose.
- isVerbose() - Method in class edu.cmu.tetrad.search.work_in_progress.ProbabilisticMapIndependence
-
Returns true if the test prints verbose output.
- isVerbose() - Method in class edu.cmu.tetrad.search.work_in_progress.SemBicScoreDeterministic
-
isVerbose.
- isVerbose() - Method in class edu.cmu.tetrad.search.work_in_progress.VcFas
-
isVerbose.
- isVerbose() - Method in class edu.cmu.tetrad.sem.LargeScaleSimulation
-
isVerbose.
- isVerbose() - Method in class edu.pitt.csb.mgm.IndTestMultinomialLogisticRegressionWald
-
Checks if the program is in verbose mode.
- isViolatedBy(Graph) - Method in class edu.cmu.tetrad.data.Knowledge
-
isViolatedBy.
- isWithoutReplacements() - Method in class edu.cmu.tetrad.data.BootstrapSampler
-
This method takes a dataset and a sample size and creates a new dataset containing that number of samples by
- iterate() - Method in class edu.cmu.tetrad.bayes.FactoredBayesStructuralEM
-
This iterate2 method also uses BdeMetricCache but it uses the factorScoreMD method which can handle missing data and latent variables.
- iterations() - Method in class edu.cmu.tetrad.cluster.KMeans
-
iterations.
- iterator() - Method in class edu.pitt.isp.sverchkov.data.DataTableImpl
- ItkPredictorSearch - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.ideker
-
This class contains methods which implement the algorithm described in the paper " " by Ideker, Thorsen and Karp.
- ItkPredictorSearch(int, int[][], String[]) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.ideker.ItkPredictorSearch
-
Constructor for ItkPredictorSearch.
- ItkPredictorSearch.Gene - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.ideker
-
A gene.
- ITR - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
ITR="itr"
J
- jointEntropy(int[], int[]) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.reveal.RevealEvaluator
-
This method computes the joint entropy of two arrays.
- jointEntropy(int[], int[]) - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.LTestReveal
-
jointEntropy.
- jointEntropy(int[], int[]) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.RevealEvaluator
-
This method computes the joint entropy of two arrays.
- jointEntropy(int[], int[][]) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.reveal.RevealEvaluator
-
jointEntropy.
- jointEntropy(int[], int[][]) - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.LTestReveal
-
jointEntropy.
- jointEntropy(int[], int[][]) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.RevealEvaluator
-
jointEntropy.
- JOptionUtils - Class in edu.cmu.tetrad.util
-
Stores some utility items for displaying JOptionPane messages.
- JsonUtils - Class in edu.cmu.tetrad.util
-
Dec 9, 2016 5:43:47 PM
- JsonUtils() - Constructor for class edu.cmu.tetrad.util.JsonUtils
-
Constructor for JsonUtils.
- JunctionTreeAlgorithm - Class in edu.cmu.tetrad.bayes
-
Junction Tree Algorithm.
- JunctionTreeAlgorithm(BayesIm) - Constructor for class edu.cmu.tetrad.bayes.JunctionTreeAlgorithm
-
Constructor for JunctionTreeAlgorithm.
- JunctionTreeAlgorithm(Graph, DataModel) - Constructor for class edu.cmu.tetrad.bayes.JunctionTreeAlgorithm
-
Constructor for JunctionTreeAlgorithm.
- JunctionTreeUpdater - Class in edu.cmu.tetrad.bayes
-
Jan 21, 2020 11:03:09 AM
- JunctionTreeUpdater(BayesIm) - Constructor for class edu.cmu.tetrad.bayes.JunctionTreeUpdater
-
Constructor for JunctionTreeUpdater.
- JunctionTreeUpdater(BayesIm, Evidence) - Constructor for class edu.cmu.tetrad.bayes.JunctionTreeUpdater
-
Constructor for JunctionTreeUpdater.
- JUSTIFIED - Enum constant in enum class edu.cmu.tetrad.util.TextTable.Delimiter
-
Constant
JUSTIFIED
K
- kamadaKawaiLayout(Graph, boolean, double, double, double) - Static method in class edu.cmu.tetrad.graph.LayoutUtil
-
kamadaKawaiLayout.
- KamadaKawaiLayout(Graph) - Constructor for class edu.cmu.tetrad.graph.LayoutUtil.KamadaKawaiLayout
-
Constructs a new Kamada-Kawai layout for the given graph.
- Kci - Class in edu.cmu.tetrad.algcomparison.independence
-
Wrapper for KCI test.
- Kci - Class in edu.cmu.tetrad.search.test
-
Gives an implementation of the Kernel Independence Test (KCI) by Kun Zhang, which is a general test of conditional independence.
- Kci() - Constructor for class edu.cmu.tetrad.algcomparison.independence.Kci
-
`Kci` constructor.
- Kci(DataSet, double) - Constructor for class edu.cmu.tetrad.search.test.Kci
-
Constructor.
- KCI_ALPHA - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
KCI_ALPHA="kciAlpha"
- KCI_CUTOFF - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
KCI_CUTOFF="kciCutoff"
- KCI_EPSILON - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
KCI_EPSILON="kciEpsilon"
- KCI_NUM_BOOTSTRAPS - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
KCI_NUM_BOOTSTRAPS="kciNumBootstraps"
- KCI_USE_APPROXIMATION - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
KCI_USE_APPROXIMATION="kciUseApproximation"
- Kci.EigenReturn - Record Class in edu.cmu.tetrad.search.test
-
A record representing the result of an eigenvalue decomposition.
- Kci.KernelType - Enum Class in edu.cmu.tetrad.search.test
-
Represents the type of kernel to be used in a computation.
- kendallsTau(double[], double[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
kendallsTau.
- kernel(double) - Method in class edu.cmu.tetrad.search.Lofs
-
Calculates the kernel value for a given input.
- Kernel - Interface in edu.cmu.tetrad.search.utils
-
Gives an implemented that is implemented by classes that evaluate scalar valued kernels
- KERNEL_REGRESSION_SAMPLE_SIZE - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
KERNEL_REGRESSION_SAMPLE_SIZE="kernelRegressionSampleSize"
- KERNEL_TYPE - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
KERNEL_TYPE="kernelType"
- KERNEL_WIDTH - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
KERNEL_WIDTH="kernelWidth"
- kernel1(double) - Method in class edu.cmu.tetrad.search.Lofs
-
Computes the value of the kernel function 1 for a given input.
- kernel2(double) - Method in class edu.cmu.tetrad.search.Lofs
-
Calculates the value of the kernel2 function for the given input.
- kernel3(double) - Method in class edu.cmu.tetrad.search.Lofs
-
This method calculates the value of the kernel function, kernel3, for a given input.
- kernel4(double) - Method in class edu.cmu.tetrad.search.Lofs
-
Calculates the result of kernel4 function.
- kernel5(double) - Method in class edu.cmu.tetrad.search.Lofs
-
Calculates the value of the kernel function, kernel5, for the given input.
- kernel6(double) - Method in class edu.cmu.tetrad.search.Lofs
-
Calculates the value of the kernel function 6 given a parameter z.
- kernel7(double) - Method in class edu.cmu.tetrad.search.Lofs
-
Computes the value of the kernel7 function for the given value.
- kernel8(double) - Method in class edu.cmu.tetrad.search.Lofs
-
Calculates the value of the kernel8 function for the given input.
- KernelGaussian - Class in edu.cmu.tetrad.search.utils
-
Soces the Gaussian kernel for a given bandwidth.
- KernelGaussian(double) - Constructor for class edu.cmu.tetrad.search.utils.KernelGaussian
-
Creates a new Gaussian kernel with the given bandwidth
- KernelGaussian(DataSet, Node) - Constructor for class edu.cmu.tetrad.search.utils.KernelGaussian
-
Creates a new Gaussian kernel using the median distance between points to set the bandwidth
- KernelUtils - Class in edu.cmu.tetrad.search.utils
-
Provides various kernel utilities.
- KMeans - Class in edu.cmu.tetrad.cluster
-
Implements the "batch" version of the K Means clustering algorithm-- that is, in one sweep, assign each point to its nearest center, and then in a second sweep, reset each center to the mean of the cluster for that center, repeating until convergence.
- Knowledge - Class in edu.cmu.tetrad.data
-
Stores information about required and forbidden edges and common causes for use in algorithm.
- Knowledge() - Constructor for class edu.cmu.tetrad.data.Knowledge
-
Constructor for Knowledge.
- Knowledge(Knowledge) - Constructor for class edu.cmu.tetrad.data.Knowledge
-
Constructor for Knowledge.
- Knowledge(Collection<String>) - Constructor for class edu.cmu.tetrad.data.Knowledge
-
Constructor for Knowledge.
- KnowledgeEdge - Class in edu.cmu.tetrad.data
-
Implements a knowledge edge X-->Y as a simple ordered pair of strings.
- KnowledgeEdge(String, String) - Constructor for class edu.cmu.tetrad.data.KnowledgeEdge
-
Constructs a knowledge edge for from-->to.
- KnowledgeGroup - Class in edu.cmu.tetrad.data
-
Represents a "Other Group" in Knowledge, which can be understood as: Group1 -> Group2 where there are edges between all members of Group1 to Group2.
- KnowledgeGroup(int) - Constructor for class edu.cmu.tetrad.data.KnowledgeGroup
-
Constructs an empty instance of a knowledge group.
- KnowledgeGroup(int, Set<String>, Set<String>) - Constructor for class edu.cmu.tetrad.data.KnowledgeGroup
-
Constructs a group given the type.
- KnowledgeSatisfied - Class in edu.cmu.tetrad.algcomparison.statistic
-
Implementation of the KnowledgeSatisfied class.
- KnowledgeSatisfied() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.KnowledgeSatisfied
-
Constructs the statistic.
- KnowledgeTransferable - Interface in edu.cmu.tetrad.data
-
Interface implemented by classes that are capable of participating in the transfer of knowledge objects.
- Kpc - Class in edu.cmu.tetrad.search.work_in_progress
-
Kernelized PC algorithm.
- Kpc(DataSet, double) - Constructor for class edu.cmu.tetrad.search.work_in_progress.Kpc
-
Constructs a new PC search using for the given dataset.
- kurtosis - Enum constant in enum class edu.cmu.tetrad.search.Lofs.Score
-
The kurtosis.
- kurtosis(double[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
kurtosis.
- kurtosis(double[], int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
kurtosis.
- kurtosis(long[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
kurtosis.
- kurtosis(long[], int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
kurtosis.
L
- LAG - Static variable in interface edu.cmu.tetrad.graph.Node
-
Constant
LAG
- LaggedEdge - Class in edu.cmu.tetrad.study.gene.tetrad.gene.history
-
wrapper class for passing factor+edge via a propertyChange event
- LaggedEdge(String, LaggedFactor) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.history.LaggedEdge
-
Creates new LaggedEdge
- LaggedFactor - Class in edu.cmu.tetrad.study.gene.tetrad.gene.history
-
Identifies a particular factor (by name) at a particular lag (integer).
- LaggedFactor(LaggedFactor) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.history.LaggedFactor
-
Copy constructor- creates a new object with the same properties as the original
- LaggedFactor(String, int) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.history.LaggedFactor
-
Constructs a new lagged factor with a given name and time lag.
- LagGraph - Class in edu.cmu.tetrad.graph
-
Implements a graph allowing nodes in the getModel time lag to have parents taken from previous time lags.
- LagGraph - Interface in edu.cmu.tetrad.study.gene.tetrad.gene.history
-
Lag graph.
- LagGraph() - Constructor for class edu.cmu.tetrad.graph.LagGraph
-
Constructor for LagGraph.
- LagGraphParams - Class in edu.cmu.tetrad.study.gene.tetrad.gene.graph
-
LagGraphParams class.
- LagGraphParams(Parameters) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.graph.LagGraphParams
-
Constructor for LagGraphParams.
- LAMBDA1 - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
LAMBDA1="lambda1"
- LargeScaleSimulation - Class in edu.cmu.tetrad.sem
-
Stores a SEM model, pared down, for purposes of simulating data sets with large numbers of variables and sample sizes.
- LargeScaleSimulation(Graph) - Constructor for class edu.cmu.tetrad.sem.LargeScaleSimulation
-
Constructor for LargeScaleSimulation.
- LargeScaleSimulation(Graph, List<Node>, int[]) - Constructor for class edu.cmu.tetrad.sem.LargeScaleSimulation
-
Constructor for LargeScaleSimulation.
- LAST_ID - Static variable in class edu.cmu.tetrad.data.AbstractVariable
-
The last ID assigned to a variable.
- LATENT - Enum constant in enum class edu.cmu.tetrad.graph.NodeType
-
Constant
LATENT
- LATENT_MEASURED_IMPURE_PARENTS - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
LATENT_MEASURED_IMPURE_PARENTS="latentMeasuredImpureParents"
- LATENT_PREFIX - Static variable in class edu.cmu.tetrad.search.utils.ClusterUtils
-
The prefix for latent variables.
- LatentCommonAncestorFalseNegativeBidirected - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- LatentCommonAncestorFalseNegativeBidirected() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.LatentCommonAncestorFalseNegativeBidirected
-
Constructor for LatentCommonAncestorFalseNegativeBidirected.
- LatentCommonAncestorFalsePositiveBidirected - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- LatentCommonAncestorFalsePositiveBidirected() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.LatentCommonAncestorFalsePositiveBidirected
-
Constructor for LatentCommonAncestorFalsePositiveBidirected.
- LatentCommonAncestorRecallBidirected - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- LatentCommonAncestorRecallBidirected() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.LatentCommonAncestorRecallBidirected
-
Constructor for LatentCommonAncestorRecallBidirected.
- LatentCommonAncestorTruePositiveBidirected - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- LatentCommonAncestorTruePositiveBidirected() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.LatentCommonAncestorTruePositiveBidirected
-
Constructor for LatentCommonAncestorTruePositiveBidirected.
- latentStructToEdgeListGraph(DMSearch.LatentStructure) - Method in class edu.cmu.tetrad.search.work_in_progress.DMSearch.LatentStructure
-
latentStructToEdgeListGraph.
- LatentStructure() - Constructor for class edu.cmu.tetrad.search.work_in_progress.DMSearch.LatentStructure
-
Constructor for LatentStructure.
- layoutByCausalOrder(Graph) - Static method in class edu.cmu.tetrad.graph.LayoutUtil
-
layoutByCausalOrder.
- LayoutUtil - Class in edu.cmu.tetrad.graph
-
LayoutUtil class.
- LayoutUtil() - Constructor for class edu.cmu.tetrad.graph.LayoutUtil
-
Constructor.
- LayoutUtil.FruchtermanReingoldLayout - Class in edu.cmu.tetrad.graph
-
Lays out a graph by linearly summing repulsive force between all nodes and attractive force between adjacent nodes.
- LayoutUtil.KamadaKawaiLayout - Class in edu.cmu.tetrad.graph
-
Lays out a graph by placing springs between the nodes and letting the system settle (one node at a time).
- LE - Enum constant in enum class edu.cmu.tetrad.sem.ParamComparison
-
An enum value representing the "LE" comparison type for a parameter in SEM estimation.
- learn(double, int) - Method in class edu.pitt.csb.mgm.Mgm
-
Learn MGM traditional way with objective function tolerance.
- learnBackTrack(ConvexProximal, DoubleMatrix1D, double, int) - Method in class edu.pitt.csb.mgm.ProximalGradient
-
learnBackTrack.
- learnBNRFCI(DataSet, int, Graph) - Method in class edu.cmu.tetrad.calibration.DataForCalibrationRfci
-
learnBNRFCI.
- learnEdges(int) - Method in class edu.pitt.csb.mgm.Mgm
-
Learn MGM using edge convergence using default 3 iterations of no edge changes.
- learnEdges(int, int) - Method in class edu.pitt.csb.mgm.Mgm
-
Learn MGM using edge convergence using edgeChangeTol (see ProximalGradient for documentation).
- LEE_AND_HASTIE - Static variable in class edu.cmu.tetrad.algcomparison.simulation.SimulationTypes
-
Constant
LEE_AND_HASTIE="Mixed Lee & Hastie"
- LeeHastieSimulation - Class in edu.cmu.tetrad.algcomparison.simulation
-
A version of the Lee and Hastic simulation which is guaranteed ot generate a discrete data set.
- LeeHastieSimulation(RandomGraph) - Constructor for class edu.cmu.tetrad.algcomparison.simulation.LeeHastieSimulation
-
Constructor for LeeHastieSimulation.
- LEFT_JUSTIFIED - Static variable in class edu.cmu.tetrad.util.TextTable
-
Set
justification
to this if the columns should be left justified. - leftRight(double[], double[]) - Method in class edu.cmu.tetrad.search.FaskOrig
-
A left/right judgment for double[] arrays (data) as input.
- leftRightV2(double[], double[]) - Static method in class edu.cmu.tetrad.search.Fask
-
Calculates a left-right judgment using the difference of corrExp values between two arrays of double values.
- LegalMagRet(boolean, String) - Constructor for class edu.cmu.tetrad.search.utils.GraphSearchUtils.LegalMagRet
-
Constructs a new LegalMagRet object.
- LegalPag - Class in edu.cmu.tetrad.algcomparison.statistic
-
Legal PAG
- LegalPag() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.LegalPag
-
Constructor for LegalPag.
- LegalPagRet(boolean, String) - Constructor for class edu.cmu.tetrad.search.utils.GraphSearchUtils.LegalPagRet
-
Constructs a new LegalPagRet object.
- LegalPairs - Interface in edu.cmu.tetrad.search.utils
-
Determines whether nodes indexed as (n1, center, n2) form a legal pair of edges in a graph for purposes of some algorithm that uses this information.
- legendre(int, double) - Static method in class edu.cmu.tetrad.util.StatUtils
-
Computes the value of the Legendre polynomial of a given degree at a specified point x.
- like() - Method in class edu.cmu.tetrad.data.BoxDataSet
-
Returns a dataset with the same dimensions as this dataset, but with no data.
- like() - Method in class edu.cmu.tetrad.data.ByteDataBox
-
like.
- like() - Method in interface edu.cmu.tetrad.data.DataBox
-
Returns a data box of the same dimensions as this one, without setting any values.
- like() - Method in interface edu.cmu.tetrad.data.DataSet
-
Returns a dataset with the same dimensions as this dataset, but with no data.
- like() - Method in class edu.cmu.tetrad.data.DoubleDataBox
-
like.
- like() - Method in class edu.cmu.tetrad.data.FloatDataBox
-
like.
- like() - Method in class edu.cmu.tetrad.data.IntDataBox
-
like.
- like() - Method in class edu.cmu.tetrad.data.LongDataBox
-
like.
- like() - Method in class edu.cmu.tetrad.data.MixedDataBox
-
Returns a data box of the same dimensions as this one, without setting any values.
- like() - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
Returns a dataset with the same dimensions as this dataset, but with no data.
- like() - Method in class edu.cmu.tetrad.data.ShortDataBox
-
like.
- like() - Method in class edu.cmu.tetrad.data.VerticalDoubleDataBox
-
like.
- like() - Method in class edu.cmu.tetrad.data.VerticalIntDataBox
-
like.
- like() - Method in class edu.cmu.tetrad.util.Matrix
-
like.
- like() - Method in class edu.cmu.tetrad.util.Vector
-
like.
- like(String) - Method in class edu.cmu.tetrad.data.AbstractVariable
-
Creates a new node of the same type as this one with the given name.
- like(String) - Method in class edu.cmu.tetrad.data.ContinuousVariable
-
Creates a new node of the same type as this one with the given name.
- like(String) - Method in class edu.cmu.tetrad.data.DiscreteVariable
-
Creates a new node of the same type as this one with the given name.
- like(String) - Method in class edu.cmu.tetrad.graph.GraphNode
-
Creates a new node of the same type as this one with the given name.
- like(String) - Method in interface edu.cmu.tetrad.graph.Node
-
Creates a new node of the same type as this one with the given name.
- LikelihoodRet() - Constructor for class edu.cmu.tetrad.bayes.BayesProperties.LikelihoodRet
-
Constructs a new LikelihoodRet object.
- LINEAR - Enum constant in enum class edu.cmu.tetrad.search.test.Kci.KernelType
- LINEAR_FISHER_MODEL - Static variable in class edu.cmu.tetrad.algcomparison.simulation.SimulationTypes
-
Constant
LINEAR_FISHER_MODEL="Linear Fisher Model"
- LinearFisherModel - Class in edu.cmu.tetrad.algcomparison.simulation
-
Linear Fisher Model.
- LinearFisherModel(RandomGraph) - Constructor for class edu.cmu.tetrad.algcomparison.simulation.LinearFisherModel
-
Constructor for LinearFisherModel.
- LinearFisherModel(RandomGraph, List<DataModel>) - Constructor for class edu.cmu.tetrad.algcomparison.simulation.LinearFisherModel
-
Constructor for LinearFisherModel.
- LinearFunction - Class in edu.cmu.tetrad.study.gene.tetrad.gene.history
-
Implements a linear update function, Gi.0 = L(Parents(G0.0)) + ei, where P is a polynomial function and ei is a random noise term.
- LinearFunction(LagGraph) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.history.LinearFunction
-
Constructs a polyomial function where each factor is given a zero polynomial.
- LinearGaussian - Annotation Interface in edu.cmu.tetrad.annotation
-
Data with Gaussian variables that have linear relationships.
- LinearSimExp1 - Class in edu.cmu.tetrad.study.gene.tetrad.gene.simexp
-
Implements a particular simulation for experimental purposes.
- LinearSimExp1(String) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.simexp.LinearSimExp1
-
Constructor for LinearSimExp1.
- LinearSineSimulation - Class in edu.cmu.tetrad.algcomparison.simulation
-
A simulation method based on the mixed variable polynomial assumption.
- LinearSineSimulation(RandomGraph) - Constructor for class edu.cmu.tetrad.algcomparison.simulation.LinearSineSimulation
-
Constructor for LinearSineSimulation.
- LingamStudy - Class in edu.cmu.tetrad.study.examples.conditions
-
An example script to simulate data and run a comparison analysis on it.
- listColliderTriples(Graph) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Generates a list of triples where a node acts as a collider in a given graph.
- listDiscriminatingPaths(Graph, int, boolean) - Static method in class edu.cmu.tetrad.search.utils.FciOrient
-
Lists all the discriminating paths in the given graph.
- listDiscriminatingPaths(Graph, Node, Node, int, boolean) - Static method in class edu.cmu.tetrad.search.utils.FciOrient
-
Lists the discriminating paths for <w, y> in the graph.
- listUnmeasuredLatents() - Method in interface edu.cmu.tetrad.sem.ISemIm
-
listUnmeasuredLatents.
- listUnmeasuredLatents() - Method in class edu.cmu.tetrad.sem.SemIm
-
listUnmeasuredLatents.
- lngamma(double) - Static method in class edu.cmu.tetrad.util.ProbUtils
-
This is a more literal (that is, exact) copy of the log gamma method from Numerical Recipes than the following one.
- loadContinuousData(File, String, char, String, boolean, Delimiter, boolean) - Static method in class edu.cmu.tetrad.data.SimpleDataLoader
-
Loads a continuous dataset from a file.
- LoadContinuousDataAndGraphs - Class in edu.cmu.tetrad.data.simulation
-
Load data sets and graphs from a directory.
- LoadContinuousDataAndGraphs(String) - Constructor for class edu.cmu.tetrad.data.simulation.LoadContinuousDataAndGraphs
-
Constructor for LoadContinuousDataAndGraphs.
- LoadContinuousDataAndSingleGraph - Class in edu.cmu.tetrad.data.simulation
-
Load data sets and graphs from a directory.
- LoadContinuousDataAndSingleGraph(String) - Constructor for class edu.cmu.tetrad.data.simulation.LoadContinuousDataAndSingleGraph
-
Constructor for LoadContinuousDataAndSingleGraph.
- LoadContinuousDataSmithSim - Class in edu.cmu.tetrad.data.simulation
-
Load data sets and graphs from a directory.
- LoadContinuousDataSmithSim(String) - Constructor for class edu.cmu.tetrad.data.simulation.LoadContinuousDataSmithSim
-
Constructor for LoadContinuousDataSmithSim.
- loadCovarianceMatrix(char[], String, DelimiterType, char, String) - Static method in class edu.cmu.tetrad.data.SimpleDataLoader
-
Parses a covariance matrix from a char[] array.
- loadCovarianceMatrix(File, String, DelimiterType, char, String) - Static method in class edu.cmu.tetrad.data.SimpleDataLoader
-
Parses the given files for a tabular data set, returning a RectangularDataSet if successful.
- loadData(String, String) - Static method in class edu.pitt.csb.mgm.MixedUtils
-
loadData.
- LoadDataAndGraphs - Class in edu.cmu.tetrad.data.simulation
-
Load data sets and graphs from a directory.
- LoadDataAndGraphs(String) - Constructor for class edu.cmu.tetrad.data.simulation.LoadDataAndGraphs
-
Constructor for LoadDataAndGraphs.
- LoadDataFromFileWithoutGraph - Class in edu.cmu.tetrad.data.simulation
-
Load data sets and graphs from a directory.
- LoadDataFromFileWithoutGraph(String) - Constructor for class edu.cmu.tetrad.data.simulation.LoadDataFromFileWithoutGraph
-
Constructor for LoadDataFromFileWithoutGraph.
- loadDataSet(String, String) - Static method in class edu.pitt.csb.mgm.MixedUtils
-
loadDataSet.
- loadDelim(String, String) - Static method in class edu.pitt.csb.mgm.MixedUtils
-
loadDelim.
- loadDiscreteData(File, String, char, String, boolean, Delimiter, boolean) - Static method in class edu.cmu.tetrad.data.SimpleDataLoader
-
Loads a discrete dataset from a file.
- LOADED_FROM_FILES - Static variable in class edu.cmu.tetrad.algcomparison.simulation.SimulationTypes
-
Constant
LOADED_FROM_FILES="Loaded From Files"
- loadGraph(File) - Static method in class edu.cmu.tetrad.graph.GraphSaveLoadUtils
-
loadGraph.
- loadGraphAmatCpdag(File) - Static method in class edu.cmu.tetrad.graph.GraphSaveLoadUtils
-
Loads a CPDAG in the "amat.cpdag" format of PCALG.
- loadGraphAmatPag(File) - Static method in class edu.cmu.tetrad.graph.GraphSaveLoadUtils
-
Loads a PAG in the "amat.pag" format of PCALG.
- loadGraphBNTPcMatrix(List<Node>, DataSet) - Static method in class edu.cmu.tetrad.graph.GraphSaveLoadUtils
-
loadGraphBNTPcMatrix.
- loadGraphJson(File) - Static method in class edu.cmu.tetrad.graph.GraphSaveLoadUtils
-
loadGraphJson.
- loadGraphRMatrix(Graph) - Static method in class edu.cmu.tetrad.graph.GraphSaveLoadUtils
-
loadGraphRMatrix.
- loadGraphRuben(File) - Static method in class edu.cmu.tetrad.graph.GraphSaveLoadUtils
-
loadGraphRuben.
- loadGraphTxt(Graph, boolean) - Static method in class edu.cmu.tetrad.graph.GraphSaveLoadUtils
-
Converts a given graph to human-readable text format.
- loadGraphTxt(File) - Static method in class edu.cmu.tetrad.graph.GraphSaveLoadUtils
-
loadGraphTxt.
- loadKnowledge(File, DelimiterType, String) - Static method in class edu.cmu.tetrad.data.SimpleDataLoader
-
Loads knowledge from a file.
- loadMixedData(File, String, char, String, boolean, int, Delimiter, boolean) - Static method in class edu.cmu.tetrad.data.SimpleDataLoader
-
Loads a mixed dataset from a file.
- loadRSpecial(File) - Static method in class edu.cmu.tetrad.graph.GraphSaveLoadUtils
-
loadRSpecial.
- LOCAL_MARKOV - Enum constant in enum class edu.cmu.tetrad.search.ConditioningSetType
-
Testing independence facts implied by the graph, conditioning on the parents of each variable in the graph.
- LocalGraphConfusion - Class in edu.cmu.tetrad.algcomparison.statistic.utils
-
A confusion matrix for local graph accuracy check --i.e.
- LocalGraphConfusion(Graph, Graph) - Constructor for class edu.cmu.tetrad.algcomparison.statistic.utils.LocalGraphConfusion
-
Constructs a new LocalGraphConfusion object from the given graphs.
- LocalGraphPrecision - Class in edu.cmu.tetrad.algcomparison.statistic
-
The LocalGraphPrecision class implements the Statistic interface and represents the Local Graph Precision statistic.
- LocalGraphPrecision() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.LocalGraphPrecision
-
The default constructor of the LocalGraphPrecision class.
- LocalGraphRecall - Class in edu.cmu.tetrad.algcomparison.statistic
-
LocalGraphRecall implements the Statistic interface and represents the local graph recall statistic.
- LocalGraphRecall() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.LocalGraphRecall
-
The default constructor of the LocalGraphRecall class.
- localMarkovAdjustPValues(Graph, boolean, IndependenceTest, Map<Pair<Node, Node>, Set<Double>>, Pair<Node, Node>) - Static method in class edu.cmu.tetrad.search.utils.EnsureMarkov
-
Adjusts the p-values for a local Markov condition in a given constraint-based partially directed acyclic graph (CPDAG).
- localMarkovInitializePValues(Graph, boolean, IndependenceTest, Map<Pair<Node, Node>, Set<Double>>) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Initializes and evaluates p-values for local Markov properties in a given graph.
- localScore() - Method in class edu.cmu.tetrad.search.utils.GrowShrinkTree
-
localScore.
- localScore(int) - Method in class edu.cmu.tetrad.search.score.GraphScore
-
Returns the local score of the gien node in the graph.
- localScore(int) - Method in class edu.cmu.tetrad.search.score.ImagesScore
-
Returns the local score of the gien node in the graph.
- localScore(int) - Method in class edu.cmu.tetrad.search.score.IndTestScore
-
Returns the local score of the gien node in the graph.
- localScore(int) - Method in interface edu.cmu.tetrad.search.score.Score
-
Returns the local score of the gien node in the graph.
- localScore(int[]) - Method in class edu.cmu.tetrad.search.utils.GrowShrinkTree
-
localScore.
- localScore(int, int) - Method in class edu.cmu.tetrad.search.score.GraphScore
-
localScore.
- localScore(int, int) - Method in class edu.cmu.tetrad.search.score.ImagesScore
-
Returns the (aggregate) local score for a variable given one of its parents, which is obtained by averaging the local such scores obtained from each individual score provided in the constructor, excluding scores that are returned as undefined (which are left out of the average).
- localScore(int, int) - Method in class edu.cmu.tetrad.search.score.IndTestScore
-
localScore.
- localScore(int, int) - Method in interface edu.cmu.tetrad.search.score.Score
-
Returns the local score of the graph.
- localScore(int, int...) - Method in class edu.cmu.tetrad.search.score.BasisFunctionBicScore
-
Calculates the local score for a given node and its parent nodes.
- localScore(int, int[]) - Method in class edu.cmu.tetrad.search.score.BdeScore
-
Returns the score for the given parent given its parents, where these are specified as column indices into the dataset.
- localScore(int, int[]) - Method in class edu.cmu.tetrad.search.score.BdeuScore
-
Calculates the local score of a node given its parents.
- localScore(int, int...) - Method in class edu.cmu.tetrad.search.score.ConditionalGaussianScore
-
Calculates the sample likelihood and BIC score for index i given its parents in a simple SEM model.
- localScore(int, int...) - Method in class edu.cmu.tetrad.search.score.DegenerateGaussianScore
-
Calculates the sample likelihood and BIC score for i given its parents in a simple SEM model.
- localScore(int, int[]) - Method in class edu.cmu.tetrad.search.score.DiscreteBicScore
-
The score of a node given its parents.
- localScore(int, int[]) - Method in class edu.cmu.tetrad.search.score.DiscreteBicScoreAdTree
-
The score of a node given its parents.
- localScore(int, int...) - Method in class edu.cmu.tetrad.search.score.EbicScore
-
Returns the score of the node at index i, given its parents.
- localScore(int, int...) - Method in class edu.cmu.tetrad.search.score.GicScores
-
Calculates the sample likelihood and BIC score for index i given its parents in a simple SEM model.
- localScore(int, int[]) - Method in class edu.cmu.tetrad.search.score.GraphScore
-
Calculates the sample likelihood and BIC score for y given its z in a simple SEM model.
- localScore(int, int[]) - Method in class edu.cmu.tetrad.search.score.ImagesScore
-
Returns the (aggregate) local score for a variable given its parents, which is obtained by averaging the local such scores obtained from each individual score provided in the constructor, excluding scores that are returned as undefined (which are left out of the average).
- localScore(int, int[]) - Method in class edu.cmu.tetrad.search.score.IndTestScore
-
Calculates the sample likelihood and BIC score for i, given its parents in a simple SEM model
- localScore(int, int...) - Method in class edu.cmu.tetrad.search.score.MvpScore
-
The local score of the child given its parents.
- localScore(int, int...) - Method in class edu.cmu.tetrad.search.score.PoissonPriorScore
-
Returns the score of the node at index i, given its parents.
- localScore(int, int...) - Method in interface edu.cmu.tetrad.search.score.Score
-
The score of a node given its parents.
- localScore(int, int...) - Method in class edu.cmu.tetrad.search.score.SemBicScore
-
Returns the score for the given node and its parents.
- localScore(int, int...) - Method in class edu.cmu.tetrad.search.score.ZsbScore
-
Returns the score for the child given the parents.
- localScore(int, int...) - Method in class edu.cmu.tetrad.search.work_in_progress.MagCgBicScore
-
The score of a node given its parents.
- localScore(int, int...) - Method in class edu.cmu.tetrad.search.work_in_progress.MagDgBicScore
-
The score of a node given its parents.
- localScore(int, int...) - Method in class edu.cmu.tetrad.search.work_in_progress.MagSemBicScore
-
The score of a node given its parents.
- localScore(int, int...) - Method in class edu.cmu.tetrad.search.work_in_progress.MnlrScore
-
The local score of the child given its parents.
- localScore(int, int...) - Method in class edu.cmu.tetrad.search.work_in_progress.SemBicScoreDeterministic
-
Calculates the sample likelihood and BIC score for i given its parents in a simple SEM model
- localScore(int, int[], int) - Method in class edu.cmu.tetrad.search.score.ImagesScore
-
Returns the (aggregate) local score for a variable given its parents, which is obtained by averaging the local such scores obtained from each individual score provided in the constructor, excluding scores that are returned as undefined (which are left out of the average).
- localScore(int, int[], int[], int[]) - Method in class edu.cmu.tetrad.search.work_in_progress.ISBDeuScore
- localScore(int, int[], int[], int[]) - Method in class edu.cmu.tetrad.search.work_in_progress.ISBicScore
-
Calculates the local score for a given node considering its parents.
- localScore(int, int[], int[], int[]) - Method in interface edu.cmu.tetrad.search.work_in_progress.ISScore
-
Calculates the local score for a given node in the context of its parent nodes and children population.
- localScore1(int, int[], int[], int[]) - Method in class edu.cmu.tetrad.search.work_in_progress.ISBDeuScore
-
Computes the local score for a given node considering both population and context-specific parents.
- localScore1(int, int[], int[], int[]) - Method in class edu.cmu.tetrad.search.work_in_progress.ISBicScore
-
Computes a local score based on the given node, its parents, and its children's populations.
- localScore1(int, int[], int[], int[]) - Method in interface edu.cmu.tetrad.search.work_in_progress.ISScore
-
Calculates the local score for a given node in the context of its parent nodes and children population, without using structure prior.
- localScoreDiff(int, int) - Method in class edu.cmu.tetrad.search.score.GraphScore
-
Returns the local score difference of the graph.
- localScoreDiff(int, int) - Method in interface edu.cmu.tetrad.search.score.Score
-
Returns the local score difference of the graph.
- localScoreDiff(int, int, int[]) - Method in class edu.cmu.tetrad.search.score.BasisFunctionBicScore
- localScoreDiff(int, int, int[]) - Method in class edu.cmu.tetrad.search.score.BdeScore
-
Returns the score difference of the graph.
- localScoreDiff(int, int, int[]) - Method in class edu.cmu.tetrad.search.score.BdeuScore
-
Calculates the difference in local scores between two nodes y and x, when x is added to a set of nodes z.
- localScoreDiff(int, int, int[]) - Method in class edu.cmu.tetrad.search.score.ConditionalGaussianScore
-
Calculates localScore(y | z, x) - localScore(z).
- localScoreDiff(int, int, int[]) - Method in class edu.cmu.tetrad.search.score.DegenerateGaussianScore
-
Calculates localScore(y | z, x) - localScore(z).
- localScoreDiff(int, int, int[]) - Method in class edu.cmu.tetrad.search.score.DiscreteBicScore
-
Returns the score difference of the graph.
- localScoreDiff(int, int, int[]) - Method in class edu.cmu.tetrad.search.score.DiscreteBicScoreAdTree
-
Returns the score difference of the graph.
- localScoreDiff(int, int, int[]) - Method in class edu.cmu.tetrad.search.score.EbicScore
-
Returns the score difference of the graph.
- localScoreDiff(int, int, int[]) - Method in class edu.cmu.tetrad.search.score.GicScores
-
Returns the score difference of the graph.
- localScoreDiff(int, int, int[]) - Method in class edu.cmu.tetrad.search.score.GraphScore
-
Returns the score difference of the graph.
- localScoreDiff(int, int, int[]) - Method in class edu.cmu.tetrad.search.score.ImagesScore
-
Returns the score difference of the graph.
- localScoreDiff(int, int, int[]) - Method in class edu.cmu.tetrad.search.score.IndTestScore
-
Returns the score difference of the graph.
- localScoreDiff(int, int, int[]) - Method in class edu.cmu.tetrad.search.score.MvpScore
-
Returns localScore(y | z, x) - localScore(y | z).
- localScoreDiff(int, int, int[]) - Method in class edu.cmu.tetrad.search.score.PoissonPriorScore
-
Returns the score difference of the graph.
- localScoreDiff(int, int, int[]) - Method in interface edu.cmu.tetrad.search.score.Score
-
Returns the score difference of the graph.
- localScoreDiff(int, int, int[]) - Method in class edu.cmu.tetrad.search.score.SemBicScore
-
Returns the score difference of the graph.
- localScoreDiff(int, int, int[]) - Method in class edu.cmu.tetrad.search.score.ZsbScore
-
Returns the score difference of the graph.
- localScoreDiff(int, int, int[]) - Method in class edu.cmu.tetrad.search.work_in_progress.MagCgBicScore
-
Returns the score difference of the graph.
- localScoreDiff(int, int, int[]) - Method in class edu.cmu.tetrad.search.work_in_progress.MagDgBicScore
-
Returns the score difference of the graph.
- localScoreDiff(int, int, int[]) - Method in class edu.cmu.tetrad.search.work_in_progress.MagSemBicScore
-
Returns the score difference of the graph.
- localScoreDiff(int, int, int[]) - Method in class edu.cmu.tetrad.search.work_in_progress.MnlrScore
-
localScore(y | z, x) - localScore(y | z).
- localScoreDiff(int, int, int[]) - Method in class edu.cmu.tetrad.search.work_in_progress.SemBicScoreDeterministic
-
Returns the score difference of the graph.
- localScoreDiff(int, int, int[], int[], int[]) - Method in class edu.cmu.tetrad.search.work_in_progress.ISBDeuScore
-
Computes the difference in local scores when element x is appended to the array z.
- localScoreDiff(int, int, int[], int[], int[]) - Method in class edu.cmu.tetrad.search.work_in_progress.ISBicScore
-
Calculates the difference in local scores for a given variable when it is added to or removed from a set of parent variables.
- localScoreDiff(int, int, int[], int[], int[]) - Method in interface edu.cmu.tetrad.search.work_in_progress.ISScore
-
Calculates the difference between local scores before and after introducing a change in the relationship between nodes x and y, considering their parent and children populations.
- LOCK - Enum constant in enum class edu.cmu.tetrad.graph.NodeType
-
Constant
LOCK
- Lofs - Class in edu.cmu.tetrad.search
-
Implements a number of methods which take a fixed graph as input and use linear, non-Gaussian methods to orient the edges in the graph.
- Lofs(Graph, List<DataSet>) - Constructor for class edu.cmu.tetrad.search.Lofs
-
Constructor.
- Lofs.Rule - Enum Class in edu.cmu.tetrad.search
-
Give a list of options for rules for doing the non-Gaussian orientations.
- Lofs.Score - Enum Class in edu.cmu.tetrad.search
-
Gives a list of options for non-Gaussian transformations that can be used for some scores.
- log(String) - Method in class edu.cmu.tetrad.util.TetradLogger
-
Logs the given message regardless of the logger's getModel settings.
- logbeta(double, double) - Static method in class edu.cmu.tetrad.util.ProbUtils
-
Calculates the log beta function of p and q.
- logChoose(int, int) - Static method in class edu.cmu.tetrad.util.MathUtils
-
logChoose.
- logClusters(Set<Set<Integer>>, List<Node>) - Static method in class edu.cmu.tetrad.search.utils.ClusterUtils
-
Logs the clusters.
- logCombinations(int, int) - Static method in class edu.cmu.tetrad.util.ChoiceGenerator
-
Returns the natural logarithm of the number of combinations of a choose b.
- logcosh - Enum constant in enum class edu.cmu.tetrad.search.Lofs.Score
-
The logcosh.
- LOGCOSH - Static variable in class edu.cmu.tetrad.search.FastIca
-
One of the function types that can be used to approximate negative entropy.
- logCoshExp() - Static method in class edu.cmu.tetrad.util.StatUtils
-
logCoshExp.
- logCoshScore(double[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
logCoshScore.
- logData(DataSet, double, boolean, int) - Static method in class edu.cmu.tetrad.data.DataTransforms
-
Log or unlog data
- logDataModelList(String, DataModelList) - Static method in class edu.cmu.tetrad.data.LogDataUtils
-
logDataModelList.
- LogDataUtils - Class in edu.cmu.tetrad.data
-
Sundry methods for logging data.
- logFactorial(int) - Static method in class edu.cmu.tetrad.util.MathUtils
-
logFactorial.
- logistic(double) - Static method in class edu.cmu.tetrad.util.MathUtils
-
logistic.
- LogisticRegression - Class in edu.cmu.tetrad.regression
-
Implements a logistic regression algorithm based on a Javascript implementation by John Pezzullo.
- LogisticRegression(DataSet) - Constructor for class edu.cmu.tetrad.regression.LogisticRegression
-
A mixed data set.
- LogisticRegression.Result - Class in edu.cmu.tetrad.regression
-
The result of a logistic regression.
- LogNormal - Class in edu.cmu.tetrad.util.dist
-
Represents a lognormal distribution for purposes of sampling.
- LogNormal(double) - Constructor for class edu.cmu.tetrad.util.dist.LogNormal
-
Constructor for LogNormal.
- logsum(List<Double>) - Static method in class edu.cmu.tetrad.util.StatUtils
-
logsum.
- LogUtils - Class in edu.cmu.tetrad.util
-
Sets up streams for logging via the Java logging API.
- LogUtilsSearch - Class in edu.cmu.tetrad.search.utils
-
Contains utilities for logging search steps.
- LogUtilsSearch() - Constructor for class edu.cmu.tetrad.search.utils.LogUtilsSearch
-
Constructor.
- LongDataBox - Class in edu.cmu.tetrad.data
-
Stores a 2D array of long data.
- LongDataBox(long[][]) - Constructor for class edu.cmu.tetrad.data.LongDataBox
-
Constructs a new data box using the given 2D long data array as data.
- LOWER_BOUND - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
LOWER_BOUND="lowerBound"
- LPAREN - Enum constant in enum class edu.cmu.tetrad.calculator.parser.Token
-
Left parenthesis.
- LT - Enum constant in enum class edu.cmu.tetrad.sem.ParamComparison
-
Represents the "LT" comparison type for a parameter in SEM estimation.
- LT - Enum constant in enum class edu.cmu.tetrad.sem.ParamConstraintType
-
Represents a parameter constraint type LT (less than).
- LTestBoolSearch - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.akutsu
-
This is merely a main program used to read a binarized measurement data set and to instantiate a BoolSearch and run one or more search methods of that instance.
- LTestBoolSearch - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin
-
This is merely a main program used to read a binarized measurement data set and to instantiate a BoolSearch and run one or more search methods of that instance.
- LTester - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.biolingua
-
Class that makes some very simple tests on the classes LtMatrix, Graph, and Biolingua
- LTestPredictorSearch - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.ideker
-
LTestPredictorSearch class.
- LTestQnet3 - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.akutsu
-
LTestQnet3 class.
- LTestReveal - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin
-
LTestReveal class.
- LTestRevealSearch - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.reveal
-
This is merely a main program used to read a binarized measurement data set and to instantiate a RevealSearch and run one or more search methods of that instance.
- LTestRevealSearch - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin
-
This is merely a main program used to read a binarized measurement data set and to instantiate a RevealSearch and run one or more search methods of that instance.
- LTestSsys1 - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.akutsu
-
LTestSsys1 class.
- LTMatrix - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util
-
Implements a space-efficient Lower Triangular Matrix of elements of type
short
- LTMatrix(String) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.LTMatrix
-
Creates a lower triangular matrix reading it from file
fname
. - LTMatrix(String, int) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.LTMatrix
-
Creates a lower triangular matrix with
nrows
rows. - LTMatrixF - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util
-
Implements a space-efficient Lower Triangular Matrix of elements of type
float
- LTMatrixF(String) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.LTMatrixF
-
Creates a lower triangular matrix reading it from file
fname
. - LTMatrixF(String, int) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.LTMatrixF
-
Creates a lower triangular matrix with
nrows
rows. - LV_LITE_STARTS_WITH - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
LV_LITE_STARTS_WITGH="LvLiteStartsWith"
- LvDumb - Class in edu.cmu.tetrad.search
-
LV-Dumb is a class that implements the IGraphSearch interface.
- LvDumb(Score) - Constructor for class edu.cmu.tetrad.search.LvDumb
-
LV-Lite constructor.
- LvLite - Class in edu.cmu.tetrad.algcomparison.algorithm.oracle.pag
-
This class represents the LV-Lite algorithm, which is an implementation of the GFCI algorithm for learning causal structures from observational data using the BOSS algorithm as an initial CPDAG and using all score-based steps afterward.
- LvLite - Class in edu.cmu.tetrad.search
-
The LV-Lite algorithm (Latent Variable "Lite") algorithm implements a search algorithm for learning the structure of a graphical model from observational data with latent variables.
- LvLite() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.LvLite
-
This class represents a LV-Lite algorithm.
- LvLite(IndependenceWrapper, ScoreWrapper) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.LvLite
-
LV-Lite is a class that represents a LV-Lite algorithm.
- LvLite(Graph, IndependenceTest) - Constructor for class edu.cmu.tetrad.search.LvLite
-
Alternative LV-Lite constructor.
- LvLite(IndependenceTest, Score) - Constructor for class edu.cmu.tetrad.search.LvLite
-
LV-Lite constructor.
- LvLite.ExtraEdgeRemovalStyle - Enum Class in edu.cmu.tetrad.search
-
The ExtraEdgeRemovalStyle enum specifies the styles for removing extra edges.
- LvLite.START_WITH - Enum Class in edu.cmu.tetrad.search
-
Enumeration representing different start options.
M
- MagCgBicScore - Class in edu.cmu.tetrad.search.work_in_progress
-
Gives a BIC score for a linear, Gaussian MAG (Mixed Ancestral Graph).
- MagCgBicScore(DataSet) - Constructor for class edu.cmu.tetrad.search.work_in_progress.MagCgBicScore
-
Constructor.
- MagCgBicScore(DataSet, boolean) - Constructor for class edu.cmu.tetrad.search.work_in_progress.MagCgBicScore
-
Constructor.
- MagCgScore - Class in edu.cmu.tetrad.algcomparison.statistic
-
Takes a MAG in a PAG using Zhang's method and then reports the MAG DG BIC score for it.
- MagCgScore() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.MagCgScore
-
Constructs the statistic.
- MagDgBicScore - Class in edu.cmu.tetrad.algcomparison.score
-
Wrapper for degenerate Gaussian BIC score
- MagDgBicScore - Class in edu.cmu.tetrad.search.work_in_progress
-
Gives a BIC score for a linear, Gaussian MAG (Mixed Ancestral Graph).
- MagDgBicScore() - Constructor for class edu.cmu.tetrad.algcomparison.score.MagDgBicScore
-
Initializes a new instance of the DegenerateGaussianBicScore class.
- MagDgBicScore(DataSet) - Constructor for class edu.cmu.tetrad.search.work_in_progress.MagDgBicScore
-
Constructor.
- MagDgBicScore(DataSet, boolean) - Constructor for class edu.cmu.tetrad.search.work_in_progress.MagDgBicScore
-
Constructor.
- MagDgScore - Class in edu.cmu.tetrad.algcomparison.statistic
-
Takes a MAG in a PAG using Zhang's method and then reports the MAG DG BIC score for it.
- MagDgScore() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.MagDgScore
-
Constructs the statistic.
- magFromPag(Graph) - Static method in class edu.cmu.tetrad.graph.GraphTransforms
-
Picks a random Maximal Ancestral Graph (MAG) from the given Partial Ancestral Graph (PAG) by randomly orienting the circle endpoints as either tail or arrow and then applying the final FCI orient algorithm after each change.
- MagSemBicScore - Class in edu.cmu.tetrad.search.work_in_progress
-
Gives a BIC score for a linear, Gaussian MAG (Mixed Ancestral Graph).
- MagSemBicScore(DataSet, boolean) - Constructor for class edu.cmu.tetrad.search.work_in_progress.MagSemBicScore
-
Constructor.
- MagSemBicScore(ICovarianceMatrix) - Constructor for class edu.cmu.tetrad.search.work_in_progress.MagSemBicScore
-
Constructor.
- MagSemBicTest - Class in edu.cmu.tetrad.algcomparison.independence
-
Wrapper for Fisher Z test.
- MagSemBicTest() - Constructor for class edu.cmu.tetrad.algcomparison.independence.MagSemBicTest
-
Constructs a new instance of the test.
- MagSemScore - Class in edu.cmu.tetrad.algcomparison.statistic
-
Takes a MAG in a PAG using Zhang's method and then reports the MAG SEM BIC score for it.
- MagSemScore() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.MagSemScore
-
Constructs the statistic.
- main(String...) - Static method in class edu.cmu.tetrad.algcomparison.examples.ExampleCompareFromFiles
-
main.
- main(String...) - Static method in class edu.cmu.tetrad.algcomparison.examples.ExampleCompareSimulation
-
main.
- main(String...) - Static method in class edu.cmu.tetrad.algcomparison.examples.ExampleCompareSimulation2
-
main.
- main(String...) - Static method in class edu.cmu.tetrad.algcomparison.examples.ExampleCompareSimulationTimeSeries
-
main.
- main(String...) - Static method in class edu.cmu.tetrad.algcomparison.examples.ExampleNonlinearSave
-
main.
- main(String...) - Static method in class edu.cmu.tetrad.algcomparison.examples.ExampleSave
-
main.
- main(String...) - Static method in class edu.cmu.tetrad.algcomparison.examples.MVPCompareFromFiles
-
main.
- main(String...) - Static method in class edu.cmu.tetrad.algcomparison.examples.RunConfig
-
main.
- main(String...) - Static method in class edu.cmu.tetrad.algcomparison.examples.RunKemmeren
-
main.
- main(String...) - Static method in class edu.cmu.tetrad.algcomparison.examples.Save
-
main.
- main(String...) - Static method in class edu.cmu.tetrad.algcomparison.examples.SaveDGSimulations
-
main.
- main(String...) - Static method in class edu.cmu.tetrad.algcomparison.examples.TestBoss
-
main.
- main(String...) - Static method in class edu.cmu.tetrad.algcomparison.examples.TestDegenerateGaussian
-
The main method initializes various parameters, statistics, algorithms, simulations, and a comparison object.
- main(String[]) - Static method in class edu.cmu.tetrad.calibration.DataForCalibrationRfci
-
main.
- main(String[]) - Static method in class edu.cmu.tetrad.classify.ClassifierMbDiscrete
-
Runs MbClassify using moves-line arguments.
- main(String[]) - Static method in class edu.cmu.tetrad.data.GeneralAndersonDarlingTest
-
main.
- main(String[]) - Static method in class edu.cmu.tetrad.graph.Paths.AllCliquesAlgorithm
-
Main method.
- main(String[]) - Static method in class edu.cmu.tetrad.search.FciOrientDijkstra
-
A simple test of the Dijkstra algorithm.
- main(String...) - Static method in class edu.cmu.tetrad.search.utils.GraphoidAxioms
-
The main methods.
- main(String[]) - Static method in class edu.cmu.tetrad.search.utils.HungarianAlgorithm
-
main.
- main(String[]) - Static method in class edu.cmu.tetrad.search.utils.R5R9Dijkstra
-
A simple test of the Dijkstra algorithm.
- main(String...) - Static method in class edu.cmu.tetrad.search.work_in_progress.DemixerMMLKun
-
main.
- main(String...) - Static method in class edu.cmu.tetrad.simulation.GdistanceApply
-
main.
- main(String...) - Static method in class edu.cmu.tetrad.simulation.GdistanceRandomApply
-
main.
- main(String...) - Static method in class edu.cmu.tetrad.simulation.GdistanceTest
-
The main method generates random graphs, loads a location map, calculates the distance between two graphs, and saves the output to a file.
- main(String...) - Static method in class edu.cmu.tetrad.simulation.HsimCompareRepeat
-
main.
- main(String[]) - Static method in class edu.cmu.tetrad.simulation.HsimEvalFromData
-
main.
- main(String[]) - Static method in class edu.cmu.tetrad.simulation.HsimRepeatAuto
-
main.
- main(String[]) - Static method in class edu.cmu.tetrad.simulation.HsimSchedule
-
main.
- main(String[]) - Static method in class edu.cmu.tetrad.simulation.HsimStudy
-
main.
- main(String[]) - Static method in class edu.cmu.tetrad.simulation.HsimStudyAuto
-
main.
- main(String...) - Static method in class edu.cmu.tetrad.study.examples.conditions.BryanSensitivityStudy
-
Run the example.
- main(String...) - Static method in class edu.cmu.tetrad.study.examples.conditions.ExampleCompareFromFiles
-
main.
- main(String...) - Static method in class edu.cmu.tetrad.study.examples.conditions.ExampleCompareSimulation
-
main.
- main(String...) - Static method in class edu.cmu.tetrad.study.examples.conditions.ExampleCompareSimulationDiscrete
-
main.
- main(String...) - Static method in class edu.cmu.tetrad.study.examples.conditions.ExampleFirstInflection
-
main.
- main(String...) - Static method in class edu.cmu.tetrad.study.examples.conditions.ExampleSave
-
main.
- main(String...) - Static method in class edu.cmu.tetrad.study.examples.conditions.ExampleStars
-
main.
- main(String...) - Static method in class edu.cmu.tetrad.study.examples.conditions.LingamStudy
-
main.
- main(String[]) - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.akutsu.LTestBoolSearch
-
main.
- main(String[]) - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.akutsu.LTestQnet3
-
main.
- main(String[]) - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.akutsu.LTestSsys1
-
main.
- main(String[]) - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.biolingua.BiolinguaRunner
-
Main method, runs the Biolingua algorithm
- main(String[]) - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.biolingua.LTester
-
main.
- main(String[]) - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.ideker.LTestPredictorSearch
-
main.
- main(String[]) - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.ideker.ReadControl
-
main.
- main(String[]) - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.ideker.ReadIdeker
-
The main method processes input data and performs various calculations and predictions.
- main(String[]) - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.reveal.LTestRevealSearch
-
main.
- main(String[]) - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.LTestBoolSearch
-
main.
- main(String[]) - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.LTestReveal
-
main.
- main(String[]) - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.LTestRevealSearch
-
main.
- main(String[]) - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.SimulateNetwork
-
main.
- main(String[]) - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.SimulateNetworkMain
-
main.
- main(String[]) - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.simexp.LinearSimExp1
-
main.
- main(String[]) - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.util.HandleyConvert
-
Converts the graph file from the moves line.
- main(String...) - Static method in class edu.cmu.tetrad.study.performance.ComparisonScript
-
main.
- main(String...) - Static method in class edu.cmu.tetrad.study.performance.ExploreComparison
-
main.
- main(String...) - Static method in class edu.cmu.tetrad.study.performance.PerformanceTests
-
main.
- main(String...) - Static method in class edu.cmu.tetrad.study.performance.PerformanceTestsDan
-
main.
- main(String[]) - Static method in class edu.cmu.tetrad.study.RBExperiments
-
Main method for executing the RBExperiments class and running a series of experiments.
- main(String[]) - Static method in class edu.cmu.tetrad.util.RandomUtil
-
main.
- main(String[]) - Static method in class edu.cmu.tetrad.util.UniformityTest
-
The main method of the UniformityTest class.
- main(String[]) - Static method in class edu.pitt.csb.mgm.ExampleMixedSearch
-
main.
- main(String[]) - Static method in class edu.pitt.csb.mgm.ExploreIndepTests
-
main.
- main(String[]) - Static method in class edu.pitt.csb.mgm.Mgm
-
main.
- main(String[]) - Static method in class edu.pitt.csb.mgm.MixedUtils
-
main.
- main(String[]) - Static method in class edu.pitt.csb.stability.StabilityUtils
-
main.
- main(String[]) - Static method in class edu.pitt.dbmi.algo.bayesian.constraint.inference.BayesianConstraintInference
-
Main method.
- main(String[]) - Static method in class edu.pitt.dbmi.algo.bayesian.constraint.inference.BayesianConstraintInferenceTest
-
Main method.
- main(String[]) - Static method in class edu.pitt.isp.sverchkov.data.AdTreeTest
-
Test the AD tree
- majority - Enum constant in enum class edu.cmu.tetrad.search.utils.ResolveSepsets.Method
-
Majority method
- majority - Enum constant in enum class edu.cmu.tetrad.search.work_in_progress.ResolveSepsetsDci.Method
-
The majority method.
- Majority - Enum constant in enum class edu.pitt.dbmi.algo.resampling.ResamplingEdgeEnsemble
-
Choose an edge iff its prob.
- makeBayesIm(String) - Static method in class edu.cmu.tetrad.bayes.BayesBifParser
-
Parses a string in BayesBif format and converts it into a BayesIm object.
- makeContinuousData(DataSet) - Static method in class edu.pitt.csb.mgm.MixedUtils
-
makeContinuousData.
- makeDAG(int, double, int) - Method in class edu.cmu.tetrad.calibration.DataForCalibrationRfci
-
makeDAG.
- makeGraph(Matrix, List<Node>) - Static method in class edu.cmu.tetrad.search.IcaLingD
-
Returns a graph given a coefficient matrix and a list of variables.
- makeGraph(List<Cstar.Record>) - Method in class edu.cmu.tetrad.search.Cstar
-
Makes a graph of the estimated predictors to the effect.
- makeLatexTable(String[][]) - Static method in class edu.cmu.tetrad.simulation.HsimUtils
-
makeLatexTable.
- makeMixedData(DataSet, Map<String, Integer>) - Static method in class edu.pitt.csb.mgm.MixedUtils
-
makeMixedData.
- makeMixedData(DataSet, Map<String, String>, int) - Static method in class edu.pitt.csb.mgm.MixedUtils
-
makeMixedData.
- makeMixedGraph(Graph, Map<String, Integer>) - Static method in class edu.pitt.csb.mgm.MixedUtils
-
makeMixedGraph.
- makeTable(LinkedList<Cstar.Record>) - Method in class edu.cmu.tetrad.search.Cstar
-
Returns a text table from the given records
- makeValidOrder(List<Node>) - Method in class edu.cmu.tetrad.graph.Paths
-
Reorders the given order into a valid causal order for either a DAG or a CPDAG.
- makeVertIntBox(DataSet) - Static method in class edu.cmu.tetrad.simulation.HsimUtils
-
makeVertIntBox.
- ManipulatingBayesUpdater - Interface in edu.cmu.tetrad.bayes
-
Interface for a Bayes updating algorithm that's capable of doing manipulation.
- Manipulation - Class in edu.cmu.tetrad.bayes
-
Stores information for a variable source about evidence we have for each variable as well as whether each variable has been manipulated.
- Manipulation(Manipulation) - Constructor for class edu.cmu.tetrad.bayes.Manipulation
-
Copy constructor.
- Manipulation(VariableSource) - Constructor for class edu.cmu.tetrad.bayes.Manipulation
-
Constructs a container for evidence for the given Bayes IM.
- MANUAL - Enum constant in enum class edu.cmu.tetrad.bayes.MlBayesIm.InitializationMethod
-
Represents a manual initialization method.
- MANUAL - Enum constant in enum class edu.cmu.tetrad.search.score.GicScores.RuleType
-
The lambda is set manually.
- ManualLagGraph - Class in edu.cmu.tetrad.study.gene.tetrad.gene.graph
-
Constructs as a (manual) update graph.
- ManualLagGraph(ManualLagGraphParams) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ManualLagGraph
-
Using the given parameters, constructs an BasicLagGraph.
- ManualLagGraphParams - Class in edu.cmu.tetrad.study.gene.tetrad.gene.graph
-
Stores the parameters needed to generate a new lag graph, whether randomized or manually constructed.
- ManualLagGraphParams() - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ManualLagGraphParams
-
Constructs a new parameters object.
- Mapping - Class in edu.cmu.tetrad.sem
-
Maps a parameter to the matrix element where its value is stored in the model.
- Mapping(ISemIm, Parameter, Matrix, int, int) - Constructor for class edu.cmu.tetrad.sem.Mapping
-
Constructs matrix new mapping using the given freeParameters.
- MARKOV_BLANKET - Enum constant in enum class edu.cmu.tetrad.search.ConditioningSetType
-
Conditioning on the Markov blanket of each variable in the graph.
- markovBlanket(Node) - Method in class edu.cmu.tetrad.graph.Paths
-
Returns the Markov Blanket of a given node in the graph.
- markovBlanket(Node, Graph) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Returns a Markov blanket of a node for a DAG, CPDAG, MAG, or PAG.
- markovBlanketSubgraph(Node, Graph) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Calculates the subgraph over the Markov blanket of a target node in a given DAG, CPDAG, MAG, or PAG.
- MarkovCheck - Class in edu.cmu.tetrad.search
-
Checks whether a graph is Markov given a data set.
- MarkovCheck(Graph, IndependenceTest, ConditioningSetType) - Constructor for class edu.cmu.tetrad.search.MarkovCheck
-
Constructor.
- MarkovCheck.AllSubsetsIndependenceFacts - Class in edu.cmu.tetrad.search
-
Stores the set of m-separation facts and the set of m-connection facts for a graph, for the global check.
- MarkovCheck.MarkovCheckRecord - Record Class in edu.cmu.tetrad.search
-
A single record for the results of the Markov check.
- MarkovCheckAdPasses - Class in edu.cmu.tetrad.algcomparison.statistic
-
Calculates the Anderson Darling P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).
- MarkovCheckAdPasses() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckAdPasses
-
Calculates the Anderson Darling P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).
- MarkovCheckAdPassesBestOf10 - Class in edu.cmu.tetrad.algcomparison.statistic
-
Calculates the Anderson Darling P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).
- MarkovCheckAdPassesBestOf10() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckAdPassesBestOf10
-
Calculates the Anderson Darling P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).
- MarkovCheckAndersonDarlingP - Class in edu.cmu.tetrad.algcomparison.statistic
-
Calculates the Anderson Darling P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).
- MarkovCheckAndersonDarlingP() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckAndersonDarlingP
-
Calculates the Anderson Darling P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).
- MarkovCheckAndersonDarlingPBestOf10 - Class in edu.cmu.tetrad.algcomparison.statistic
-
Calculates the Anderson Darling P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).
- MarkovCheckAndersonDarlingPBestOf10() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckAndersonDarlingPBestOf10
-
Calculates the Anderson Darling P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).
- MarkovCheckBinomialP - Class in edu.cmu.tetrad.algcomparison.statistic
-
Represents a markov check statistic that calculates the Binomial P value for whether the p-values for the estimated graph are distributed as U(0, 1).
- MarkovCheckBinomialP() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckBinomialP
-
Calculates the Kolmogorov-Smirnoff P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).
- MarkovCheckBinomialPBestOf10 - Class in edu.cmu.tetrad.algcomparison.statistic
-
Represents a markov check statistic that calculates the Binomial P value for whether the p-values for the estimated graph are distributed as U(0, 1).
- MarkovCheckBinomialPBestOf10() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckBinomialPBestOf10
-
Calculates the Kolmogorov-Smirnoff P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).
- MarkovCheckKolmogorovSmirnoffP - Class in edu.cmu.tetrad.algcomparison.statistic
-
Represents a markov check statistic that calculates the Kolmogorov-Smirnoff P value for whether the p-values for the estimated graph are distributed as U(0, 1).
- MarkovCheckKolmogorovSmirnoffP() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckKolmogorovSmirnoffP
-
Calculates the Kolmogorov-Smirnoff P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).
- MarkovCheckKolmogorovSmirnoffPBestOf10 - Class in edu.cmu.tetrad.algcomparison.statistic
-
Represents a markov check statistic that calculates the Kolmogorov-Smirnoff P value for whether the p-values for the estimated graph are distributed as U(0, 1).
- MarkovCheckKolmogorovSmirnoffPBestOf10() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckKolmogorovSmirnoffPBestOf10
-
Calculates the Kolmogorov-Smirnoff P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).
- MarkovCheckKsPasses - Class in edu.cmu.tetrad.algcomparison.statistic
-
Represents a markov check statistic that calculates the Kolmogorov-Smirnoff P value for whether the p-values for the estimated graph are distributed as U(0, 1).
- MarkovCheckKsPasses() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckKsPasses
-
Calculates the Kolmogorov-Smirnoff P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).
- MarkovCheckKsPassesBestOf10 - Class in edu.cmu.tetrad.algcomparison.statistic
-
Represents a markov check statistic that calculates the Kolmogorov-Smirnoff P value for whether the p-values for the estimated graph are distributed as U(0, 1).
- MarkovCheckKsPassesBestOf10() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.MarkovCheckKsPassesBestOf10
-
Calculates the Kolmogorov-Smirnoff P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).
- MarkovCheckRecord(double, double, double, double, double, double, int, int) - Constructor for record class edu.cmu.tetrad.search.MarkovCheck.MarkovCheckRecord
-
Creates an instance of a
MarkovCheckRecord
record class. - markovIndependence(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.utils.EnsureMarkov
-
Checks the independence of two nodes given a set of conditioning nodes, and if Markov is to be preserved, checks to make sure the additional independence does not generate p-values that violate the Markov property.
- MathewsCorrAdj - Class in edu.cmu.tetrad.algcomparison.statistic
-
Calculates the Matthew's correlation coefficient for adjacencies.
- MathewsCorrAdj() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.MathewsCorrAdj
-
Constructs a new instance of the statistic.
- MathewsCorrArrow - Class in edu.cmu.tetrad.algcomparison.statistic
-
Calculates the Matthew's correlation coefficient for adjacencies.
- MathewsCorrArrow() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.MathewsCorrArrow
-
Constructs a new instance of the statistic.
- MathUtils - Class in edu.cmu.tetrad.util
-
Some extra mathematical functions not contained in org.apache.commons.math3.util.FastMath.
- Matrix - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util
-
Implements a Matrix of elements of type
short
- Matrix - Class in edu.cmu.tetrad.util
-
Wraps the Apache math3 linear algebra library for most uses in Tetrad.
- Matrix(double[][]) - Constructor for class edu.cmu.tetrad.util.Matrix
-
Constructor for Matrix.
- Matrix(int, int) - Constructor for class edu.cmu.tetrad.util.Matrix
-
Constructor for Matrix.
- Matrix(Matrix) - Constructor for class edu.cmu.tetrad.util.Matrix
-
Constructor for Matrix.
- Matrix(String) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.Matrix
-
Creates a matrix reading it from a file
fname
. - Matrix(String, int) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.Matrix
-
Creates a matrix with name
mname
, andnrows
rows. - Matrix(RealMatrix) - Constructor for class edu.cmu.tetrad.util.Matrix
-
Constructor for Matrix.
- MatrixF - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util
-
Implements a Matrix of elements of type
float
- MatrixF(String) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.MatrixF
-
Creates a matrix reading it from a file
fname
. - MatrixF(String, int) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.MatrixF
-
Creates a matrix with name
mname
, andnrows
rows. - MatrixUtils - Class in edu.cmu.tetrad.util
-
Class Matrix includes several public static functions performing matrix operations.
- max(double[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
max.
- max(double[], int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
max.
- max(long[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
max.
- max(long[], int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
max.
- MAX - Static variable in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.LagGraphParams
-
Constant
MAX=1
- MAX - Static variable in class edu.cmu.tetrad.study.gene.tetrad.gene.history.SimpleRandomizer
-
Indicates maximum indegree.
- MAX_BLOCKING_PATH_LENGTH - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
MAX_BLOCKING_PATH_LENGTH="maxBlockingPathLength"
- MAX_CATEGORIES - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
MAX_CATEGORIES="maxCategories"
- MAX_DEGREE - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
MAX_DEGREE="maxDegree"
- MAX_DISCRIMINATING_PATH_LENGTH - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
MAX_PATH_LENGTH="maxPathLength"
- MAX_DISTINCT_VALUES_DISCRETE - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
MAX_DISTINCT_VALUES_DISCRETE="maxDistinctValuesDiscrete"
- MAX_FLOAT - Static variable in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.BasicMatrix
-
Maximum float value
- MAX_INDEGREE - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
MAX_INDEGREE="maxIndegree"
- MAX_INT - Static variable in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.BasicMatrix
-
Maximum int value
- MAX_ITERATIONS - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
MAX_ITERATIONS="maxIterations"
- MAX_OUTDEGREE - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
MAX_OUTDEGREE="maxOutdegree"
- MAX_P - Enum constant in enum class edu.cmu.tetrad.search.utils.PcCommon.ColliderDiscovery
-
FAS with Max P reasoning.
- MAX_SCORE_DROP - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
MAX_SCORE_DROP="maxScoreDrop"
- MAX_SEPSET_SIZE - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
MAX_SEPSET_SIZE="maxSepsetSize"
- MAX_SHORT - Static variable in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.BasicMatrix
-
Maximum short value
- maxCliques() - Method in class edu.cmu.tetrad.graph.Paths
-
Returns a set of all maximum cliques in the graph.
- maxEntApprox(double[]) - Static method in class edu.cmu.tetrad.search.DirectLingam
-
Calculates the maximum entropy approximation for the given array of values.
- maxEntApprox(double[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
maxEntApprox.
- Maximal - Class in edu.cmu.tetrad.algcomparison.statistic
-
Checks whether a PAG is maximal.
- Maximal() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.Maximal
-
Constructor for LegalPag.
- maximalCliques(Graph, List<Node>) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Finds all maximal cliques in a given graph.
- MaximalityCondition - Class in edu.cmu.tetrad.algcomparison.statistic
-
MaximalMag statistic.
- MaximalityCondition() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.MaximalityCondition
-
Constructs a new instance of the statistic.
- maximization(double) - Method in class edu.cmu.tetrad.bayes.EmBayesEstimator
-
This method iteratively estimates the parameters of the Bayes net using the dataset until the parameters don't change.
- maximization(double) - Method in class edu.cmu.tetrad.bayes.FactoredBayesStructuralEM
-
This method allows specification of the tolerance parameter used in Bayes EM estimation.
- maximizeDiagonal(Matrix) - Static method in class edu.cmu.tetrad.search.IcaLingD
-
Finds a column permutation of the W matrix that maximizes the sum of 1 / |Wii| for diagonal elements Wii in W.
- MAXIT - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
MAXIT="maxit"
- MaxP - Class in edu.cmu.tetrad.search.utils
-
Performs a Max-P orientation of unshielded triples in a graph.
- MaxP(IndependenceTest) - Constructor for class edu.cmu.tetrad.search.utils.MaxP
-
Constructor.
- MAY_NOT_CONTAIN - Enum constant in enum class edu.cmu.tetrad.calculator.parser.ExpressionParser.RestrictionType
-
The expression may not contain parameters in the given list.
- MAY_ONLY_CONTAIN - Enum constant in enum class edu.cmu.tetrad.calculator.parser.ExpressionParser.RestrictionType
-
The expression may only contain parameters in the given list.
- MB - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
MB="mb"
- MbUtils - Class in edu.cmu.tetrad.search.utils
-
Provides some useful utilities for dealing with Markov blankets and Markov blanket DAGs.
- mean(double[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
mean.
- mean(double[], int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
mean.
- mean(long[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
mean.
- mean(long[], int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
mean.
- mean(Matrix) - Static method in class edu.cmu.tetrad.data.DataUtils
-
mean.
- mean(Vector, int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
mean.
- MEAN - Enum constant in enum class edu.cmu.tetrad.sem.ParamType
-
Variable Mean parameter type for SEM models.
- MEAN - Static variable in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.LagGraphParams
-
Constant
MEAN=2
- MEAN - Static variable in class edu.cmu.tetrad.study.gene.tetrad.gene.history.SimpleRandomizer
-
Indicates mean indegree.
- MEAN_HIGH - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
MEAN_HIGH="meanHigh"
- MEAN_LOW - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
MEAN_LOW="meanLow"
- meanAbsolute(double[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
meanAbsolute.
- MeanInterpolator - Class in edu.cmu.tetrad.data
-
Returns a data set in which missing values in each column are filled using the mean of that column.
- MeanInterpolator() - Constructor for class edu.cmu.tetrad.data.MeanInterpolator
-
Constructor for MeanInterpolator.
- means() - Method in class edu.cmu.tetrad.sem.StandardizedSemIm
-
means.
- means(double[][]) - Static method in class edu.cmu.tetrad.data.DataUtils
-
Column major data.
- means(Matrix) - Static method in class edu.cmu.tetrad.data.DataUtils
-
means.
- MEASURED - Enum constant in enum class edu.cmu.tetrad.graph.NodeType
-
Constant
MEASURED
- MEASURED_MEASURED_IMPURE_ASSOCIATIONS - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
MEASURED_MEASURED_IMPURE_ASSOCIATIONS="measuredMeasuredImpureAssociations"
- MEASURED_MEASURED_IMPURE_PARENTS - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
MEASURED_MEASURED_IMPURE_PARENTS="measuredMeasuredImpureParents"
- MEASUREMENT_MODEL_DEGREE - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
MEASUREMENT_MODEL_DEGREE="measurementModelDegree"
- MEASUREMENT_VARIANCE - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
MEASUREMENT_VARIANCE="measurementVariance"
- MeasurementSimulator - Class in edu.cmu.tetrad.study.gene.tetrad.gene.simulation
-
Simulates measurement genetic data using an underlying GeneHistory object to generate individual cell data.
- MeasurementSimulator(Parameters) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.MeasurementSimulator
-
Constructs a measurement simulator using the given history.
- MeasurementSimulatorParams - Class in edu.cmu.tetrad.study.gene.tetradapp.model
-
Wraps MeasurementSimulator so that it may be used as a parameter object.
- MeasurementSimulatorParams(Parameters) - Constructor for class edu.cmu.tetrad.study.gene.tetradapp.model.MeasurementSimulatorParams
-
Constructs a measurement simulator using the given history.
- median(double[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
median.
- median(double[], int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
median.
- median(long[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
median.
- median(long[], int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
median.
- MeekRules - Class in edu.cmu.tetrad.search.utils
-
Implements Meek's complete orientation rule set for PC (Chris Meek (1995), "Causal inference and causal explanation orienting.
- MeekRules() - Constructor for class edu.cmu.tetrad.search.utils.MeekRules
-
Constructs the
MeekRules
with no logging. - Memorable - Interface in edu.cmu.tetrad.util
-
Tags a session node as "memorable", so that it won't be forgotten when a model is destroyed.
- Mgm - Class in edu.cmu.tetrad.algcomparison.algorithm.mixed
-
MGM.
- Mgm - Class in edu.pitt.csb.mgm
-
Implementation of Lee and Hastie's (2012) pseudolikelihood method for learning Mixed Gaussian-Categorical Graphical Models Created by ajsedgewick on 7/15/15.
- Mgm() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.mixed.Mgm
-
Constructor for Mgm.
- Mgm(DoubleMatrix2D, DoubleMatrix2D, List<Node>, int[], double[]) - Constructor for class edu.pitt.csb.mgm.Mgm
-
Constructor for Mgm.
- Mgm(DataSet, double[]) - Constructor for class edu.pitt.csb.mgm.Mgm
-
Constructor for Mgm.
- MGM_PARAM1 - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
MGM_PARAM1="mgmParam1"
- MGM_PARAM2 - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
MGM_PARAM2="mgmParam2"
- MGM_PARAM3 - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
MGM_PARAM3="mgmParam3"
- Mgm.MGMParams - Class in edu.pitt.csb.mgm
-
The parameters of the MGM model.
- MGMParams() - Constructor for class edu.pitt.csb.mgm.Mgm.MGMParams
-
Default constructor
- MGMParams(DoubleMatrix1D, int, int) - Constructor for class edu.pitt.csb.mgm.Mgm.MGMParams
-
copy params from flattened vector
- MGMParams(DoubleMatrix2D, DoubleMatrix1D, DoubleMatrix2D, DoubleMatrix2D, DoubleMatrix1D, DoubleMatrix1D) - Constructor for class edu.pitt.csb.mgm.Mgm.MGMParams
-
nothing is copied here, all pointers back to inputs...
- MGMParams(Mgm.MGMParams) - Constructor for class edu.pitt.csb.mgm.Mgm.MGMParams
-
copy from another parameter set
- MGMWrapper(double...) - Constructor for class edu.pitt.csb.stability.SearchWrappers.MGMWrapper
-
should be array three parameters for lambdas of each edge type
- MillisecondTimes - Class in edu.cmu.tetrad.util
-
Reports elapsed time in wall time, user time, and CPU time in milliseconds.
- MillisecondTimes.Type - Enum Class in edu.cmu.tetrad.util
-
An enum for the type of time.
- Mimbuild - Class in edu.cmu.tetrad.search
-
Provides an implementation of Mimbuild, an algorithm that takes a clustering of variables, each of which is explained by a single latent, then forms the implied covariance matrix over the latent variables, then runs a CPDAG search to in the structure over the latent themselves.
- Mimbuild() - Constructor for class edu.cmu.tetrad.search.Mimbuild
-
Constructs a new Mimbuild search.
- MimbuildTrek - Class in edu.cmu.tetrad.search
-
Implements Mimbuild using the theory of treks and ranks.
- MimbuildTrek() - Constructor for class edu.cmu.tetrad.search.MimbuildTrek
-
Empty constructor.
- mimClusters(Graph) - Static method in class edu.cmu.tetrad.search.utils.ClusterUtils
-
Converts a list of indices into a list of Nodes representing a cluster.
- MimUtils - Class in edu.cmu.tetrad.search.utils
-
Provides some utility methods for Purify, Build Clusters, and Mimbuild.
- min(double[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
min.
- min(double[], int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
min.
- min(long[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
min.
- min(long[], int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
min.
- MIN_CATEGORIES - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
MIN_CATEGORIES="minCategories"
- MIN_COUNT_PER_CELL - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
MIN_COUNT_PER_CELL="minCountPerCell"
- MIN_FLOAT - Static variable in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.BasicMatrix
-
Minimum float value
- MIN_INT - Static variable in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.BasicMatrix
-
Minimum int value
- MIN_SAMPLE_SIZE_PER_CELL - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
COMPARE_GRAPH_ALGCOMP="compareGraphAlgcomp"
- MIN_SHORT - Static variable in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.BasicMatrix
-
Minimum short getValue
- minCoveringSet(SortedSet[][]) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.ideker.ItkPredictorSearch
-
minCoveringSet.
- minus(Matrix) - Method in class edu.cmu.tetrad.util.Matrix
-
minus.
- minus(Vector) - Method in class edu.cmu.tetrad.util.Vector
-
minus.
- MisclassificationUtils - Class in edu.cmu.tetrad.graph
-
Some utilities for generating misclassification tables for graphs.
- MISSING_VALUE - Static variable in class edu.cmu.tetrad.data.DiscreteVariable
-
This is the index in the data which represents missing data internally for this variable.
- Mixed - Enum constant in enum class edu.cmu.tetrad.data.DataType
-
Mixed.
- Mixed - Annotation Interface in edu.cmu.tetrad.annotation
-
Data with variables that have linear relationship.
- MixedDataBox - Class in edu.cmu.tetrad.data
-
Stores a 2D array of double continuousData.
- MixedDataBox(List<Node>, int) - Constructor for class edu.cmu.tetrad.data.MixedDataBox
-
The variables here are used only to determine which columns are discrete and which are continuous; bounds checking is not done.
- MixedDataBox(List<Node>, int, double[][], int[][]) - Constructor for class edu.cmu.tetrad.data.MixedDataBox
-
This constructor allows other data readers to populate the fields directly.
- MixedUtils - Class in edu.pitt.csb.mgm
-
Created by ajsedgewick on 7/29/15.
- MixtureModel - Class in edu.cmu.tetrad.search.work_in_progress
-
Represents a Gaussian mixture model -- a dataset with data sampled from two or more multivariate Gaussian distributions.
- MixtureModel(DataSet, double[][], double[][], double[], Matrix[], double[][]) - Constructor for class edu.cmu.tetrad.search.work_in_progress.MixtureModel
-
Constructs a mixture model from a mixed data set, a means matrix, a weights array, a variance matrix, and a gamma matrix.
- MixtureOfGaussians - Class in edu.cmu.tetrad.util.dist
-
Wraps a chi square distribution for purposes of drawing random samples.
- MixtureOfGaussians(double, double, double, double, double) - Constructor for class edu.cmu.tetrad.util.dist.MixtureOfGaussians
-
Constructor for MixtureOfGaussians.
- mkRandSEMDAG(int, int) - Static method in class edu.cmu.tetrad.simulation.HsimUtils
-
mkRandSEMDAG.
- MlBayesEstimator - Class in edu.cmu.tetrad.bayes
-
Estimates parameters of the given Bayes net from the given data using maximum likelihood method.
- MlBayesEstimator(double) - Constructor for class edu.cmu.tetrad.bayes.MlBayesEstimator
-
Create an instance of MlBayesEstimator with the given prior.
- MlBayesEstimatorOld - Class in edu.cmu.tetrad.bayes
-
Estimates parameters of the given Bayes net from the given data using maximum likelihood method.
- MlBayesEstimatorOld() - Constructor for class edu.cmu.tetrad.bayes.MlBayesEstimatorOld
-
Constructor for MlBayesEstimator.
- MlBayesIm - Class in edu.cmu.tetrad.bayes
-
Stores a table of probabilities for a Bayes net and, together with BayesPm and Dag, provides methods to manipulate this table.
- MlBayesIm(BayesIm) - Constructor for class edu.cmu.tetrad.bayes.MlBayesIm
-
Copy constructor.
- MlBayesIm(BayesPm) - Constructor for class edu.cmu.tetrad.bayes.MlBayesIm
-
Constructs a new BayesIm from the given BayesPm, initializing all values as Double.NaN ("?").
- MlBayesIm(BayesPm, boolean) - Constructor for class edu.cmu.tetrad.bayes.MlBayesIm
-
Constructs an instance of MlBayesIm.
- MlBayesIm(BayesPm, BayesIm, MlBayesIm.InitializationMethod) - Constructor for class edu.cmu.tetrad.bayes.MlBayesIm
-
Constructs a new BayesIm from the given BayesPm, initializing values either as MANUAL or RANDOM, but using values from the old BayesIm provided where posssible.
- MlBayesIm(BayesPm, MlBayesIm.InitializationMethod) - Constructor for class edu.cmu.tetrad.bayes.MlBayesIm
-
Constructs a new BayesIm from the given BayesPm, initializing values either as MANUAL or RANDOM.
- MlBayesIm.CptMapType - Enum Class in edu.cmu.tetrad.bayes
-
An enumeration representing the different types of CptMap.
- MlBayesIm.InitializationMethod - Enum Class in edu.cmu.tetrad.bayes
-
The InitializationMethod enum represents different methods of initializing a class object.
- MlBayesImObs - Class in edu.cmu.tetrad.bayes
-
Stores a table of probabilities for a Bayes net and, together with BayesPm and Dag, provides methods to manipulate this table.
- MlBayesImObs(BayesIm) - Constructor for class edu.cmu.tetrad.bayes.MlBayesImObs
-
Constructor for MlBayesImObs.
- MlBayesImObs(BayesPm) - Constructor for class edu.cmu.tetrad.bayes.MlBayesImObs
-
Constructs a new BayesIm from the given BayesPm, initializing all values as Double.NaN ("?").
- MlBayesImObs(BayesPm, int) - Constructor for class edu.cmu.tetrad.bayes.MlBayesImObs
-
Constructs a new BayesIm from the given BayesPm, initializing values either as MANUAL or RANDOM.
- MlBayesImObs(BayesPm, BayesIm, int) - Constructor for class edu.cmu.tetrad.bayes.MlBayesImObs
-
Constructs a new BayesIm from the given BayesPm, initializing values either as MANUAL or RANDOM, but using values from the old BayesIm provided where posssible.
- Mmhc - Class in edu.cmu.tetrad.search.work_in_progress
-
Implements the MMHC algorithm.
- Mmhc(IndependenceTest, DataSet) - Constructor for class edu.cmu.tetrad.search.work_in_progress.Mmhc
-
Constructor for Mmhc.
- Mmmb - Class in edu.cmu.tetrad.search.work_in_progress
-
Implements the Min-Max Markov Blanks (MMMB) algorithm as defined in Tsamardinos, Aliferis, and Statnikov, Time and Sample Efficient Discovery of Markov Blankets and Direct Causal Relations (KDD 2003).
- Mmmb(IndependenceTest, int, boolean) - Constructor for class edu.cmu.tetrad.search.work_in_progress.Mmmb
-
Constructs.
- MnlrLikelihood - Class in edu.cmu.tetrad.search.work_in_progress
-
Calculates Mixed Variables Polynomial likelihood.
- MnlrLikelihood(DataSet, double, int) - Constructor for class edu.cmu.tetrad.search.work_in_progress.MnlrLikelihood
-
Constructor.
- Mnlrlrt - Class in edu.cmu.tetrad.algcomparison.independence
-
Wrapper for Fisher Z test.
- Mnlrlrt() - Constructor for class edu.cmu.tetrad.algcomparison.independence.Mnlrlrt
-
Constructs a new instance of the test.
- MnlrScore - Class in edu.cmu.tetrad.search.work_in_progress
-
Implements a mixed variable polynomial BIC score for fGES.
- MnlrScore(DataSet, double, int) - Constructor for class edu.cmu.tetrad.search.work_in_progress.MnlrScore
-
Constructor.
- ModeInterpolator - Class in edu.cmu.tetrad.bayes
-
Creates a data set in which missing values in each column are filled using the mode of that column.
- ModeInterpolator() - Constructor for class edu.cmu.tetrad.bayes.ModeInterpolator
-
Constructor for ModeInterpolator.
- ModelGenerator - Class in edu.cmu.tetrad.bayes
-
Provides static methods for generating variants of an input graph.
- ModelObserver - Interface in edu.cmu.tetrad.search
-
The ModelObserver interface is implemented by classes that want to observe changes in a model.
- modifiedR0(Graph) - Method in class edu.cmu.tetrad.search.work_in_progress.IGFci
-
Modifies the given FGES graph based on the FCI algorithm rules, reorienting edges and potentially identifying and orienting definite colliders.
- moralize(Graph) - Static method in class edu.cmu.tetrad.bayes.GraphTools
-
Create a moral graph.
- Move(Edge, Edge, HbsmsBeam.Move.Type) - Constructor for class edu.cmu.tetrad.search.work_in_progress.HbsmsBeam.Move
-
Constructor for Move.
- Move(Edge, HbsmsBeam.Move.Type) - Constructor for class edu.cmu.tetrad.search.work_in_progress.HbsmsBeam.Move
-
Constructor for Move.
- moveTo(Node, int) - Method in class edu.cmu.tetrad.search.utils.TeyssierScorer
-
Moves v to a new index.
- moveToEnd() - Method in interface edu.cmu.tetrad.util.TetradLogger.LogDisplayOutputStream
-
Should move the log to the end of the stream.
- MSeparationScore - Class in edu.cmu.tetrad.algcomparison.score
-
Wrapper for Fisher Z test.
- MSeparationScore() - Constructor for class edu.cmu.tetrad.algcomparison.score.MSeparationScore
-
Use this empty constructor to satisfy the java reflection
- MSeparationScore(Graph) - Constructor for class edu.cmu.tetrad.algcomparison.score.MSeparationScore
-
Constructor for MSeparationScore.
- MSeparationTest - Class in edu.cmu.tetrad.algcomparison.independence
-
Wrapper for M-separation test.
- MSeparationTest() - Constructor for class edu.cmu.tetrad.algcomparison.independence.MSeparationTest
-
Use this empty constructor to satisfy the java reflection
- MSeparationTest(Graph) - Constructor for class edu.cmu.tetrad.algcomparison.independence.MSeparationTest
-
Constructor for MSeparationTest.
- MsepTest - Class in edu.cmu.tetrad.search.test
-
Checks independence facts for variables associated with the nodes in a given graph by checking m-separation facts on the underlying nodes.
- MsepTest(IndependenceFacts) - Constructor for class edu.cmu.tetrad.search.test.MsepTest
-
Constructor.
- MsepTest(IndependenceFacts, boolean) - Constructor for class edu.cmu.tetrad.search.test.MsepTest
-
Constructor.
- MsepTest(IndependenceFacts, List<Node>) - Constructor for class edu.cmu.tetrad.search.test.MsepTest
-
Constructor.
- MsepTest(Graph) - Constructor for class edu.cmu.tetrad.search.test.MsepTest
-
Constructor.
- MsepTest(Graph, boolean) - Constructor for class edu.cmu.tetrad.search.test.MsepTest
-
Constructor.
- mu(double[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
mu.
- mu(double[], int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
mu.
- mu(long[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
mu.
- mu(long[], int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
mu.
- mudholkergeorge - Enum constant in enum class edu.cmu.tetrad.search.utils.ResolveSepsets.Method
-
Mudholker and George's method
- mudholkergeorge - Enum constant in enum class edu.cmu.tetrad.search.work_in_progress.ResolveSepsetsDci.Method
-
The mudholkergeorge method.
- mudholkergeorge2 - Enum constant in enum class edu.cmu.tetrad.search.utils.ResolveSepsets.Method
-
Mudholker and George's method
- mudholkergeorge2 - Enum constant in enum class edu.cmu.tetrad.search.work_in_progress.ResolveSepsetsDci.Method
-
The mudholkergeorge2 method.
- muHat(double[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
muHat.
- muHat(double[], int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
muHat.
- muHat(long[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
muHat.
- muHat(long[], int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
muHat.
- MultiDataSetAlgorithm - Interface in edu.cmu.tetrad.algcomparison.algorithm
-
Implements an algorithm that takes multiple data sets as input.
- MultidataUtils - Class in edu.cmu.tetrad.util
-
Aug 7, 2018 10:21:59 AM
- MultiDimIntTable - Class in edu.cmu.tetrad.util
-
Stores a table of cells with int values of arbitrary dimension.
- MultiDimIntTable(int[]) - Constructor for class edu.cmu.tetrad.util.MultiDimIntTable
-
Constructs a new multidimensional table of integer cells, with the given (fixed) dimensions.
- MultiGeneralAndersonDarlingTest - Class in edu.cmu.tetrad.data
-
Implements the Anderson-Darling test against the given CDF, with P values calculated as in R's ad.test method (in package nortest).
- MultiGeneralAndersonDarlingTest(List<List<Double>>, List<RealDistribution>) - Constructor for class edu.cmu.tetrad.data.MultiGeneralAndersonDarlingTest
-
Constructs an Anderson-Darling test for the given column of data.
- MultinomialLogisticRegressionWald - Class in edu.cmu.tetrad.algcomparison.independence
-
Wrapper for Fisher Z test.
- MultinomialLogisticRegressionWald() - Constructor for class edu.cmu.tetrad.algcomparison.independence.MultinomialLogisticRegressionWald
-
Constructs a new instance of the test.
- multinormalProb(double[], double[], double[][]) - Static method in class edu.cmu.tetrad.util.ProbUtils
-
Compute the probability over a rectangular region with correlation matrix c.
- multOuter(Vector, Vector) - Static method in class edu.cmu.tetrad.util.TetradAlgebra
-
multOuter.
- mutualInformation(int, int[], int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.reveal.RevealEvaluator
-
This method computes the mutual information between a gene and a set of presumptive causes (other genes).
- mutualInformation(int, int[], int) - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.LTestReveal
-
mutualInformation.
- mutualInformation(int, int[], int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.RevealEvaluator
-
This method computes the mutual information between a gene and a set of presumptive causes (other genes).
- mutualInformation(int, int[], int[]) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.RevealEvaluator
-
This method computes the mutual information between a gene and a set of presumptive causes (other genes).
- MVPBicScore - Class in edu.cmu.tetrad.algcomparison.score
-
Wrapper for MVP BIC Score.
- MVPBicScore() - Constructor for class edu.cmu.tetrad.algcomparison.score.MVPBicScore
-
Constructs a new instance of the score.
- MVPCompareFromFiles - Class in edu.cmu.tetrad.algcomparison.examples
-
An example script to load in data sets and graphs from files and analyze them.
- MVPCompareFromFiles() - Constructor for class edu.cmu.tetrad.algcomparison.examples.MVPCompareFromFiles
-
Constructor for MVPCompareFromFiles.
- MvpLikelihood - Class in edu.cmu.tetrad.search.score
-
Calculates Mixed Variables Polynomial likelihood.
- MvpLikelihood(DataSet, double, int, boolean) - Constructor for class edu.cmu.tetrad.search.score.MvpLikelihood
-
Constructs the score using a data set.
- Mvplrt - Class in edu.cmu.tetrad.algcomparison.independence
-
Wrapper for Fisher Z test.
- Mvplrt() - Constructor for class edu.cmu.tetrad.algcomparison.independence.Mvplrt
-
Constructs a new instance of the test.
- MvpScore - Class in edu.cmu.tetrad.search.score
-
Implements a mixed variable polynomial BIC score.
- MvpScore(DataSet, double, int, boolean) - Constructor for class edu.cmu.tetrad.search.score.MvpScore
-
Constructor.
- MyContext() - Constructor for class edu.cmu.tetrad.sem.GeneralizedSemEstimator.MyContext
-
Constructs a new MyContext.
N
- N(double[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
N.
- N(long[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
N.
- name() - Element in annotation interface edu.cmu.tetrad.annotation.Algorithm
-
Name of the algorithm.
- name() - Element in annotation interface edu.cmu.tetrad.annotation.Score
-
The name of the score.
- name() - Element in annotation interface edu.cmu.tetrad.annotation.TestOfIndependence
-
Name of the test.
- NamingProtocol - Class in edu.cmu.tetrad.util
-
Specifies the protocol used in Tetrad for variable names.
- NANDY - Enum constant in enum class edu.cmu.tetrad.search.score.GicScores.RuleType
-
BIC using Nandy et al.'s formulation.
- NANDY - Enum constant in enum class edu.cmu.tetrad.search.score.SemBicScore.RuleType
-
The formulation of the standard BIC score given in Nandy et al.
- nandyBic(int, int, int[]) - Method in class edu.cmu.tetrad.search.score.SemBicScore
-
Calculates the BIC score of a partial correlation based on the specified variables.
- NbComponent - Interface in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin
-
NbComponent interface.
- NbFunction - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin
-
NbFunction class.
- NbFunction(double, double, NbComponent[], int[], String) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.NbFunction
-
Constructor for NbFunction.
- NbFunctionAnd - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin
-
NbFunctionAnd class.
- NbFunctionAnd(double, double, NbComponent[], int[], String) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.NbFunctionAnd
-
Constructor for NbFunctionAnd.
- NbFunctionOr - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin
-
NbFunctionOr class.
- NbFunctionOr(double, double, NbComponent[], int[], String) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.NbFunctionOr
-
Constructor for NbFunctionOr.
- NbFunctionSum - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin
-
NbFunctionSum class.
- NbFunctionSum(double, double, NbComponent[], int[], String) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.NbFunctionSum
-
Constructor for NbFunctionSum.
- NbFunctionSV - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin
-
NbFunctionSV class.
- NbFunctionSV(double, double, NbComponent[], int[], String) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.NbFunctionSV
-
Constructor for NbFunctionSV.
- NbGene - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin
-
NbGene class.
- NbGene(double, double, NbComponent[], int[], String) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.NbGene
-
Constructor for NbGene.
- NbGeneAnd - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin
-
NbGeneAnd class.
- NbGeneAnd(double, double, NbComponent[], int[], String, double) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.NbGeneAnd
-
Constructor for NbGeneAnd.
- NbGeneOr - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin
-
NbGeneOr class.
- NbGeneOr(double, double, NbComponent[], int[], String, double) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.NbGeneOr
-
Constructor for NbGeneOr.
- NC - Enum constant in enum class edu.cmu.tetrad.sem.ParamComparison
-
Represents the "Non-comparable" comparison type for a parameter in SEM estimation.
- negativeInfinity() - Static method in class edu.cmu.tetrad.search.work_in_progress.HbsmsBeam.Score
-
negativeInfinity.
- NEITHER - Enum constant in enum class edu.cmu.tetrad.calculator.expression.ExpressionDescriptor.Position
-
The expression can occur in neither the prefix nor infix position.
- NetBuilderModel - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin
-
NetBuilderModel class.
- NetBuilderModel(double[], int) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.NetBuilderModel
-
Constructor for NetBuilderModel.
- NEWLINE - Static variable in class edu.pitt.isp.sverchkov.data.DataTools
-
Constant
NEWLINE="System.getProperty(line.separator)"
- next() - Method in class edu.cmu.tetrad.search.utils.DagInCpcagIterator
-
Successive calls to this method return successive DAGs in the CPDAG, in a more or less natural enumeration of them in which an arbitrary undirected edge is picked, oriented one way, Meek rules applied, then a remaining unoriented edge is picked, oriented one way, and so on, until a DAG is obtained, and then by backtracking the other orientation of each chosen edge is tried.
- next() - Method in class edu.cmu.tetrad.search.utils.DagIterator
-
Successive calls to this method return successive DAGs in the CPDAG, in a more or less natural enumeration of them in which an arbitrary undirected edge is picked, oriented one way, Meek rules applied, then a remaining unoriented edge is picked, oriented one way, and so on, until a DAG is obtained, and then by backtracking the other orientation of each chosen edge is tried.
- next() - Method in class edu.cmu.tetrad.util.ChoiceGenerator
-
next.
- next() - Method in class edu.cmu.tetrad.util.CombinationGenerator
-
next.
- next() - Method in class edu.cmu.tetrad.util.CombinationIterator
-
next.
- next() - Method in class edu.cmu.tetrad.util.PermutationGenerator
-
next.
- next() - Method in class edu.cmu.tetrad.util.SelectionGenerator
-
next.
- next() - Method in class edu.cmu.tetrad.util.SublistGenerator
-
next.
- nextBeta(double, double) - Method in class edu.cmu.tetrad.util.RandomUtil
-
nextBeta.
- nextChiSquare(double) - Method in class edu.cmu.tetrad.util.RandomUtil
-
nextChiSquare.
- nextDouble() - Method in class edu.cmu.tetrad.util.RandomUtil
-
nextDouble.
- nextExponential(double) - Method in class edu.cmu.tetrad.util.RandomUtil
-
nextExponential.
- nextGamma(double, double) - Method in class edu.cmu.tetrad.util.RandomUtil
-
nextGamma.
- nextGumbel(double, double) - Method in class edu.cmu.tetrad.util.RandomUtil
-
nextGumbel.
- nextIncrementalRelease() - Method in class edu.cmu.tetrad.util.Version
-
nextIncrementalRelease.
- nextInt(int) - Method in class edu.cmu.tetrad.util.RandomUtil
-
nextInt.
- nextLong() - Method in class edu.cmu.tetrad.util.RandomUtil
-
nextLong.
- nextMajorVersion() - Method in class edu.cmu.tetrad.util.Version
-
nextMajorVersion.
- nextMinorSubversion() - Method in class edu.cmu.tetrad.util.Version
-
nextMinorSubversion.
- nextMinorVersion() - Method in class edu.cmu.tetrad.util.Version
-
nextMinorVersion.
- nextNormal(double, double) - Method in class edu.cmu.tetrad.util.RandomUtil
-
nextNormal.
- nextParameterName(String) - Method in class edu.cmu.tetrad.sem.GeneralizedSemPm
-
Given base b (a String), returns the first name in the sequence "b1", "b2", "b3", etc., which is not already the name of a node in the workbench.
- nextPoisson(double) - Method in class edu.cmu.tetrad.util.RandomUtil
-
nextPoisson.
- nextRandom() - Method in interface edu.cmu.tetrad.study.gene.tetrad.gene.history.RandomDistribution
-
Draws a new noise value from the underlying distribution.
- nextRandom() - Method in class edu.cmu.tetrad.util.dist.Beta
-
Returns the next random.
- nextRandom() - Method in class edu.cmu.tetrad.util.dist.ChiSquare
-
nextRandom.
- nextRandom() - Method in class edu.cmu.tetrad.util.dist.Discrete
-
nextRandom.
- nextRandom() - Method in interface edu.cmu.tetrad.util.dist.Distribution
-
Returns the next random number from the distribution.
- nextRandom() - Method in class edu.cmu.tetrad.util.dist.Exponential
-
nextRandom.
- nextRandom() - Method in class edu.cmu.tetrad.util.dist.Gamma
-
nextRandom.
- nextRandom() - Method in class edu.cmu.tetrad.util.dist.GaussianPower
-
nextRandom.
- nextRandom() - Method in class edu.cmu.tetrad.util.dist.Indicator
-
nextRandom.
- nextRandom() - Method in class edu.cmu.tetrad.util.dist.LogNormal
-
nextRandom.
- nextRandom() - Method in class edu.cmu.tetrad.util.dist.MixtureOfGaussians
-
nextRandom.
- nextRandom() - Method in class edu.cmu.tetrad.util.dist.Normal
-
nextRandom.
- nextRandom() - Method in class edu.cmu.tetrad.util.dist.Poisson
-
nextRandom.
- nextRandom() - Method in class edu.cmu.tetrad.util.dist.SingleValue
-
Returns the next random number from the distribution.
- nextRandom() - Method in class edu.cmu.tetrad.util.dist.Split
-
nextRandom.
- nextRandom() - Method in class edu.cmu.tetrad.util.dist.TruncatedNormal
-
nextRandom.
- nextRandom() - Method in class edu.cmu.tetrad.util.dist.Uniform
-
nextRandom.
- nextT(double) - Method in class edu.cmu.tetrad.util.RandomUtil
-
nextT.
- nextToken() - Method in class edu.cmu.tetrad.calculator.parser.ExpressionLexer
-
nextToken.
- nextToken() - Method in class edu.cmu.tetrad.data.RegexTokenizer
-
nextToken.
- nextTokenIncludingWhitespace() - Method in class edu.cmu.tetrad.calculator.parser.ExpressionLexer
-
nextTokenIncludingWhitespace.
- nextTruncatedNormal(double, double, double, double) - Method in class edu.cmu.tetrad.util.RandomUtil
-
nextTruncatedNormal.
- nextUniform(double, double) - Method in class edu.cmu.tetrad.util.RandomUtil
-
nextUniform.
- nil - Enum constant in enum class edu.cmu.tetrad.graph.EdgeTypeProbability.EdgeType
-
No edge
- nl - Enum constant in enum class edu.cmu.tetrad.graph.Edge.Property
-
No latent confounder.
- NLSemSimulation - Class in edu.cmu.tetrad.algcomparison.simulation
-
NL SEM simulation.
- NLSemSimulation(RandomGraph) - Constructor for class edu.cmu.tetrad.algcomparison.simulation.NLSemSimulation
-
Constructor for NLSemSimulation.
- NO_RANDOMLY_DETERMINED_INDEPENDENCE - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
NO_RANDOMLY_DETERMINED_INDEPENDENCE="noRandomlyDeterminedIndependence"
- NO_TYPE - Enum constant in enum class edu.cmu.tetrad.graph.NodeType
-
Constant
NO_TYPE
- NoAlmostCyclicPathsCondition - Class in edu.cmu.tetrad.algcomparison.statistic
-
No almost cyclic paths condition.
- NoAlmostCyclicPathsCondition() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NoAlmostCyclicPathsCondition
-
Constructs a new instance of the statistic.
- NoCyclicPathsCondition - Class in edu.cmu.tetrad.algcomparison.statistic
-
No cyclic paths condition.
- NoCyclicPathsCondition() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NoCyclicPathsCondition
-
Constructs a new instance of the statistic.
- Node - Interface in edu.cmu.tetrad.graph
-
Represents an object with a name, node type, and position that can serve as a node in a graph.
- NodeId(String, int) - Constructor for class edu.cmu.tetrad.graph.TimeLagGraph.NodeId
-
Constructor for NodeId.
- NodePair - Class in edu.cmu.tetrad.graph
-
An unordered pair of nodes.
- NodePair(Node, Node) - Constructor for class edu.cmu.tetrad.graph.NodePair
-
Constructor for NodePair.
- NodesInCyclesPrecision - Class in edu.cmu.tetrad.algcomparison.statistic
-
The adjacency precision.
- NodesInCyclesPrecision() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NodesInCyclesPrecision
-
Constructs a new instance of the statistic.
- NodesInCyclesRecall - Class in edu.cmu.tetrad.algcomparison.statistic
-
The adjacency precision.
- NodesInCyclesRecall() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NodesInCyclesRecall
-
Constructs a new instance of the statistic.
- NodeType - Enum Class in edu.cmu.tetrad.graph
-
An enum of the node types in a graph (MEASURED, LATENT, ERROR).
- NodeVariableType - Enum Class in edu.cmu.tetrad.graph
-
Node variable type.
- noEdgeRequired(String, String) - Method in class edu.cmu.tetrad.data.Knowledge
-
noEdgeRequired.
- NOMINAL - Static variable in class edu.cmu.tetrad.data.DiscreteVariableType
-
Constant
NOMINAL
- NON_LINEAR_STRUCTURAL_EQUATION_MODEL - Static variable in class edu.cmu.tetrad.algcomparison.simulation.SimulationTypes
-
Constant
NON_LINEAR_STRUCTURAL_EQUATION_MODEL="Non-Linear Structural Equation Model"
- NonancestorPrecision - Class in edu.cmu.tetrad.algcomparison.statistic
-
Number of NOT X~~>Y in true graph for which also NOT X~~>Y in estimated graph.
- NonancestorPrecision() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NonancestorPrecision
-
Constructs a new instance of the statistic.
- NonancestorRecall - Class in edu.cmu.tetrad.algcomparison.statistic
-
Number of NOT X~~>Y in true graph for which also NOT X~~>Y in estimated graph.
- NonancestorRecall() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NonancestorRecall
-
Constructs a new instance of the statistic.
- NONCOLLIDER - Enum constant in enum class edu.cmu.tetrad.search.utils.GraphSearchUtils.CpcTripleType
-
A noncollider triple.
- NONCOLLIDER - Enum constant in enum class edu.cmu.tetrad.search.work_in_progress.VcPc.CpcTripleType
-
The triple is a noncollider.
- NONCOLLIDER - Enum constant in enum class edu.cmu.tetrad.search.work_in_progress.VcPcFast.CpcTripleType
-
Constant
NONCOLLIDER
- NONCOLLIDERS_ONLY - Enum constant in enum class edu.cmu.tetrad.search.ConditioningSetType
-
Conditioning on noncolliders only.
- nondirectedEdge(Node, Node) - Static method in class edu.cmu.tetrad.graph.Edges
-
Constructs a new nondirected edge from nodeA to nodeB (o-o).
- nondirectedGraph(Graph) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
undirectedGraph.
- None - Enum constant in enum class edu.cmu.tetrad.search.utils.ClusterSignificance.CheckType
-
Do not do the check.
- NONE - Enum constant in enum class edu.cmu.tetrad.calculator.parser.ExpressionParser.RestrictionType
-
The expression may contain any parameters.
- NONE - Enum constant in enum class edu.cmu.tetrad.search.FaskOrig.AdjacencyMethod
-
No initial adjacencies.
- NONE - Enum constant in enum class edu.cmu.tetrad.search.utils.BpcTestType
-
This option doesn't do any purify.
- NONE - Enum constant in enum class edu.cmu.tetrad.search.utils.PcCommon.PcHeuristicType
-
No heuristic.
- NONE - Enum constant in enum class edu.cmu.tetrad.sem.ParamConstraintType
-
Represents a parameter constraint type NONE.
- NONE - Static variable in class edu.cmu.tetrad.data.ContinuousDiscretizationSpec
-
Constant
NONE=3
- Nonexecutable - Annotation Interface in edu.cmu.tetrad.annotation
-
Indicates an algorithm is nonexecutable.
- nonSmooth(double, DoubleMatrix1D, DoubleMatrix1D) - Method in class edu.pitt.csb.mgm.ConvexProximal
-
Calculate value of h(X) and proxOperator of h(X) at the same time for efficiency reasons.
- nonSmooth(double, DoubleMatrix1D, DoubleMatrix1D) - Method in class edu.pitt.csb.mgm.Mgm
-
Calculates the non-smooth value for a given parameter and input vectors.
- nonSmoothValue(DoubleMatrix1D) - Method in class edu.pitt.csb.mgm.Mgm
-
Calculates the non-smooth value for the given input vector.
- norm1() - Method in class edu.cmu.tetrad.util.Matrix
-
norm1.
- norm2(DoubleMatrix1D) - Static method in class edu.pitt.csb.mgm.ProximalGradient
-
norm2.
- Normal - Class in edu.cmu.tetrad.util.dist
-
A normal distribution that allows its parameters to be set and allows random sampling.
- Normal(double, double) - Constructor for class edu.cmu.tetrad.util.dist.Normal
-
Constructor for Normal.
- normalCdf(double) - Static method in class edu.cmu.tetrad.util.ProbUtils
-
Normal cumulative distribution function (the value which results by integrating the normal distribution function from negative infinity up to y).
- normalCdf(double, double, double) - Method in class edu.cmu.tetrad.util.RandomUtil
-
normalCdf.
- normalizeAll() - Method in interface edu.cmu.tetrad.bayes.BayesIm
-
Normalizes all rows in the tables associated with each of node in turn.
- normalizeAll() - Method in class edu.cmu.tetrad.bayes.DirichletBayesIm
-
Normalizes all rows in the tables associated with each of node in turn.
- normalizeAll() - Method in class edu.cmu.tetrad.bayes.MlBayesIm
-
Normalizes all rows in the tables associated with each of node in turn.
- normalizeAll() - Method in class edu.cmu.tetrad.bayes.MlBayesImObs
-
Normalizes all rows in the tables associated with each of node in turn.
- normalizeAll() - Method in class edu.cmu.tetrad.bayes.UpdatedBayesIm
-
normalizeAll.
- normalizeNode(int) - Method in interface edu.cmu.tetrad.bayes.BayesIm
-
Normalizes all rows in the table associated with a given node.
- normalizeNode(int) - Method in class edu.cmu.tetrad.bayes.DirichletBayesIm
-
Normalizes all rows in the table associated with a given node.
- normalizeNode(int) - Method in class edu.cmu.tetrad.bayes.MlBayesIm
-
Normalizes the specified node by invoking the
MlBayesIm.normalizeRow(int, int)
method on each row of the node. - normalizeNode(int) - Method in class edu.cmu.tetrad.bayes.MlBayesImObs
-
Normalizes all rows in the table associated with a given node.
- normalizeNode(int) - Method in class edu.cmu.tetrad.bayes.UpdatedBayesIm
-
Normalizes all rows in the table associated with a given node.
- normalizeRow(int, int) - Method in interface edu.cmu.tetrad.bayes.BayesIm
-
Normalizes the given row.
- normalizeRow(int, int) - Method in class edu.cmu.tetrad.bayes.DirichletBayesIm
-
Normalizes the given row.
- normalizeRow(int, int) - Method in class edu.cmu.tetrad.bayes.MlBayesIm
-
Normalizes the probabilities of a given row in a node.
- normalizeRow(int, int) - Method in class edu.cmu.tetrad.bayes.MlBayesImObs
-
Normalizes the given row.
- normalizeRow(int, int) - Method in class edu.cmu.tetrad.bayes.UpdatedBayesIm
-
Normalizes the given row.
- normalPdf(double) - Static method in class edu.cmu.tetrad.util.ProbUtils
-
normalPdf.
- normalPdf(double, double, double) - Method in class edu.cmu.tetrad.util.RandomUtil
-
normalPdf.
- normalQuantile(double) - Static method in class edu.cmu.tetrad.util.ProbUtils
-
normalQuantile.
- normalRand() - Static method in class edu.cmu.tetrad.util.ProbUtils
-
Normal random generator
- NoSemidirectedF1 - Class in edu.cmu.tetrad.algcomparison.statistic
-
Calculates the F1 statistic for adjacencies.
- NoSemidirectedF1() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NoSemidirectedF1
-
Constructs a new instance of the statistic.
- NoSemidirectedPrecision - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- NoSemidirectedPrecision() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NoSemidirectedPrecision
-
Constructs a new instance of the statistic.
- NoSemidirectedRecall - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- NoSemidirectedRecall() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NoSemidirectedRecall
-
Constructs a new instance of the statistic.
- notifyObservers() - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Notifies all registered ModelObservers by invoking their update() method.
- nRooks(boolean[][]) - Static method in class edu.cmu.tetrad.search.utils.NRooks
-
Solves the N-Rooks problem for the given board or allowable positions.
- NRooks - Class in edu.cmu.tetrad.search.utils
-
Returns row positions for placing rooks for an n x n matrix so the rooks cannot attach each other, with a given boolean[][] specification of where rooks are allowed to be placed.
- NULL - Enum constant in enum class edu.cmu.tetrad.graph.Endpoint
-
No endpoint.
- NUM_BASIS_FUNCTIONS - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
NUM_BASIS_FUNCTIONS="numBasisFunctions"
- NUM_BSC_BOOTSTRAP_SAMPLES - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
NUM_BSC_BOOTSTRAP_SAMPLES="numBscBootstrapSamples"
- NUM_CATEGORIES - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
NUM_CATEGORIES="numCategories"
- NUM_CATEGORIES_TO_DISCRETIZE - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
NUM_CATEGORIES_TO_DISCRETIZE="numCategoriesToDiscretize"
- NUM_LAGS - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
NUM_LAGS="numLags"
- NUM_LATENTS - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
NUM_LATENTS="numLatents"
- NUM_MEASURES - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
NUM_MEASURES="numMeasures"
- NUM_RANDOMIZED_SEARCH_MODELS - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
NUM_RANDOMIZED_SEARCH_MODELS="numRandomizedSearchModels"
- NUM_ROUNDS - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
NUM_ROUNDS="numRounds"
- NUM_RUNS - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
NUM_RUNS="numRuns"
- NUM_STARTS - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
NUM_STARTS="numStarts"
- NUM_STRUCTURAL_EDGES - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
NUM_STRUCTURAL_EDGES="numStructuralEdges"
- NUM_STRUCTURAL_NODES - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
NUM_STRUCTURAL_NODES="numStructuralNodes"
- NUM_SUBSAMPLES - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
NUM_SUBSAMPLES="numSubsamples"
- NUM_THREADS - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
NUM_THREADS="numThreads"
- NumAmbiguousTriples - Class in edu.cmu.tetrad.algcomparison.statistic
-
The adjacency precision.
- NumAmbiguousTriples() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumAmbiguousTriples
-
Constructs a new instance of the statistic.
- NUMBER - Enum constant in enum class edu.cmu.tetrad.calculator.parser.Token
-
Number.
- NUMBER_OF_EXPANSIONS - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
NUMBER_OF_EXPANSIONS="numberOfExpansions"
- NUMBER_RESAMPLING - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
NUMBER_RESAMPLING="numberResampling"
- NumberArrowsEst - Class in edu.cmu.tetrad.algcomparison.statistic
-
Represents the NumberEdgesEst statistic, which calculates the number of arrows in the estimated graph.
- NumberArrowsEst() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumberArrowsEst
-
Constructs the statistic.
- NumberArrowsNotInUnshieldedCollidersEst - Class in edu.cmu.tetrad.algcomparison.statistic
-
Represents the NumberEdgesEst statistic, which calculates the number of arrows not in unshielded colliders in the estimated graph.
- NumberArrowsNotInUnshieldedCollidersEst() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumberArrowsNotInUnshieldedCollidersEst
-
Constructs the statistic.
- NumberCollidersEst - Class in edu.cmu.tetrad.algcomparison.statistic
-
Represents the NumberEdgesEst statistic, which calculates the number of unshielded colliders in the estimated graph.
- NumberCollidersEst() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumberCollidersEst
-
Constructs the statistic.
- NumberEdgesEst - Class in edu.cmu.tetrad.algcomparison.statistic
-
Represents the NumberEdgesEst statistic, which calculates the number of edges in the estimated graph.
- NumberEdgesEst() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumberEdgesEst
-
Constructs the statistic.
- NumberEdgesInCollidersEst - Class in edu.cmu.tetrad.algcomparison.statistic
-
Represents the NumberEdgesEst statistic, which calculates the number of edges in colliders in the estimated graph.
- NumberEdgesInCollidersEst() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumberEdgesInCollidersEst
-
Constructs the statistic.
- NumberEdgesInUnshieldedCollidersEst - Class in edu.cmu.tetrad.algcomparison.statistic
-
Represents the NumberEdgesEst statistic, which calculates the number of edges in unshielded colliders in the estimated graph.
- NumberEdgesInUnshieldedCollidersEst() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumberEdgesInUnshieldedCollidersEst
-
Constructs the statistic.
- NumberEdgesTrue - Class in edu.cmu.tetrad.algcomparison.statistic
-
The NumberEdgesTrue class is an implementation of the Statistic interface.
- NumberEdgesTrue() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumberEdgesTrue
-
Constructs the statistic.
- NumberFormatUtil - Class in edu.cmu.tetrad.util
-
Provides an application-wide "memory" of the number format to be used.
- NumberObjectDataSet - Class in edu.cmu.tetrad.data
-
Wraps a 2D array of Number objects in such a way that mixed data sets can be stored.
- NumberObjectDataSet(Number[][], List<Node>) - Constructor for class edu.cmu.tetrad.data.NumberObjectDataSet
-
Constructor for NumberObjectDataSet.
- NumberOfEdgesEst - Class in edu.cmu.tetrad.algcomparison.statistic
-
Prints the number of edges in the estimated graph.
- NumberOfEdgesEst() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumberOfEdgesEst
-
Constructs a new instance of the statistic.
- NumberOfEdgesTrue - Class in edu.cmu.tetrad.algcomparison.statistic
-
Prints the number of edges in the true graph.
- NumberOfEdgesTrue() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumberOfEdgesTrue
-
Constructs a new instance of the statistic.
- NumberTailsEst - Class in edu.cmu.tetrad.algcomparison.statistic
-
Represents the NumberEdgesEst statistic, which calculates the number of tails in the estimated graph.
- NumberTailsEst() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumberTailsEst
-
Constructs the statistic.
- NumberUnshieldedCollidersEst - Class in edu.cmu.tetrad.algcomparison.statistic
-
Represents the NumberEdgesEst statistic, which calculates the number of unshielded colliders in the estimated graph.
- NumberUnshieldedCollidersEst() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumberUnshieldedCollidersEst
-
Constructs the statistic.
- NumBidirectedBothNonancestorAncestor - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected edge precision.
- NumBidirectedBothNonancestorAncestor() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumBidirectedBothNonancestorAncestor
-
Constructs a new instance of the statistic.
- NumBidirectedEdgesEst - Class in edu.cmu.tetrad.algcomparison.statistic
-
The adjacency precision.
- NumBidirectedEdgesEst() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumBidirectedEdgesEst
-
Constructs a new instance of the statistic.
- NumBidirectedEdgesTrue - Class in edu.cmu.tetrad.algcomparison.statistic
-
The adjacency precision.
- NumBidirectedEdgesTrue() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumBidirectedEdgesTrue
-
Constructs a new instance of the statistic.
- NumColoredDD - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- NumColoredDD() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumColoredDD
-
Constructs a new instance of the statistic.
- NumColoredNL - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- NumColoredNL() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumColoredNL
-
Constructs a new instance of the statistic.
- NumColoredPD - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- NumColoredPD() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumColoredPD
-
Constructs a new instance of the statistic.
- NumColoredPL - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- NumColoredPL() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumColoredPL
-
Constructs a new instance of the statistic.
- numCols() - Method in class edu.cmu.tetrad.data.ByteDataBox
-
numCols.
- numCols() - Method in interface edu.cmu.tetrad.data.DataBox
-
numCols.
- numCols() - Method in class edu.cmu.tetrad.data.DoubleDataBox
-
numCols.
- numCols() - Method in class edu.cmu.tetrad.data.FloatDataBox
-
numCols.
- numCols() - Method in class edu.cmu.tetrad.data.IntDataBox
-
numCols.
- numCols() - Method in class edu.cmu.tetrad.data.LongDataBox
-
numCols.
- numCols() - Method in class edu.cmu.tetrad.data.MixedDataBox
-
numCols.
- numCols() - Method in class edu.cmu.tetrad.data.ShortDataBox
-
numCols.
- numCols() - Method in class edu.cmu.tetrad.data.VerticalDoubleDataBox
-
numCols.
- numCols() - Method in class edu.cmu.tetrad.data.VerticalIntDataBox
-
numCols.
- NumCommonMeasuredAncestorBidirected - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- NumCommonMeasuredAncestorBidirected() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumCommonMeasuredAncestorBidirected
-
Constructs a new instance of the statistic.
- NumCompatibleDefiniteDirectedEdgeAncestors - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- NumCompatibleDefiniteDirectedEdgeAncestors() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumCompatibleDefiniteDirectedEdgeAncestors
-
Constructs a new instance of the statistic.
- NumCompatibleDirectedEdgeConfounded - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- NumCompatibleDirectedEdgeConfounded() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumCompatibleDirectedEdgeConfounded
-
Constructs a new instance of the statistic.
- NumCompatibleDirectedEdgeNonAncestors - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- NumCompatibleDirectedEdgeNonAncestors() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumCompatibleDirectedEdgeNonAncestors
-
Constructs a new instance of the statistic.
- NumCompatibleEdges - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- NumCompatibleEdges() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumCompatibleEdges
-
Constructs a new instance of the statistic.
- NumCompatiblePossiblyDirectedEdgeAncestors - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- NumCompatiblePossiblyDirectedEdgeAncestors() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumCompatiblePossiblyDirectedEdgeAncestors
-
Constructs a new instance of the statistic.
- NumCompatiblePossiblyDirectedEdgeNonAncestors - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- NumCompatiblePossiblyDirectedEdgeNonAncestors() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumCompatiblePossiblyDirectedEdgeNonAncestors
-
Constructs a new instance of the statistic.
- NumCompatibleVisibleNonancestors - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- NumCompatibleVisibleNonancestors() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumCompatibleVisibleNonancestors
-
Constructs a new instance of the statistic.
- NumCorrectBidirected - Class in edu.cmu.tetrad.algcomparison.statistic
-
Counts the number of X<->Y edges for which a latent confounder of X and Y exists.
- NumCorrectBidirected() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumCorrectBidirected
-
Counts the number of bidirectional edges for which a latent confounder of X and Y exists.
- NumCorrectDDAncestors - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- NumCorrectDDAncestors() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumCorrectDDAncestors
-
Constructs a new instance of the statistic.
- NumCorrectPDAncestors - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- NumCorrectPDAncestors() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumCorrectPDAncestors
-
Constructs a new instance of the statistic.
- NumCorrectVisibleEdges - Class in edu.cmu.tetrad.algcomparison.statistic
-
Represents a statistic that calculates the number of correct visible ancestors in the true graph that are also visible ancestors in the estimated graph.
- NumCorrectVisibleEdges() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumCorrectVisibleEdges
-
Constructs a new instance of the statistic.
- NumCoveringAdjacenciesInPag - Class in edu.cmu.tetrad.algcomparison.statistic
-
The number of covering adjacencies in an estimated PAG compared to the true PAG.
- NumCoveringAdjacenciesInPag() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumCoveringAdjacenciesInPag
-
Constructs the statistic.
- NumDefinitelyDirected - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- NumDefinitelyDirected() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumDefinitelyDirected
-
Constructs a new instance of the statistic.
- NumDefinitelyNotDirectedPaths - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- NumDefinitelyNotDirectedPaths() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumDefinitelyNotDirectedPaths
-
Constructs a new instance of the statistic.
- NumDirectedEdgeAncestors - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- NumDirectedEdgeAncestors() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumDirectedEdgeAncestors
-
Constructs a new instance of the statistic.
- NumDirectedEdgeBnaMeasuredCounfounded - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- NumDirectedEdgeBnaMeasuredCounfounded() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumDirectedEdgeBnaMeasuredCounfounded
-
Constructs a new instance of the statistic.
- NumDirectedEdgeNoMeasureAncestors - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- NumDirectedEdgeNoMeasureAncestors() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumDirectedEdgeNoMeasureAncestors
-
Constructs a new instance of the statistic.
- NumDirectedEdgeNotAncNotRev - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- NumDirectedEdgeNotAncNotRev() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumDirectedEdgeNotAncNotRev
-
Constructs a new instance of the statistic.
- NumDirectedEdgeReversed - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- NumDirectedEdgeReversed() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumDirectedEdgeReversed
-
Constructs a new instance of the statistic.
- NumDirectedEdges - Class in edu.cmu.tetrad.algcomparison.statistic
-
Number of X-->Y in est.
- NumDirectedEdges() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumDirectedEdges
-
Constructs a new instance of the statistic.
- NumDirectedPathsEst - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- NumDirectedPathsEst() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumDirectedPathsEst
-
Constructs a new instance of the statistic.
- NumDirectedPathsTrue - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- NumDirectedPathsTrue() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumDirectedPathsTrue
-
Constructs a new instance of the statistic.
- NumDirectedShouldBePartiallyDirected - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- NumDirectedShouldBePartiallyDirected() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumDirectedShouldBePartiallyDirected
-
Constructs a new instance of the statistic.
- NumEdgeInEstInTrue - Class in edu.cmu.tetrad.algcomparison.statistic
-
The number of adjacencies in the estimated graph but not in the true graph.
- NumEdgeInEstInTrue() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumEdgeInEstInTrue
-
Constructs the statistic.
- NumGenuineAdjacenciesInPag - Class in edu.cmu.tetrad.algcomparison.statistic
-
The number of genuine adjacencies in an estimated PAG compared to the true PAG.
- NumGenuineAdjacenciesInPag() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumGenuineAdjacenciesInPag
-
Constructs the statistic.
- NumIncorrectDDAncestors - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- NumIncorrectDDAncestors() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumIncorrectDDAncestors
-
Constructs a new instance of the statistic.
- NumIncorrectPDAncestors - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- NumIncorrectPDAncestors() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumIncorrectPDAncestors
-
Constructs a new instance of the statistic.
- NumIncorrectVisibleAncestors - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- NumIncorrectVisibleAncestors() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumIncorrectVisibleAncestors
-
Constructs a new instance of the statistic.
- NumLatentCommonAncestorBidirected - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- NumLatentCommonAncestorBidirected() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumLatentCommonAncestorBidirected
-
Constructs a new instance of the statistic.
- NumNondirectedEdges - Class in edu.cmu.tetrad.algcomparison.statistic
-
Number of X---Y in est.
- NumNondirectedEdges() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumNondirectedEdges
-
Constructs a new instance of the statistic.
- numParameters(int, int[]) - Method in class edu.cmu.tetrad.search.score.DiscreteBicScore
-
Returns the number of parameters for a node given its parents.
- NumParametersEst - Class in edu.cmu.tetrad.algcomparison.statistic
-
Number of parameters for a discrete Bayes model of the data.
- NumParametersEst() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumParametersEst
-
Constructor for NumParametersEst.
- NumPartiallyOrientedEdges - Class in edu.cmu.tetrad.algcomparison.statistic
-
Number of Xo->Y in est.
- NumPartiallyOrientedEdges() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumPartiallyOrientedEdges
-
Constructs a new instance of the statistic.
- NumPossiblyDirected - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- NumPossiblyDirected() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumPossiblyDirected
-
Constructs a new instance of the statistic.
- numRows() - Method in class edu.cmu.tetrad.data.ByteDataBox
-
numRows.
- numRows() - Method in interface edu.cmu.tetrad.data.DataBox
-
numRows.
- numRows() - Method in class edu.cmu.tetrad.data.DoubleDataBox
-
numRows.
- numRows() - Method in class edu.cmu.tetrad.data.FloatDataBox
-
numRows.
- numRows() - Method in class edu.cmu.tetrad.data.IntDataBox
-
numRows.
- numRows() - Method in class edu.cmu.tetrad.data.LongDataBox
-
numRows.
- numRows() - Method in class edu.cmu.tetrad.data.MixedDataBox
-
numRows.
- numRows() - Method in class edu.cmu.tetrad.data.ShortDataBox
-
numRows.
- numRows() - Method in class edu.cmu.tetrad.data.VerticalDoubleDataBox
-
numRows.
- numRows() - Method in class edu.cmu.tetrad.data.VerticalIntDataBox
-
numRows.
- numTestsDep() - Method in record class edu.cmu.tetrad.search.MarkovCheck.MarkovCheckRecord
-
Returns the value of the
numTestsDep
record component. - numTestsInd() - Method in record class edu.cmu.tetrad.search.MarkovCheck.MarkovCheckRecord
-
Returns the value of the
numTestsInd
record component. - NumUndirectedEdges - Class in edu.cmu.tetrad.algcomparison.statistic
-
Number of X---Y in est.
- NumUndirectedEdges() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumUndirectedEdges
-
Constructs a new instance of the statistic.
- numVals(DoubleMatrix1D) - Static method in class edu.pitt.csb.mgm.MixedUtils
-
numVals.
- NumVisibleEdgeEst - Class in edu.cmu.tetrad.algcomparison.statistic
-
NumVisibleEdgeEst is a class that implements the Statistic interface.
- NumVisibleEdgeEst() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumVisibleEdgeEst
-
Constructs a new instance of the statistic.
- NumVisibleEdges - Class in edu.cmu.tetrad.algcomparison.statistic
-
Represents a statistic that calculates the number of correct visible ancestors in the true graph that are also visible ancestors in the estimated graph.
- NumVisibleEdges() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumVisibleEdges
-
Constructs a new instance of the statistic.
- NumVisibleEdgeTrue - Class in edu.cmu.tetrad.algcomparison.statistic
-
A class that implements the Statistic interface to calculate the number of visible edges in the true PAG.
- NumVisibleEdgeTrue() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.NumVisibleEdgeTrue
-
A class that calculates the number of visible edges in the true PAG.
O
- oneFactorTest(int, int, int, int) - Method in interface edu.cmu.tetrad.search.utils.TetradTest
-
oneFactorTest.
- oneFactorTest(int, int, int, int) - Method in class edu.cmu.tetrad.search.utils.TetradTestContinuous
-
oneFactorTest.
- oneFactorTest(int, int, int, int) - Method in class edu.cmu.tetrad.search.utils.TetradTestDiscrete
-
oneFactorTest.
- oneFactorTest(int, int, int, int) - Method in class edu.cmu.tetrad.search.utils.TetradTestPopulation
-
oneFactorTest.
- oneFactorTest(int, int, int, int, int) - Method in interface edu.cmu.tetrad.search.utils.TetradTest
-
oneFactorTest.
- oneFactorTest(int, int, int, int, int) - Method in class edu.cmu.tetrad.search.utils.TetradTestContinuous
-
oneFactorTest.
- oneFactorTest(int, int, int, int, int) - Method in class edu.cmu.tetrad.search.utils.TetradTestDiscrete
-
oneFactorTest.
- oneFactorTest(int, int, int, int, int) - Method in class edu.cmu.tetrad.search.utils.TetradTestPopulation
-
oneFactorTest.
- OPERATOR - Enum constant in enum class edu.cmu.tetrad.calculator.parser.Token
-
Operator.
- optimize(SemIm) - Method in interface edu.cmu.tetrad.sem.SemOptimizer
-
Optimizes the fitting function of a Sem by adjusting its parameter values.
- optimize(SemIm) - Method in class edu.cmu.tetrad.sem.SemOptimizerEm
-
Optimizes an unoptimized Sem object by minimizing the chi-square statistic.
- optimize(SemIm) - Method in class edu.cmu.tetrad.sem.SemOptimizerPowell
-
Optimizes the fitting function of a Sem by adjusting its parameter values.
- optimize(SemIm) - Method in class edu.cmu.tetrad.sem.SemOptimizerRegression
-
Optimizes the fitting function of a Sem by adjusting its parameter values.
- optimize(SemIm) - Method in class edu.cmu.tetrad.sem.SemOptimizerRicf
-
Optimizes the fitting function of a Sem by adjusting its parameter values.
- optimize(SemIm) - Method in class edu.cmu.tetrad.sem.SemOptimizerScattershot
-
Optimizes the fitting function of a Sem by adjusting its parameter values.
- ORDERED_LOCAL_MARKOV - Enum constant in enum class edu.cmu.tetrad.search.ConditioningSetType
-
Testing independence facts implied by the graph, conditioning on the parents of each variable in the graph, in a causal order of the graph.
- OrderedPair<E> - Class in edu.cmu.tetrad.graph
-
An ordered pair of objects.
- OrderedPair(E, E) - Constructor for class edu.cmu.tetrad.graph.OrderedPair
-
Constructor for OrderedPair.
- orient() - Method in class edu.cmu.tetrad.search.Lofs
-
Orients the graph and returns the oriented graph.
- orient(Graph) - Method in class edu.cmu.tetrad.search.utils.FgesOrienter
-
orient.
- orient(Graph) - Method in class edu.cmu.tetrad.search.utils.MaxP
-
Adds colliders to the given graph using the max P rule.
- orient(Graph, Set<Triple>) - Method in class edu.cmu.tetrad.search.utils.FciOrient
-
Performs FCI orientation on the given graph, including R0 and either the Spirtes or Zhang final orientation rules.
- ORIENT_BIDIRECTED - Enum constant in enum class edu.cmu.tetrad.search.utils.PcCommon.ConflictRule
-
When there is a conflict, orient a bidirected edge.
- orient_pairwise - Enum constant in enum class edu.cmu.tetrad.annotation.AlgType
-
If algorithm orients edges pairwise.
- ORIENT_TOWARD_DCONNECTIONS - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
ORIENT_TOWARD_DCONNECTIONS="orientTowardDConnections"
- ORIENT_VISIBLE_FEEDBACK_LOOPS - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
ORIENT_VISIBLE_FEEDBACK_LOOPS="orientVisibleFeedbackLoops"
- ORIENTATION_ALPHA - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
ORIENTATION_ALPHA="orientationAlpha"
- OrientationConfusion - Class in edu.cmu.tetrad.algcomparison.statistic.utils
-
A confusion matrix for orientations:
- OrientationConfusion(Graph, Graph) - Constructor for class edu.cmu.tetrad.algcomparison.statistic.utils.OrientationConfusion
-
Constructor for OrientationConfusion.
- OrientationPrecision - Class in edu.cmu.tetrad.algcomparison.statistic
-
The orientation precision.
- OrientationPrecision() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.OrientationPrecision
-
Constructs a new instance of the statistic.
- OrientationRecall - Class in edu.cmu.tetrad.algcomparison.statistic
-
Represents an implementation of the Statistic interface that calculates the Orientation Recall.
- OrientationRecall() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.OrientationRecall
-
Constructs a new instance of the statistic.
- orientCollider(Node, Node, Node, PcCommon.ConflictRule, Graph, boolean) - Static method in class edu.cmu.tetrad.search.utils.PcCommon
-
Orient a single unshielded triple, x*-*y*-*z, in a graph.
- orientCollidersUsingSepsets(SepsetMap, Knowledge, Graph, boolean, boolean) - Static method in class edu.cmu.tetrad.search.utils.GraphSearchUtils
-
Step C of PC; orients colliders using specified sepset.
- orientImplied(Graph) - Method in class edu.cmu.tetrad.search.utils.MeekRules
-
Uses the Meek rules to do as many orientations in the given graph as possible.
- other - Enum constant in enum class edu.cmu.tetrad.search.Lofs.Score
-
Other score.
- outerProduct(double[], double[]) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
outerProduct.
- OUTPUT_CPDAG - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
OUTPUT_CPDAG="outputCpdag"
- OUTPUT_RBD - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
OUTPUT_RBD="outputRBD"
- OutputGraph - Interface in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util
-
Represents a graph that's output by a genetic search algorithm.
- OVERWRITE_EXISTING - Enum constant in enum class edu.cmu.tetrad.search.utils.PcCommon.ConflictRule
-
When there is a conflict, use the new orientation.
P
- p - Variable in class edu.cmu.tetrad.bayes.BayesProperties.LikelihoodRet
-
The p-value.
- PAG - Enum constant in enum class edu.cmu.tetrad.graph.GraphUtils.GraphType
-
The PAG graph type.
- PAG - Enum constant in enum class edu.cmu.tetrad.study.performance.ComparisonParameters.ResultType
-
Constant for PAG result type.
- PAG_of_the_true_DAG - Enum constant in enum class edu.cmu.tetrad.algcomparison.Comparison.ComparisonGraph
-
Constant for the PAG of the true DAG.
- PAG_of_the_true_DAG - Enum constant in enum class edu.cmu.tetrad.algcomparison.TimeoutComparison.ComparisonGraph
-
The pag of the true dag.
- PAG_SAMPLING_RFCI_PARAMETERS - Static variable in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.PagSampleRfci
-
Constant
PAG_SAMPLING_RFCI_PARAMETERS
- PagAdjacencyPrecision - Class in edu.cmu.tetrad.algcomparison.statistic
-
The PagAdjacencyPrecision class implements the Statistic interface and represents the adjacency precision compared to the true PAG (Partially Ancestral Graph).
- PagAdjacencyPrecision() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.PagAdjacencyPrecision
-
Constructs a new instance of the statistic.
- PagAdjacencyRecall - Class in edu.cmu.tetrad.algcomparison.statistic
-
A class that implements the PagAdjacencyRecall statistic.
- PagAdjacencyRecall() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.PagAdjacencyRecall
-
Constructs a new instance of the statistic.
- PagCache - Class in edu.cmu.tetrad.util
-
A cache for storing PAGs so that the only need to be calculated once per DAG.
- PagSampleRfci - Class in edu.cmu.tetrad.algcomparison.algorithm.oracle.pag
-
Jan 29, 2023 3:45:09 PM
- PagSampleRfci() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.PagSampleRfci
-
Constructs a new instance of the PagSampleRfci algorithm.
- PagSamplingRfci - Class in edu.pitt.dbmi.algo.bayesian.constraint.search
-
Jan 29, 2023 4:10:52 PM
- PagSamplingRfci(DataSet) - Constructor for class edu.pitt.dbmi.algo.bayesian.constraint.search.PagSamplingRfci
-
Constructor.
- PARALLEL - Enum constant in enum class edu.cmu.tetrad.search.LvLite.ExtraEdgeRemovalStyle
-
Remove extra edges in parallel.
- PARALLEL - Static variable in class edu.cmu.tetrad.search.FastIca
-
The algorithm type where all components are extracted simultaneously.
- PARALLELIZED - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
PARALLELIZED="parallelized"
- ParamComparison - Enum Class in edu.cmu.tetrad.sem
-
An enum of the types of the various comparisons a parameter may have with respect to one another for SEM estimation.
- ParamConstraint - Class in edu.cmu.tetrad.sem
-
A class for implementing constraints on the values of the freeParameters of of instances of the SemIm class.
- ParamConstraint(SemIm, Parameter, ParamConstraintType, double) - Constructor for class edu.cmu.tetrad.sem.ParamConstraint
-
The first constructor specifies the parameter and a number and the type of relation imposed by the constraint.
- ParamConstraintType - Enum Class in edu.cmu.tetrad.sem
-
Enum for representing different types of parameter constraints.
- ParamDescription - Class in edu.cmu.tetrad.util
-
Describes a parameter.
- ParamDescription(String, String, String, Serializable) - Constructor for class edu.cmu.tetrad.util.ParamDescription
-
Constructor for ParamDescription.
- ParamDescription(String, String, String, Serializable, double, double) - Constructor for class edu.cmu.tetrad.util.ParamDescription
-
Constructor for ParamDescription.
- ParamDescription(String, String, String, Serializable, int, int) - Constructor for class edu.cmu.tetrad.util.ParamDescription
-
Constructor for ParamDescription.
- ParamDescriptions - Class in edu.cmu.tetrad.util
-
Stores descriptions of the parameters for the simulation box.
- Parameter - Class in edu.cmu.tetrad.sem
-
Stores information about the identity of a SEM parameter--its name, its type (COEF, COVAR), and the node(s) it is associated with.
- Parameter(String, ParamType, Node, Node) - Constructor for class edu.cmu.tetrad.sem.Parameter
-
Constructor for Parameter.
- PARAMETER - Enum constant in enum class edu.cmu.tetrad.calculator.parser.Token
-
Parameter.
- ParameterColumn - Class in edu.cmu.tetrad.algcomparison.statistic
-
Adds a column to the output table in which values for the given parameter are listed.
- ParameterColumn(String) - Constructor for class edu.cmu.tetrad.algcomparison.statistic.ParameterColumn
-
Constructor for ParameterColumn.
- ParameterPair - Class in edu.cmu.tetrad.sem
-
Implements an ordered pair of objects (a, b) suitable for storing in HashSets.
- ParameterPair(Parameter, Parameter) - Constructor for class edu.cmu.tetrad.sem.ParameterPair
-
Constructs a new ordered pair (a, b).
- ParameterRange(Edge, double, double, double) - Constructor for class edu.cmu.tetrad.sem.StandardizedSemIm.ParameterRange
-
Constructs a new parameter range.
- Parameters - Class in edu.cmu.tetrad.util
-
Stores a list of named parameters with their values.
- Parameters() - Constructor for class edu.cmu.tetrad.util.Parameters
-
Constructor for Parameters.
- Parameters(Parameters) - Constructor for class edu.cmu.tetrad.util.Parameters
-
Constructor for Parameters.
- ParameterUtils - Class in edu.cmu.tetrad.util
-
A utility to create/modify parameters.
- parameterValues() - Method in interface edu.cmu.tetrad.algcomparison.utils.ParameterValues
-
parameterValues.
- parameterValues() - Method in class edu.cmu.tetrad.data.simulation.LoadDataFromFileWithoutGraph
-
parameterValues.
- ParameterValues - Interface in edu.cmu.tetrad.algcomparison.utils
-
Tags a class that can return values for parameters.
- Params - Class in edu.cmu.tetrad.util
-
May 7, 2019 2:53:27 PM
- ParamType - Enum Class in edu.cmu.tetrad.sem
-
An enum of the free parameter types for SEM models (COEF, MEAN, VAR, COVAR).
- parent(Node, Node) - Method in class edu.cmu.tetrad.search.utils.TeyssierScorer
-
parent.
- PARENTS_AND_NEIGHBORS - Enum constant in enum class edu.cmu.tetrad.search.ConditioningSetType
-
Conditioning on the parents and neighbors of each variable in the graph.
- parseEquation(String) - Method in class edu.cmu.tetrad.calculator.parser.ExpressionParser
-
Parses an equation of the form Variable = Expression.
- parseExpression(String) - Method in class edu.cmu.tetrad.calculator.parser.ExpressionParser
-
Parses the given expression, or throws an exception if its not possible.
- parseGraphXml(Element, Map<String, Node>) - Static method in class edu.cmu.tetrad.graph.GraphSaveLoadUtils
-
parseGraphXml.
- parseJSONArrayToTetradEdges(Graph, JSONArray) - Static method in class edu.cmu.tetrad.util.JsonUtils
-
parseJSONArrayToTetradEdges.
- parseJSONArrayToTetradNodes(JSONArray) - Static method in class edu.cmu.tetrad.util.JsonUtils
-
parseJSONArrayToTetradNodes.
- parseJSONArrayToTetradTriple(JSONObject) - Static method in class edu.cmu.tetrad.util.JsonUtils
-
parseJSONArrayToTetradTriple.
- parseJSONArrayToTetradTriples(JSONArray) - Static method in class edu.cmu.tetrad.util.JsonUtils
-
parseJSONArrayToTetradTriples.
- parseJSONObjectToEdgeProperty(String) - Static method in class edu.cmu.tetrad.util.JsonUtils
-
parseJSONObjectToEdgeProperty.
- parseJSONObjectToEdgeTypeProperty(JSONObject) - Static method in class edu.cmu.tetrad.util.JsonUtils
-
parseJSONObjectToEdgeTypeProperty.
- parseJSONObjectToTetradEdge(Graph, JSONObject) - Static method in class edu.cmu.tetrad.util.JsonUtils
-
parseJSONObjectToTetradEdge.
- parseJSONObjectToTetradGraph(String) - Static method in class edu.cmu.tetrad.util.JsonUtils
-
parseJSONObjectToTetradGraph.
- parseJSONObjectToTetradGraph(JSONObject) - Static method in class edu.cmu.tetrad.util.JsonUtils
-
parseJSONObjectToTetradGraph.
- parseJSONObjectToTetradNode(JSONObject) - Static method in class edu.cmu.tetrad.util.JsonUtils
-
parseJSONObjectToTetradNode.
- partialCorrelation(Matrix) - Static method in class edu.cmu.tetrad.util.StatUtils
-
Assumes that the given covariance matrix was extracted in such a way that the order of the variables (in either direction) is X, Y, Z1, ..., Zn, where the partial correlation one wants is correlation(X, Y | Z1,...,Zn).
- partialCorrelation(Matrix, int, int, int...) - Static method in class edu.cmu.tetrad.util.StatUtils
-
partialCorrelation.
- PartialCorrelation - Class in edu.cmu.tetrad.search.utils
-
Calculates partial correlation using the recursive method.
- PartialCorrelation(ICovarianceMatrix) - Constructor for class edu.cmu.tetrad.search.utils.PartialCorrelation
-
Constructor
- PartialCorrelation(List<Node>, Matrix, int) - Constructor for class edu.cmu.tetrad.search.utils.PartialCorrelation
-
Constructor.
- PartialCorrelationPdf - Class in edu.cmu.tetrad.util
-
Frequency function of partial correlation r(12|34...k), assuming that the true partial correlation is equal to zero.
- PartialCorrelationPdf(int, int) - Constructor for class edu.cmu.tetrad.util.PartialCorrelationPdf
-
Constructs a new zero partial correlation distribution function with the given values for n and k.
- partialCorrelationPrecisionMatrix(Matrix) - Static method in class edu.cmu.tetrad.util.StatUtils
-
partialCorrelationPrecisionMatrix.
- partialCovarianceWhittaker(Matrix) - Static method in class edu.cmu.tetrad.util.StatUtils
-
Assumes that the given covariance matrix was extracted in such a way that the order of the variables (in either direction) is X, Y, Z1, ..., Zn, where the partial covariance one wants is covariance(X, Y | Z1,...,Zn).
- partialCovarianceWhittaker(Matrix, int, int, int...) - Static method in class edu.cmu.tetrad.util.StatUtils
-
partialCovarianceWhittaker.
- partiallyOrientedEdge(Node, Node) - Static method in class edu.cmu.tetrad.graph.Edges
-
Constructs a new partially oriented edge from nodeA to nodeB (o->).
- partialStandardDeviation(Matrix, int, int...) - Static method in class edu.cmu.tetrad.util.StatUtils
-
partialStandardDeviation.
- partialVariance(Matrix, int, int...) - Static method in class edu.cmu.tetrad.util.StatUtils
-
partialVariance.
- partitionToClusters(List<List<Node>>) - Static method in class edu.cmu.tetrad.search.utils.ClusterUtils
-
Converts a list of indices into a list of Nodes representing a cluster.
- Patel - Enum constant in enum class edu.cmu.tetrad.search.Lofs.Rule
-
The Patel rule.
- Patel25 - Enum constant in enum class edu.cmu.tetrad.search.Lofs.Rule
-
The Patel25 rule.
- Patel50 - Enum constant in enum class edu.cmu.tetrad.search.Lofs.Rule
-
The Patel50 rule.
- Patel75 - Enum constant in enum class edu.cmu.tetrad.search.Lofs.Rule
-
The Patel75 rule.
- Patel90 - Enum constant in enum class edu.cmu.tetrad.search.Lofs.Rule
-
The Patel90 rule.
- paths() - Method in class edu.cmu.tetrad.graph.Dag
-
paths.
- paths() - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
paths.
- paths() - Method in interface edu.cmu.tetrad.graph.Graph
-
paths.
- paths() - Method in class edu.cmu.tetrad.graph.LagGraph
-
paths.
- paths() - Method in class edu.cmu.tetrad.graph.SemGraph
-
paths.
- paths() - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Returns the instance of Paths.
- Paths - Class in edu.cmu.tetrad.graph
-
Paths class.
- Paths(Graph) - Constructor for class edu.cmu.tetrad.graph.Paths
-
Constructor for Paths.
- Paths.AllCliquesAlgorithm - Class in edu.cmu.tetrad.graph
-
An algorithm to find all cliques in a graph.
- pathString(Graph, Node...) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Generates a string representation of a path in a given graph, starting from the specified nodes.
- pathString(Graph, Node, Node, Node) - Static method in class edu.cmu.tetrad.graph.Triple
-
pathString.
- pathString(Graph, List<Node>, boolean) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Constructs a string representation of a path in a graph.
- pathString(Graph, List<Node>, Set<Node>) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Returns a string representation of the given path in the graph, considering the conditioning variables.
- pathString(Graph, List<Node>, Set<Node>, boolean, boolean) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Returns a string representation of the given path in the graph, with additional information about conditioning variables.
- Pc - Class in edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag
-
Peter/Clark algorithm (PC).
- Pc - Class in edu.cmu.tetrad.search
-
Implements the Peter/Clark (PC) algorithm, which uses conditional independence testing as an oracle to first of all remove extraneous edges from a complete graph, then to orient the unshielded colliders in the graph, and finally to make any additional orientations that are capable of avoiding additional unshielded colliders in the graph.
- Pc() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Pc
-
Constructor for Pc.
- Pc(IndependenceWrapper) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Pc
-
Constructor for Pc.
- Pc(IndependenceTest) - Constructor for class edu.cmu.tetrad.search.Pc
-
Constructs a new PC search using the given independence test as oracle.
- PC - Enum constant in enum class edu.cmu.tetrad.study.performance.ComparisonParameters.Algorithm
-
Constant for the PC algorithm.
- PC_HEURISTIC - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
PC_HEURISTIC="pcHeuristic"
- PC_STABLE - Enum constant in enum class edu.cmu.tetrad.search.Cstar.CpdagAlgorithm
-
The PC_STABLE algorithm.
- PcCommon - Class in edu.cmu.tetrad.search.utils
-
Provides some common implementation pieces of various PC-like algorithms, with options for collider discovery type, FAS type, and conflict rule.
- PcCommon(IndependenceTest) - Constructor for class edu.cmu.tetrad.search.utils.PcCommon
-
Constructs a CPC algorithm that uses the given independence test as oracle.
- PcCommon.ColliderDiscovery - Enum Class in edu.cmu.tetrad.search.utils
-
Gives the options for the collider discovery algorithm to use--FAS with sepsets reasoning, FAS with conservative reasoning, or FAS with Max P reasoning.
- PcCommon.ConflictRule - Enum Class in edu.cmu.tetrad.search.utils
-
Gives the type of conflict to be used, priority (when there is a conflict, keep the orientation that has already been made), bidirected (when there is a conflict, orient a bidirected edge), or overwrite (when there is a conflict, use the new orientation).
- PcCommon.FasType - Enum Class in edu.cmu.tetrad.search.utils
-
Gives the type of FAS used, regular or stable.
- PcCommon.PcHeuristicType - Enum Class in edu.cmu.tetrad.search.utils
-
The PC heuristic type, where this is taken from Causation, Prediction, and Search.
- Pcd - Class in edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag
-
PC.
- Pcd - Class in edu.cmu.tetrad.search
-
Modifies the PC algorithm to handle the deterministic case.
- Pcd() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Pcd
-
Constructor for Pcd.
- Pcd(IndependenceTest) - Constructor for class edu.cmu.tetrad.search.Pcd
-
Constructs a new PC search using the given independence test as oracle.
- pcdOrientC(IndependenceTest, Knowledge, Graph) - Static method in class edu.cmu.tetrad.search.utils.GraphSearchUtils
-
Performs step C of the algorithm, as indicated on page xxx of CPS, with the modification that X--W--Y is oriented as X-->W<--Y if W is *determined by* the sepset of (X, Y), rather than W just being *in* the sepset of (X, Y).
- PcMb - Class in edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag
-
PC.
- PcMb - Class in edu.cmu.tetrad.search
-
Searches for a CPDAG representing all the Markov blankets for a given target T consistent with the given independence information.
- PcMb() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.PcMb
-
Constructor for PcMb.
- PcMb(IndependenceWrapper) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.PcMb
-
Constructor for PcMb.
- PcMb(IndependenceTest, int) - Constructor for class edu.cmu.tetrad.search.PcMb
-
Constructs a new search.
- pcOrientbk(Knowledge, Graph, List<Node>, boolean) - Static method in class edu.cmu.tetrad.search.utils.GraphSearchUtils
-
Orients according to background knowledge.
- PcStableWrapper(double...) - Constructor for class edu.pitt.csb.stability.SearchWrappers.PcStableWrapper
-
Constructor.
- pd - Enum constant in enum class edu.cmu.tetrad.graph.Edge.Property
-
Possibly direct.
- PENALTY_DISCOUNT - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
PENALTY_DISCOUNT="penaltyDiscount"
- PENALTY_DISCOUNT_ZS - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
PENALTY_DISCOUNT_ZS="penaltyDiscountZs"
- PERCENT_DISCRETE - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
PERCENT_DISCRETE="percentDiscrete"
- PERCENT_RESAMPLE_SIZE - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
PERCENT_RESAMPLE_SIZE="percentResampleSize"
- PercentAmbiguous - Class in edu.cmu.tetrad.algcomparison.statistic
-
The adjacency precision.
- PercentAmbiguous() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.PercentAmbiguous
-
Constructs a new instance of the statistic.
- PercentBidirectedEdges - Class in edu.cmu.tetrad.algcomparison.statistic
-
The adjacency precision.
- PercentBidirectedEdges() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.PercentBidirectedEdges
-
Constructs a new instance of the statistic.
- PerformanceTests - Class in edu.cmu.tetrad.study.performance
-
Runs some basic performance tests of various algorithm.
- PerformanceTests() - Constructor for class edu.cmu.tetrad.study.performance.PerformanceTests
-
This class represents a set of performance tests for a certain application.
- PerformanceTestsDan - Class in edu.cmu.tetrad.study.performance
-
Contains some tests for Dan Malinsky, that might be of interest to others.
- PerformanceTestsDan() - Constructor for class edu.cmu.tetrad.study.performance.PerformanceTestsDan
-
Constructor for PerformanceTestsDan.
- PermutationGenerator - Class in edu.cmu.tetrad.util
-
Generates all of the permutations of [0,..., numObjects - 1], where numObjects is numObjects nonnegative integer.
- PermutationGenerator(int) - Constructor for class edu.cmu.tetrad.util.PermutationGenerator
-
Constructs numObjects new choice generator for numObjects choose b.
- PermutationMatrixPair - Class in edu.cmu.tetrad.search.utils
-
Stores a matrix together with a row and column permutation.
- PermutationMatrixPair(Matrix, int[], int[]) - Constructor for class edu.cmu.tetrad.search.utils.PermutationMatrixPair
-
Constructs with a given matrix M and a row and column permutation (which may be null).
- PermutationSearch - Class in edu.cmu.tetrad.search
-
Implements common elements of a permutation search.
- PermutationSearch(SuborderSearch) - Constructor for class edu.cmu.tetrad.search.PermutationSearch
-
Constructs a new PermutationSearch using the given SuborderSearch.
- permutationTest(Node, Node, Set<Node>, int) - Method in class edu.cmu.tetrad.search.test.ConditionalCorrelationIndependence
-
Performs a permutation test to empirically determine the distribution of p-values under the null hypothesis.
- permuteRows() - Method in class edu.cmu.tetrad.data.BoxDataSet
-
Randomly permutes the rows of the dataset.
- permuteRows() - Method in interface edu.cmu.tetrad.data.DataSet
-
Randomizes the rows of the data set.
- permuteRows() - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
Randomly permutes the rows of the dataset.
- PI - Static variable in class edu.cmu.tetrad.calculator.expression.ConstantExpression
-
Constant expression for PI.
- pl - Enum constant in enum class edu.cmu.tetrad.graph.Edge.Property
-
Possible latent confounder.
- plus(Matrix) - Method in class edu.cmu.tetrad.util.Matrix
-
plus.
- plus(Vector) - Method in class edu.cmu.tetrad.util.Vector
-
plus.
- Pm - Interface in edu.cmu.tetrad.util
-
Tagging interface for parametric models.
- Point - Class in edu.cmu.tetrad.util
-
Implements an n-dimensional point.
- Point(Vector) - Constructor for class edu.cmu.tetrad.util.Point
-
Constructs a point with coordinates as in the given vector.
- pointsTowards(Node) - Method in class edu.cmu.tetrad.graph.Edge
-
pointsTowards.
- PointXy - Class in edu.cmu.tetrad.util
-
Stores a (x, y) point without having to use awt classes.
- PointXy(int, int) - Constructor for class edu.cmu.tetrad.util.PointXy
-
Constructs a new point with the given coordinates.
- PointXy(PointXy) - Constructor for class edu.cmu.tetrad.util.PointXy
-
Copy constructor.
- poisson(double, double, boolean) - Static method in class edu.cmu.tetrad.util.StatUtils
-
Calculates the Poisson Distribution for mean x and k events for doubles.
- Poisson - Class in edu.cmu.tetrad.util.dist
-
Wraps a chi square distribution for purposes of drawing random samples.
- POISSON_LAMBDA - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
POISSON_LAMBDA="poissonLambda"
- poissonCdf(int, double) - Static method in class edu.cmu.tetrad.util.ProbUtils
-
poissonCdf.
- poissonPmf(int, double) - Static method in class edu.cmu.tetrad.util.ProbUtils
-
poissonPmf.
- PoissonPriorScore - Class in edu.cmu.tetrad.algcomparison.score
-
Wrapper for the Poisson prior score (Bryan)
- PoissonPriorScore - Class in edu.cmu.tetrad.search.score
-
Implements Poisson prior score, a novel (unpubished) score that replaces the penalty term in BIC by the log of the Poisson distribution.
- PoissonPriorScore() - Constructor for class edu.cmu.tetrad.algcomparison.score.PoissonPriorScore
-
Constructs a new instance of the PoissonPriorScore.
- PoissonPriorScore(DataSet, boolean) - Constructor for class edu.cmu.tetrad.search.score.PoissonPriorScore
-
Constructs the score using a covariance matrix.
- PoissonPriorScore(ICovarianceMatrix) - Constructor for class edu.cmu.tetrad.search.score.PoissonPriorScore
-
Constructs the score using a covariance matrix.
- PoissonPriorTest - Class in edu.cmu.tetrad.algcomparison.independence
- PoissonPriorTest() - Constructor for class edu.cmu.tetrad.algcomparison.independence.PoissonPriorTest
-
Constructs a new instance of the Poisson Prior test.
- poissonQuantile(double, double) - Static method in class edu.cmu.tetrad.util.ProbUtils
-
poissonQuantile.
- poissonRand(double) - Static method in class edu.cmu.tetrad.util.ProbUtils
-
Poisson random generator from Numerical Recipes
- Polynomial - Class in edu.cmu.tetrad.study.gene.tetrad.gene.history
-
Implements a polynomial as a sum of a list of terms whose variables are identified as integers in the set {0, 1, 2, ...}.
- Polynomial(List<PolynomialTerm>) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.history.Polynomial
-
Constructs a polynomial from a list of terms.
- POLYNOMIAL - Enum constant in enum class edu.cmu.tetrad.search.test.Kci.KernelType
- POLYNOMIAL_CONSTANT - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
POLYNOMIAL_CONSTANT="polynomialConstant"
- POLYNOMIAL_DEGREE - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
POLYNOMIAL_DEGREE="polynomialDegree"
- PolynomialFunction - Class in edu.cmu.tetrad.study.gene.tetrad.gene.history
-
Implements a polynomial update function, Gi.0 = P(Parents(G0.0)) + ei, where P is a polynomial function and ei is a random noise term.
- PolynomialFunction(LagGraph) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.history.PolynomialFunction
-
Constructs a polyomial function where each factor is given a zero polynomial.
- PolynomialTerm - Class in edu.cmu.tetrad.study.gene.tetrad.gene.history
-
Implements a term in a polymonial whose variables are mapped to indices in in the set {0, 1, 2, ...}.
- PolynomialTerm(double, int[]) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.history.PolynomialTerm
-
Constructs a term.
- POPULATION - Enum constant in enum class edu.cmu.tetrad.search.utils.BpcTestType
-
Population test.
- PositiveCorr - Class in edu.cmu.tetrad.algcomparison.independence
-
Wrapper for Fisher Z test.
- PositiveCorr() - Constructor for class edu.cmu.tetrad.algcomparison.independence.PositiveCorr
-
Constructs a new instance of the FisherZTest.
- PositiveCorrScore - Class in edu.cmu.tetrad.algcomparison.score
-
Wrapper for Fisher Z test.
- PositiveCorrScore() - Constructor for class edu.cmu.tetrad.algcomparison.score.PositiveCorrScore
-
Constructs a new instance of the FisherZScore.
- POSSIBLE_MSEP_DONE - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
POSSIBLE_MSEP_DONE="possibleMsepDone"
- possibleAncestor(Node, Node) - Method in class edu.cmu.tetrad.graph.Paths
-
possibleAncestor.
- possibleDsep(Node, Node, int) - Method in class edu.cmu.tetrad.graph.Paths
-
Calculates the possible d-separation nodes between two given Nodes within a graph, using a maximum path length constraint.
- PossibleMConnectingPath - Class in edu.cmu.tetrad.search.utils
-
Finds possible d-connecting undirectedPaths for the IonSearch.
- PossibleMsepFci - Class in edu.cmu.tetrad.search.utils
-
Implements the Possible-M-Sep search step of Spirtes, et al's (1993) FCI algorithm (pp 144-145).
- PossibleMsepFci(Graph, IndependenceTest) - Constructor for class edu.cmu.tetrad.search.utils.PossibleMsepFci
-
Creates a new SepSet and assumes that none of the variables have yet been checked.
- pow() - Static method in class edu.cmu.tetrad.util.StatUtils
-
pow.
- powerSet(List<Node>) - Static method in class edu.cmu.tetrad.search.utils.GraphSearchUtils
-
powerSet.
- PRAOerrors - Class in edu.cmu.tetrad.simulation
-
Created by Erich on 8/21/2016.
- PRAOerrors(double[], String) - Constructor for class edu.cmu.tetrad.simulation.PRAOerrors
-
Constructor for PRAOerrors.
- PRAOerrors(List<PRAOerrors>, String) - Constructor for class edu.cmu.tetrad.simulation.PRAOerrors
-
Constructor for PRAOerrors.
- PRECOMPUTE_COVARIANCES - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
PRECOMPUTE_COVARIANCES="precomputeCovariances"
- predictor(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.ideker.ItkPredictorSearch
-
predictor.
- PREFIX - Enum constant in enum class edu.cmu.tetrad.calculator.expression.ExpressionDescriptor.Position
-
The expression can occur in the prefix position.
- Preserved - Enum constant in enum class edu.pitt.dbmi.algo.resampling.ResamplingEdgeEnsemble
-
Choose an edge iff there is an edge that its prob.
- PreviousStepOnly - Class in edu.cmu.tetrad.study.gene.tetrad.gene.history
-
Initializes a graph by adding the previous time step only of each variable.
- PreviousStepOnly() - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.history.PreviousStepOnly
-
Constructor for PreviousStepOnly.
- printClusterPValues(Set<List<Integer>>) - Method in class edu.cmu.tetrad.search.utils.ClusterSignificance
-
Prints the p-values for the given clusters.
- printEdges() - Method in class edu.cmu.tetrad.graph.RandomGraph.UniformGraphGenerator
-
Prints the parent matrix for the graph.
- printGraphDegrees() - Method in class edu.cmu.tetrad.study.performance.PerformanceTests
-
printGraphDegrees.
- printStuffForKlea() - Method in class edu.cmu.tetrad.study.performance.PerformanceTests
-
printStuffForKlea.
- PRIOR_EQUIVALENT_SAMPLE_SIZE - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
PRIOR_EQUIVALENT_SAMPLE_SIZE="priorEquivalentSampleSize"
- PRIORITIZE_EXISTING - Enum constant in enum class edu.cmu.tetrad.search.utils.PcCommon.ConflictRule
-
When there is a conflict, keep the orientation that has already been made.
- PROB_CYCLE - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
PROB_CYCLE="probCycle"
- PROB_MAP - Enum constant in enum class edu.cmu.tetrad.bayes.MlBayesIm.CptMapType
-
Represents a probabilistic CptMap type.
- PROB_REMOVE_COLUMN - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
PROB_REMOVE_COLUMN="probRemoveColumn"
- PROB_TWO_CYCLE - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
PROB_TWO_CYCLE="probTwoCycle"
- PROBABILISTIC_TEST_PARAMETERS - Static variable in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.PagSampleRfci
-
Constant
PROBABILISTIC_TEST_PARAMETERS
- ProbabilisticMapIndependence - Class in edu.cmu.tetrad.search.work_in_progress
-
Uses BCInference by Cooper and Bui to calculate probabilistic conditional independence judgments.
- ProbabilisticMapIndependence(DataSet) - Constructor for class edu.cmu.tetrad.search.work_in_progress.ProbabilisticMapIndependence
-
Initializes the test using a discrete data sets.
- ProbabilisticTest - Class in edu.cmu.tetrad.algcomparison.independence
-
Dec 17, 2018 3:44:46 PM
- ProbabilisticTest() - Constructor for class edu.cmu.tetrad.algcomparison.independence.ProbabilisticTest
-
Constructs a new instance of the ProbabilisticTest class.
- probability(double) - Method in class edu.cmu.tetrad.sem.EmpiricalCdf
-
Calculates the probability mass function (PMF) of a given point.
- PROBABILITY_OF_EDGE - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
PROBABILITY_OF_EDGE="probabilityOfEdge"
- probConstraint(BCCausalInference.OP, int, int, int[]) - Method in class edu.pitt.dbmi.algo.bayesian.constraint.inference.BCCausalInference
-
This function takes a constraint, which has a value of either OP.dependent or OP.independent, of the form "X independent Y given Z" or "X dependent Y given Z" and returns a probability for that constraint given the data in cases and assumed prior probability for that constraint given the data in cases and assumed prior probabilities.
- probConstraint(BCInference.OP, int, int, int[]) - Method in class edu.pitt.dbmi.algo.bayesian.constraint.inference.BCInference
-
This function takes a constraint, which has a value of either OP.dependent or OP.independent, of the form "X independent Y given Z" or "X dependent Y given Z" and returns a probability for that constraint given the data in cases and assumed prior probability for that constraint given the data in cases and assumed prior probabilities.
- probConstraint(BCInference.OP, Node, Node, Node[]) - Method in class edu.cmu.tetrad.search.work_in_progress.ProbabilisticMapIndependence
-
probConstraint.
- probConstraint(BCInference, BCInference.OP, Node, Node, Node[], Map<Node, Integer>) - Method in class edu.cmu.tetrad.search.test.IndTestProbabilistic
-
Returns the probability of the constraint x op y | z.
- ProbUtils - Class in edu.cmu.tetrad.util
-
Implements a number of important functions from probability and statistics.> 0
- produce_undirected_graphs - Enum constant in enum class edu.cmu.tetrad.annotation.AlgType
-
If an algorithm produces undirected graphs.
- product(double[][], double[]) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
product.
- product(double[][], double[][]) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
product.
- product(double[], double[][]) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
product.
- product(Vector, Matrix) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
product.
- ProportionSemidirectedPathsNotReversedEst - Class in edu.cmu.tetrad.algcomparison.statistic
-
Proportion of semi(X, Y) in estimated graph for which there is no semi(Y, X) in true graph.
- ProportionSemidirectedPathsNotReversedEst() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.ProportionSemidirectedPathsNotReversedEst
-
Constructs a new instance of the statistic.
- ProportionSemidirectedPathsNotReversedTrue - Class in edu.cmu.tetrad.algcomparison.statistic
-
Proportion of semi(X, Y) in true graph for which there is no semi(Y, Z) in estimated graph.
- ProportionSemidirectedPathsNotReversedTrue() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.ProportionSemidirectedPathsNotReversedTrue
-
Constructs a new instance of the statistic.
- Proposition - Class in edu.cmu.tetrad.bayes
-
Represents propositions over the variables of a particular BayesIm describing an event of a fairly general sort--namely, conjunctions of propositions that particular variables take on values from a particular disjunctive list of categories.
- Proposition(Proposition) - Constructor for class edu.cmu.tetrad.bayes.Proposition
-
Copies the info out of the old proposition into a new proposition for the new BayesIm.
- Proposition(VariableSource, Proposition) - Constructor for class edu.cmu.tetrad.bayes.Proposition
-
Copies the info out of the old proposition into a new proposition for the new BayesIm.
- ProximalGradient - Class in edu.pitt.csb.mgm
-
Implementation of Nesterov's 83 method as described in Beck and Teboulle, 2009 aka Fast Iterative Shrinkage Thresholding Algorithm
- ProximalGradient() - Constructor for class edu.pitt.csb.mgm.ProximalGradient
-
Constructor using defaults from Becker et al 2011.
- ProximalGradient(double, double, boolean) - Constructor for class edu.pitt.csb.mgm.ProximalGradient
-
Constructor, set parameters for a proximal gradient run
- proximalOperator(double, DoubleMatrix1D) - Method in class edu.pitt.csb.mgm.Mgm
-
Applies proximal operator on the given input vector with a positive parameter.
- pseudoinverse() - Method in class edu.cmu.tetrad.util.Matrix
-
Returns the Moore-Penrose pseudoinverse of the matrix.
- purify(List<List<Node>>) - Method in interface edu.cmu.tetrad.search.utils.IPurify
-
purify.
- purify(List<List<Node>>) - Method in class edu.cmu.tetrad.search.utils.PurifyScoreBased
-
purify.
- purify(List<List<Node>>) - Method in class edu.cmu.tetrad.search.utils.PurifyTetradBased
-
purify.
- purify(List<List<Integer>>) - Method in class edu.cmu.tetrad.search.utils.PurifySextadBased
-
purify.
- Purify - Class in edu.cmu.tetrad.search.utils
-
Implements the Purify algorithm, which is a implementation of the automated purification methods described on CPS and the report "Learning Measurement Models" CMU-CALD-03-100.
- Purify(CorrelationMatrix, double, BpcTestType, Clusters) - Constructor for class edu.cmu.tetrad.search.utils.Purify
-
****************************************************** INITIALIZATION o *******************************************************
- Purify(DataSet, double, BpcTestType, Clusters) - Constructor for class edu.cmu.tetrad.search.utils.Purify
-
Constructor for Purify.
- Purify(TetradTest, Clusters) - Constructor for class edu.cmu.tetrad.search.utils.Purify
-
Constructor for Purify.
- PurifyScoreBased - Class in edu.cmu.tetrad.search.utils
-
Implements a score-based Purify method.
- PurifyScoreBased(TetradTest, List<Set<String>>) - Constructor for class edu.cmu.tetrad.search.utils.PurifyScoreBased
-
Constructor for PurifyScoreBased.
- PurifySextadBased - Class in edu.cmu.tetrad.search.utils
-
Implments a sextad-based Purify method.
- PurifySextadBased(DeltaSextadTest, double) - Constructor for class edu.cmu.tetrad.search.utils.PurifySextadBased
-
Constructor for PurifySextadBased.
- PurifyTetradBased - Class in edu.cmu.tetrad.search.utils
-
Implements a tetrad-based purify method.
- PurifyTetradBased(TetradTest) - Constructor for class edu.cmu.tetrad.search.utils.PurifyTetradBased
-
Constructor for PurifyTetradBased.
- put(String, ParamDescription) - Method in class edu.cmu.tetrad.util.ParamDescriptions
-
put.
- putAll(Parameters) - Method in class edu.cmu.tetrad.util.Parameters
-
putAll.
- putParameterValue(String, double) - Method in class edu.cmu.tetrad.sem.GeneralizedSemEstimator.MyContext
-
Puts a parameter value into the parameterValues map of the MyContext class.
- putVariableValue(String, double) - Method in class edu.cmu.tetrad.sem.GeneralizedSemEstimator.MyContext
-
Puts a variable value into the variableValues map of the MyContext class.
- PvalueDistanceToAlpha - Class in edu.cmu.tetrad.algcomparison.statistic
-
Estimates whether the p-values under the null are Uniform usign the Markov Checker.
- PvalueDistanceToAlpha(double) - Constructor for class edu.cmu.tetrad.algcomparison.statistic.PvalueDistanceToAlpha
-
Constructor for PvalueDistanceToAlpha.
- pValuesAdP(Map<Pair<Node, Node>, Set<Double>>) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Calculates the p-value using the Anderson-Darling test for a given set of p-values from an independence test.
- PvalueUniformityUnderNull - Class in edu.cmu.tetrad.algcomparison.statistic
-
Estimates whether the p-values under the null are Uniform using the Markov Checker.
- PvalueUniformityUnderNull(double) - Constructor for class edu.cmu.tetrad.algcomparison.statistic.PvalueUniformityUnderNull
-
Constructor for PvalueUniformityUnderNull.
Q
- quartile(double[], int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
quartile.
- quartile(double[], int, int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
quartile.
- quartile(long[], int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
quartile.
- quartile(long[], int, int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
quartile.
R
- R0R4Strategy - Interface in edu.cmu.tetrad.search.utils
-
The FCI orientation rules are almost entirely taken up with an examination of the FCI graph, but there are two rules that require looking at the distribution.
- R0R4StrategyScoreBased - Class in edu.cmu.tetrad.search.utils
-
The FciOrientDataExaminationStrategyTestBased class implements the FciOrientDataExaminationStrategy interface and provides methods for checking unshielded colliders and determining orientations based on the Discriminating Path Rule.
- R0R4StrategyTestBased - Class in edu.cmu.tetrad.search.utils
-
The FciOrientDataExaminationStrategyTestBased class implements the FciOrientDataExaminationStrategy interface and provides methods for checking unshielded colliders and determining orientations based on the Discriminating Path Rule.
- R0R4StrategyTestBased(IndependenceTest) - Constructor for class edu.cmu.tetrad.search.utils.R0R4StrategyTestBased
-
Creates a new instance of FciOrientDataExaminationStrategyTestBased.
- R0R4StrategyTestBased.BlockingType - Enum Class in edu.cmu.tetrad.search.utils
-
Enum representing the different types of blocking strategies.
- R1 - Class in edu.cmu.tetrad.algcomparison.algorithm.pairwise
-
R1.
- R1 - Enum constant in enum class edu.cmu.tetrad.search.Lofs.Rule
-
The R1 rule.
- R1() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.pairwise.R1
-
Constructor for R1.
- R1(Algorithm) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.pairwise.R1
-
Constructor for R1.
- R1TimeLag - Enum constant in enum class edu.cmu.tetrad.search.Lofs.Rule
-
The R1 Time Lag rule.
- R2 - Class in edu.cmu.tetrad.algcomparison.algorithm.pairwise
-
R2.
- R2 - Enum constant in enum class edu.cmu.tetrad.search.Lofs.Rule
-
The R2 rule.
- R2() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.pairwise.R2
-
Constructor for R2.
- R2(Algorithm) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.pairwise.R2
-
Constructor for R2.
- R3 - Class in edu.cmu.tetrad.algcomparison.algorithm.pairwise
-
R3.
- R3 - Enum constant in enum class edu.cmu.tetrad.search.Lofs.Rule
-
The R3 rule.
- R3() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.pairwise.R3
-
Constructor for R3.
- R3(Algorithm) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.pairwise.R3
-
Constructor for R3.
- R5 - Enum constant in enum class edu.cmu.tetrad.search.utils.R5R9Dijkstra.Rule
-
The R5 rule.
- R5R9Dijkstra - Class in edu.cmu.tetrad.search.utils
-
A modified implementation of Dijkstra's shortest path algorithm for the R5 and R9 rules from Zhang, J.
- R5R9Dijkstra.DijkstraEdge - Class in edu.cmu.tetrad.search.utils
-
Represents a node in Dijkstra's algorithm.
- R5R9Dijkstra.Graph - Class in edu.cmu.tetrad.search.utils
-
Represents a graph for Dijkstra's algorithm.
- R5R9Dijkstra.Rule - Enum Class in edu.cmu.tetrad.search.utils
-
The rule that is being implemented, R5 or R9.
- R9 - Enum constant in enum class edu.cmu.tetrad.search.utils.R5R9Dijkstra.Rule
-
The R9 rule.
- random - Enum constant in enum class edu.cmu.tetrad.search.utils.ResolveSepsets.Method
-
Random method
- random - Enum constant in enum class edu.cmu.tetrad.search.work_in_progress.ResolveSepsetsDci.Method
-
The random method.
- RANDOM - Enum constant in enum class edu.cmu.tetrad.bayes.MlBayesIm.InitializationMethod
-
Represents a random initialization method.
- RANDOM - Static variable in class edu.cmu.tetrad.bayes.MlBayesIm
-
Represents a constant value for a random number.
- RANDOM_FOWARD_DAG - Static variable in class edu.cmu.tetrad.algcomparison.graph.GraphTypes
-
Constant
RANDOM_FOWARD_DAG="Random Foward DAG (Fixed Average Degree"{trunked}
- RANDOM_ONE_FACTOR_MIM - Static variable in class edu.cmu.tetrad.algcomparison.graph.GraphTypes
-
Constant
RANDOM_ONE_FACTOR_MIM="Random One Factor MIM"
- RANDOM_SELECTION_SIZE - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
RANDOM_SELECTION_SIZE="randomSelectionSize"
- RANDOM_TWO_FACTOR_MIM - Static variable in class edu.cmu.tetrad.algcomparison.graph.GraphTypes
-
Constant
RANDOM_TWO_FACTOR_MIM="Random Two Factor MIM"
- randomBifactorModel(int, int, int, int, int, int) - Static method in class edu.cmu.tetrad.data.DataGraphUtils
-
First a random single factor model is created with the specified number of latent nodes and latent edges, and impurity structure.
- randomClusters(int) - Static method in class edu.cmu.tetrad.cluster.KMeans
-
Constructs a new KMeansBatch, initializing the algorithm by randomly assigning each point in the data to one of the numCenters clusters, then calculating the centroid of each cluster.
- randomCyclicGraph2(int, int, int) - Static method in class edu.cmu.tetrad.graph.RandomGraph
-
Makes a cyclic graph by repeatedly adding cycles of length of 3, 4, or 5 to the graph, then finally adding two cycles.
- randomCyclicGraph3(int, int, int, double, double) - Static method in class edu.cmu.tetrad.graph.RandomGraph
-
Makes a cyclic graph by repeatedly adding cycles of length of 3, 4, or 5 to the graph, then finally adding two cycles.
- randomDag(int, int, int, int, int, int, boolean) - Static method in class edu.cmu.tetrad.graph.RandomGraph
-
Generates a random Directed Acyclic Graph (DAG) with the specified parameters.
- randomDag(List<Node>, int, int, int, int, int, boolean) - Static method in class edu.cmu.tetrad.graph.RandomGraph
-
Generates a random Directed Acyclic Graph (DAG).
- RandomDistribution - Interface in edu.cmu.tetrad.study.gene.tetrad.gene.history
-
A distribution from which noise values are drawn.
- RandomForward - Class in edu.cmu.tetrad.algcomparison.graph
-
Creates a random graph by adding forward edges.
- RandomForward() - Constructor for class edu.cmu.tetrad.algcomparison.graph.RandomForward
-
Constructs a new instance of the RandomForward.
- randomGraph(int, int, int, int, int, int, boolean) - Static method in class edu.cmu.tetrad.graph.RandomGraph
-
Generates a random graph based on the given parameters.
- randomGraph(List<Node>, int, int, int, int, int, boolean) - Static method in class edu.cmu.tetrad.graph.RandomGraph
-
Generates a random graph based on the given parameters.
- RandomGraph - Class in edu.cmu.tetrad.graph
-
The RandomGraph class provides methods for generating random graphs.
- RandomGraph - Interface in edu.cmu.tetrad.algcomparison.graph
-
An interface to represent a random graph of some sort.
- RandomGraph.UniformGraphGenerator - Class in edu.cmu.tetrad.graph
-
Generates random DAGs uniformly with certain classes of DAGs using variants of Markov chain algorithm by Malancon, Dutour, and Philippe.
- randomGraphRandomForwardEdges(int, int, int, int, int, int, boolean) - Static method in class edu.cmu.tetrad.graph.RandomGraph
-
Generates a random graph with the given parameters and random forward edges.
- randomGraphRandomForwardEdges(List<Node>, int, int, int, int, int, boolean) - Static method in class edu.cmu.tetrad.graph.RandomGraph
-
Generates a random graph with forward edges.
- randomGraphRandomForwardEdges(List<Node>, int, int, int, int, int, boolean, boolean) - Static method in class edu.cmu.tetrad.graph.RandomGraph
-
Generates a random graph with forward edges.
- randomGraphUniform(List<Node>, int, int, int, int, int, boolean, int) - Static method in class edu.cmu.tetrad.graph.RandomGraph
-
Generates a random graph using UniformGraphGenerator with the specified parameters.
- randomize() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BooleanFunction
-
Chooses a random function by flipping a coin for each value in table.
- RANDOMIZE - Enum constant in enum class edu.cmu.tetrad.graph.NodeType
-
Constant
RANDOMIZE
- RANDOMIZE_COLUMNS - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
RANDOMIZE_COLUMNS="randomizeColumns"
- randomizeGraph(LagGraph) - Method in interface edu.cmu.tetrad.study.gene.tetrad.gene.history.GraphRandomizer
-
Randomizes the given lag graph--in other words, chooses random edges for the graph according to a particlar scheme (see instantiations).
- randomizeIncompleteRows(int) - Method in interface edu.cmu.tetrad.bayes.BayesIm
-
Randomizes any row in the table for the given node index that has a Double.NaN value in it.
- randomizeIncompleteRows(int) - Method in class edu.cmu.tetrad.bayes.DirichletBayesIm
-
Randomizes any row in the table for the given node index that has a Double.NaN value in it.
- randomizeIncompleteRows(int) - Method in class edu.cmu.tetrad.bayes.MlBayesIm
-
Randomizes the incomplete rows in the specified node's table.
- randomizeIncompleteRows(int) - Method in class edu.cmu.tetrad.bayes.MlBayesImObs
-
Randomizes any row in the table for the given node index that has a Double.NaN value in it.
- randomizeIncompleteRows(int) - Method in class edu.cmu.tetrad.bayes.UpdatedBayesIm
-
Randomizes any row in the table for the given node index that has a Double.NaN value in it.
- randomizeRow(int, int) - Method in interface edu.cmu.tetrad.bayes.BayesIm
-
Assigns random probability values to the child values of this row that add to 1.
- randomizeRow(int, int) - Method in class edu.cmu.tetrad.bayes.DirichletBayesIm
-
Assigns random probability values to the child values of this row that add to 1.
- randomizeRow(int, int) - Method in class edu.cmu.tetrad.bayes.MlBayesIm
-
Randomizes the values of a row in a table for a given node.
- randomizeRow(int, int) - Method in class edu.cmu.tetrad.bayes.MlBayesImObs
-
Assigns random probability values to the child values of this row that add to 1.
- randomizeRow(int, int) - Method in class edu.cmu.tetrad.bayes.UpdatedBayesIm
-
Assigns random probability values to the child values of this row that add to 1.
- randomizeTable(int) - Method in interface edu.cmu.tetrad.bayes.BayesIm
-
Randomizes every row in the table for the given node index.
- randomizeTable(int) - Method in class edu.cmu.tetrad.bayes.DirichletBayesIm
-
Randomizes every row in the table for the given node index.
- randomizeTable(int) - Method in class edu.cmu.tetrad.bayes.MlBayesIm
-
Randomizes the table for a given node.
- randomizeTable(int) - Method in class edu.cmu.tetrad.bayes.MlBayesImObs
-
Randomizes every row in the table for the given node index.
- randomizeTable(int) - Method in class edu.cmu.tetrad.bayes.UpdatedBayesIm
-
Randomizes every row in the table for the given node index.
- randomMim(Graph, int, int, int, int, boolean) - Static method in class edu.cmu.tetrad.data.DataGraphUtils
-
randomMim.
- randomPoints(int) - Static method in class edu.cmu.tetrad.cluster.KMeans
-
Constructs a new KMeansBatch, initializing the algorithm by picking
numCeneters
centers randomly from the data itself. - RandomSampler - Class in edu.cmu.tetrad.data
-
Provides a static method for sampling without replacement from a dataset to create a new dataset with a sample size supplied by the user.
- RandomSampler() - Constructor for class edu.cmu.tetrad.data.RandomSampler
-
Constructs a new instance of the RandomSampler.
- randomScaleFreeGraph(int, int, double, double, double, double) - Static method in class edu.cmu.tetrad.graph.RandomGraph
-
Generates a random scale-free graph.
- randomSimulation(int) - Method in class edu.cmu.tetrad.simulation.GdistanceRandom
-
randomSimulation.
- RandomSingleFactorMim - Class in edu.cmu.tetrad.algcomparison.graph
-
Creates a random graph by adding forward edges.
- RandomSingleFactorMim() - Constructor for class edu.cmu.tetrad.algcomparison.graph.RandomSingleFactorMim
-
Constructs a new instance of the RandomSingleFactorMim.
- randomSingleFactorModel(int, int, int, int, int, int) - Static method in class edu.cmu.tetrad.data.DataGraphUtils
-
randomSingleFactorModel.
- RandomTwoFactorMim - Class in edu.cmu.tetrad.algcomparison.graph
-
Creates a random graph by adding forward edges.
- RandomTwoFactorMim() - Constructor for class edu.cmu.tetrad.algcomparison.graph.RandomTwoFactorMim
-
Constructs a new instance of the RandomTwoFactorMim.
- RandomUtil - Class in edu.cmu.tetrad.util
-
Provides a common random number generator to be used throughout Tetrad, to avoid problems that happen when random number generators are created more often than once per millisecond.
- range(double[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
range.
- range(double[], int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
range.
- range(long[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
range.
- range(long[], int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
range.
- rank() - Method in class edu.cmu.tetrad.util.Matrix
-
rank.
- rankCorrelation(double[], double[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
rankCorrelation.
- ranks(double[]) - Static method in class edu.cmu.tetrad.data.DataUtils
-
ranks.
- RBExperiments - Class in edu.cmu.tetrad.study
-
RBExperiments class.
- RBExperiments() - Constructor for class edu.cmu.tetrad.study.RBExperiments
-
Constructor for RBExperiments.
- RC - Enum constant in enum class edu.cmu.tetrad.search.Lofs.Rule
-
The RC rule.
- RCIT_NUM_FEATURES - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
RCIT_NUM_FEATURES="rcitNumFeatures"
- ReadControl - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.ideker
-
ReadControl class.
- ReadControl() - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.ideker.ReadControl
-
Constructor for ReadControl.
- readerToGraphJson(Reader) - Static method in class edu.cmu.tetrad.graph.GraphSaveLoadUtils
-
readerToGraphJson.
- readerToGraphRuben(Reader) - Static method in class edu.cmu.tetrad.graph.GraphSaveLoadUtils
-
readerToGraphRuben.
- readerToGraphTxt(Reader) - Static method in class edu.cmu.tetrad.graph.GraphSaveLoadUtils
-
readerToGraphTxt.
- readerToGraphTxt(String) - Static method in class edu.cmu.tetrad.graph.GraphSaveLoadUtils
-
readerToGraphTxt.
- readGraph(File) - Method in class edu.cmu.tetrad.data.simulation.LoadContinuousDataSmithSim
-
readGraph.
- ReadIdeker - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.ideker
-
ReadIdeker class.
- ReadIdeker() - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.ideker.ReadIdeker
-
Constructor for ReadIdeker.
- RealCovariance - Interface in edu.cmu.tetrad.stat.correlation
-
Jan 27, 2016 4:46:07 PM
- RealCovarianceMatrix - Class in edu.cmu.tetrad.stat.correlation
-
Jan 27, 2016 5:35:01 PM
- RealCovarianceMatrix(double[][]) - Constructor for class edu.cmu.tetrad.stat.correlation.RealCovarianceMatrix
-
Constructor for RealCovarianceMatrix.
- RealCovarianceMatrixForkJoin - Class in edu.cmu.tetrad.stat.correlation
-
Jan 27, 2016 5:37:40 PM
- RealCovarianceMatrixForkJoin(double[][], int) - Constructor for class edu.cmu.tetrad.stat.correlation.RealCovarianceMatrixForkJoin
-
Constructor for RealCovarianceMatrixForkJoin.
- RealVariance - Interface in edu.cmu.tetrad.stat
-
Feb 9, 2016 3:13:19 PM
- RealVarianceVector - Class in edu.cmu.tetrad.stat
-
Feb 9, 2016 3:14:08 PM
- RealVarianceVector(double[][]) - Constructor for class edu.cmu.tetrad.stat.RealVarianceVector
-
Constructor for RealVarianceVector.
- RealVarianceVectorForkJoin - Class in edu.cmu.tetrad.stat
-
Feb 9, 2016 3:15:29 PM
- RealVarianceVectorForkJoin(double[][], int) - Constructor for class edu.cmu.tetrad.stat.RealVarianceVectorForkJoin
-
Constructor for RealVarianceVectorForkJoin.
- recallUnshieldedTriples(Graph) - Method in class edu.cmu.tetrad.search.utils.AlmostCycleRemover
-
Recalls unshielded triples in the given graph.
- recallUnshieldedTriples(Graph, Set<Triple>, Knowledge) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Recall unshielded triples in a given graph.
- RECURSIVE - Enum constant in enum class edu.cmu.tetrad.search.utils.R0R4StrategyTestBased.BlockingType
-
Recursive blocking.
- RECURSIVE_MSEP - Enum constant in enum class edu.cmu.tetrad.search.ConditioningSetType
-
Conditioning on variables in the recursive order of a depth-first M-separation search.
- REDIRECT - Enum constant in enum class edu.cmu.tetrad.search.work_in_progress.HbsmsBeam.Move.Type
-
Redirect an edge.
- RegexTokenizer - Class in edu.cmu.tetrad.data
-
Tokenizes the given input character sequence using the type of delimiter specified bythe given CPDAG.
- RegexTokenizer(CharSequence, Pattern, char) - Constructor for class edu.cmu.tetrad.data.RegexTokenizer
-
Constructs a tokenizer for the given input line, using the given Pattern as delimiter.
- regress(double[], double[][]) - Static method in class edu.cmu.tetrad.regression.RegressionDataset
-
regress.
- regress(DiscreteVariable, List<Node>) - Method in class edu.cmu.tetrad.regression.LogisticRegression
-
x must be binary; regressors must be continuous or binary.
- regress(Node, Node...) - Method in interface edu.cmu.tetrad.regression.Regression
-
Regresses
target
on theregressors
, yielding a regression plane. - regress(Node, Node...) - Method in class edu.cmu.tetrad.regression.RegressionCovariance
-
regress.
- regress(Node, Node...) - Method in class edu.cmu.tetrad.regression.RegressionDataset
-
regress.
- regress(Node, List<Node>) - Method in interface edu.cmu.tetrad.regression.Regression
-
Regresses
target
on theregressors
, yielding a regression plane. - regress(Node, List<Node>) - Method in class edu.cmu.tetrad.regression.RegressionCovariance
-
Regresses the given target on the given regressors, yielding a regression plane, in which coefficients are given for each regressor plus the constant (if means have been specified, that is, for the last), and se, t, and p values are given for each regressor.
- regress(Node, List<Node>) - Method in class edu.cmu.tetrad.regression.RegressionDataset
-
Regresses the target on the given regressors.
- Regression - Interface in edu.cmu.tetrad.regression
-
Implements a multiple regression model, allowing data to be specified either as a tabular data set or as a covariance matrix plus list of means.
- RegressionCovariance - Class in edu.cmu.tetrad.regression
-
Implements a regression model from correlations--that is, from a correlation matrix, a list of standard deviations, and a list of means.
- RegressionCovariance(ICovarianceMatrix) - Constructor for class edu.cmu.tetrad.regression.RegressionCovariance
-
Constructs a covariance-based regression model using the given covariance matrix, assuming that no means are specified.
- RegressionDataset - Class in edu.cmu.tetrad.regression
-
Implements a regression model from tabular continuous data.
- RegressionDataset(DataSet) - Constructor for class edu.cmu.tetrad.regression.RegressionDataset
-
Constructs a linear regression model for the given tabular data set.
- RegressionDataset(Matrix, List<Node>) - Constructor for class edu.cmu.tetrad.regression.RegressionDataset
-
Constructor for RegressionDataset.
- RegressionResult - Class in edu.cmu.tetrad.regression
-
Stores the various components of a regression result so they can be passed around together more easily.
- RegressionResult(boolean, String[], int, double[], double[], double[], double[], double, double, double, Vector) - Constructor for class edu.cmu.tetrad.regression.RegressionResult
-
A result for a variety of regression algorithm.
- RegressionUtils - Class in edu.cmu.tetrad.regression
-
Sundry utilities for regression.
- RegressionUtils() - Constructor for class edu.cmu.tetrad.regression.RegressionUtils
-
Constructs a new instance of the RegressionUtils.
- REGULAR - Enum constant in enum class edu.cmu.tetrad.search.utils.PcCommon.FasType
-
Regular FAS.
- ReidentifyVariables - Class in edu.cmu.tetrad.sem
-
Utility for reidentifying variables for multiple indicator structure searches.
- ReidentifyVariables() - Constructor for class edu.cmu.tetrad.sem.ReidentifyVariables
-
Constructs a new instance of the ReidentifyVariables.
- reidentifyVariables1(List<List<Node>>, Graph) - Static method in class edu.cmu.tetrad.sem.ReidentifyVariables
-
reidentifyVariables1.
- reidentifyVariables2(List<List<Node>>, Graph, DataSet) - Static method in class edu.cmu.tetrad.sem.ReidentifyVariables
-
reidentifyVariables2.
- remove() - Method in class edu.cmu.tetrad.util.CombinationIterator
-
remove.
- remove(int) - Method in class edu.cmu.tetrad.data.DataModelList
- remove(IndependenceFact) - Method in class edu.cmu.tetrad.data.IndependenceFacts
-
remove.
- remove(String) - Method in class edu.cmu.tetrad.util.Parameters
-
Removes the specified parameter from the list of parameters.
- REMOVE - Enum constant in enum class edu.cmu.tetrad.search.work_in_progress.HbsmsBeam.Move.Type
-
Remove an edge.
- REMOVE_ALMOST_CYCLES - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
REMOVE_ALMOST_CYCLES="removeAlmostCycles"
- REMOVE_COLLIDER - Enum constant in enum class edu.cmu.tetrad.search.work_in_progress.HbsmsBeam.Move.Type
-
Remove a collider.
- REMOVE_EFFECT_NODES - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
REMOVE_EFFECT_NODES="removeEffectNodes"
- removeAlmostCycles(Graph) - Method in class edu.cmu.tetrad.search.utils.AlmostCycleRemover
-
Removes almost cycles from the Graph.
- removeAlmostCycles(Graph, Set<Triple>, Set<Triple>, FciOrient, Knowledge, boolean) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Removes almost cycles from a graph.
- removeAmbiguousTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.Dag
-
Removes an ambiguous triple from the list of ambiguous triples.
- removeAmbiguousTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
removeAmbiguousTriple.
- removeAmbiguousTriple(Node, Node, Node) - Method in interface edu.cmu.tetrad.graph.Graph
-
removeAmbiguousTriple.
- removeAmbiguousTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.LagGraph
-
removeAmbiguousTriple.
- removeAmbiguousTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.SemGraph
-
removeAmbiguousTriple.
- removeAmbiguousTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Removes an ambiguous triple from the collection.
- removeAmbiguousTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.Underlines
-
removeAmbiguousTriple.
- removeAttribute(String) - Method in class edu.cmu.tetrad.data.ContinuousVariable
-
removeAttribute.
- removeAttribute(String) - Method in class edu.cmu.tetrad.data.DiscreteVariable
-
removeAttribute.
- removeAttribute(String) - Method in class edu.cmu.tetrad.graph.Dag
-
Removes an attribute from the graph.
- removeAttribute(String) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
removeAttribute.
- removeAttribute(String) - Method in interface edu.cmu.tetrad.graph.Graph
-
removeAttribute.
- removeAttribute(String) - Method in class edu.cmu.tetrad.graph.GraphNode
-
removeAttribute.
- removeAttribute(String) - Method in class edu.cmu.tetrad.graph.LagGraph
-
removeAttribute.
- removeAttribute(String) - Method in interface edu.cmu.tetrad.graph.Node
-
removeAttribute.
- removeAttribute(String) - Method in class edu.cmu.tetrad.graph.SemGraph
-
removeAttribute.
- removeAttribute(String) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Removes the attribute with the specified key from the object.
- removeBidirectedOrientations(Graph) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
removeBidirectedOrientations.
- removeByPossibleMsep(IndependenceTest, SepsetMap) - Method in class edu.cmu.tetrad.graph.Paths
-
Remove edges by the possible m-separation rule.
- removeCategory(int, int) - Method in class edu.cmu.tetrad.bayes.Proposition
-
removeCategory.
- removeCols(int[]) - Method in class edu.cmu.tetrad.data.BoxDataSet
-
Removes the given columns from the data set.
- removeCols(int[]) - Method in interface edu.cmu.tetrad.data.DataSet
-
Removes the given columns from the data set.
- removeCols(int[]) - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
Removes the given columns from the data set.
- removeColumn(int) - Method in class edu.cmu.tetrad.data.BoxDataSet
-
Removes the variable (and data) at the given index.
- removeColumn(int) - Method in interface edu.cmu.tetrad.data.DataSet
-
Removes the variable (and data) at the given index.
- removeColumn(int) - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
Removes the variable (and data) at the given index.
- removeColumn(Node) - Method in class edu.cmu.tetrad.data.BoxDataSet
-
Removes the given variable, along with all of its data.
- removeColumn(Node) - Method in interface edu.cmu.tetrad.data.DataSet
-
Removes the given variable, along with all of its data.
- removeColumn(Node) - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
Removes the given variable, along with all of its data.
- removeConditioningVariable(String) - Method in class edu.cmu.tetrad.data.Histogram
-
Removes a conditioning variable.
- removeConstantColumns(DataSet) - Static method in class edu.cmu.tetrad.data.DataTransforms
-
removeConstantColumns.
- removeCycles(Graph) - Method in class edu.cmu.tetrad.search.utils.AlmostCycleRemover
-
Removes cycles from the Graph.
- removeCycles(Set<Triple>, FciOrient, Graph, Knowledge, boolean) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Removes cycles from the given graph using the Fast Causal Inference (FCI) algorithm.
- removeDottedUnderlineTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.Dag
-
Removes a dotted underline triple from the set of triples.
- removeDottedUnderlineTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
removeDottedUnderlineTriple.
- removeDottedUnderlineTriple(Node, Node, Node) - Method in interface edu.cmu.tetrad.graph.Graph
-
removeDottedUnderlineTriple.
- removeDottedUnderlineTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.LagGraph
-
removeDottedUnderlineTriple.
- removeDottedUnderlineTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.SemGraph
-
removeDottedUnderlineTriple.
- removeDottedUnderlineTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Removes a triple of nodes from the set of dottedUnderLineTriples.
- removeDottedUnderlineTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.Underlines
-
removeDottedUnderlineTriple.
- removeEdge(Edge) - Method in class edu.cmu.tetrad.graph.Dag
-
Removes a given edge from the graph.
- removeEdge(Edge) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
Removes the given edge from the graph.
- removeEdge(Edge) - Method in interface edu.cmu.tetrad.graph.Graph
-
Removes the given edge from the graph.
- removeEdge(Edge) - Method in class edu.cmu.tetrad.graph.LagGraph
-
Removes the given edge from the graph.
- removeEdge(Edge) - Method in class edu.cmu.tetrad.graph.SemGraph
-
Removes the given edge from the graph.
- removeEdge(Edge) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Removes an edge from the graph.
- removeEdge(Node, Node) - Method in class edu.cmu.tetrad.graph.Dag
-
Removes the edge between two nodes in the graph.
- removeEdge(Node, Node) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
Removes an edge between two given nodes.
- removeEdge(Node, Node) - Method in interface edu.cmu.tetrad.graph.Graph
-
Removes an edge between two given nodes.
- removeEdge(Node, Node) - Method in class edu.cmu.tetrad.graph.LagGraph
-
Removes an edge between two given nodes.
- removeEdge(Node, Node) - Method in class edu.cmu.tetrad.graph.SemGraph
-
Removes an edge between two given nodes.
- removeEdge(Node, Node) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Removes the edge between two given nodes.
- removeEdge(String, LaggedFactor) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ActiveLagGraph
-
Removes the lagged factor from the list of lagged factors associated with the given factor.
- removeEdge(String, LaggedFactor) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ManualLagGraph
-
Removes the lagged factor from the list of lagged factors associated with the given factor.
- removeEdge(String, LaggedFactor) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BasicLagGraph
-
Removes the lagged factor from the list of lagged factors associated with the given factor.
- removeEdge(String, LaggedFactor) - Method in interface edu.cmu.tetrad.study.gene.tetrad.gene.history.LagGraph
-
Removes the lagged factor from the list of lagged factors associated with the given factor.
- removeEdges(Node, Node) - Method in class edu.cmu.tetrad.graph.Dag
-
Removes an edge between two nodes.
- removeEdges(Node, Node) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
Removes all edges connecting node A to node B.
- removeEdges(Node, Node) - Method in interface edu.cmu.tetrad.graph.Graph
-
Removes all edges connecting node A to node B.
- removeEdges(Node, Node) - Method in class edu.cmu.tetrad.graph.LagGraph
-
Removes all edges connecting node A to node B.
- removeEdges(Node, Node) - Method in class edu.cmu.tetrad.graph.SemGraph
-
Removes all edges connecting node A to node B.
- removeEdges(Node, Node) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Removes edges between two nodes.
- removeEdges(Collection<Edge>) - Method in class edu.cmu.tetrad.graph.Dag
-
Removes the given edges from the graph.
- removeEdges(Collection<Edge>) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
Iterates through the list and removes any permissible edges found.
- removeEdges(Collection<Edge>) - Method in interface edu.cmu.tetrad.graph.Graph
-
Iterates through the list and removes any permissible edges found.
- removeEdges(Collection<Edge>) - Method in class edu.cmu.tetrad.graph.LagGraph
-
Iterates through the list and removes any permissible edges found.
- removeEdges(Collection<Edge>) - Method in class edu.cmu.tetrad.graph.SemGraph
-
Iterates through the list and removes any permissible edges found.
- removeEdges(Collection<Edge>) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Removes the specified collection of edges from the graph.
- removeFactor(String) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ActiveLagGraph
-
Removes a factor from the graph.
- removeFactor(String) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ManualLagGraph
-
Removes a factor from the graph.
- removeFactor(String) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BasicLagGraph
-
Removes a factor from the graph.
- removeFactor(String) - Method in interface edu.cmu.tetrad.study.gene.tetrad.gene.history.LagGraph
-
Removes a factor from the graph.
- removeForbidden(String, String) - Method in class edu.cmu.tetrad.data.Knowledge
-
Marks the edge var1 --> var2 as not forbid.
- removeFromClusters(String) - Method in class edu.cmu.tetrad.data.Clusters
-
Removes the given variable from the clusters.
- removeFromTiers(String) - Method in class edu.cmu.tetrad.data.Knowledge
-
Removes the given variable by name or search string from all tiers.
- removeHighLagEdges(int) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
removeHighLagEdges.
- removeKnowledgeGroup(int) - Method in class edu.cmu.tetrad.data.Knowledge
-
Removes the knowledge group at the given index.
- removeLatent(Node) - Method in class edu.cmu.tetrad.search.work_in_progress.DMSearch.LatentStructure
-
removeLatent.
- removeNaN(double[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
removeNaN.
- removeNextOutputStream() - Method in class edu.cmu.tetrad.util.TetradLogger
-
removeNextOutputStream.
- removeNode(Node) - Method in class edu.cmu.tetrad.graph.Dag
-
Removes the specified node from the graph.
- removeNode(Node) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
Removes a node from the graph.
- removeNode(Node) - Method in interface edu.cmu.tetrad.graph.Graph
-
Removes a node from the graph.
- removeNode(Node) - Method in class edu.cmu.tetrad.graph.LagGraph
-
Removes a node from the graph.
- removeNode(Node) - Method in class edu.cmu.tetrad.graph.SemGraph
-
Removes a node from the graph.
- removeNode(Node) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Removes the given node from the graph.
- removeNodes(List<Node>) - Method in class edu.cmu.tetrad.graph.Dag
-
Removes the specified nodes from the graph.
- removeNodes(List<Node>) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
Iterates through the list and removes any permissible nodes found.
- removeNodes(List<Node>) - Method in interface edu.cmu.tetrad.graph.Graph
-
Iterates through the list and removes any permissible nodes found.
- removeNodes(List<Node>) - Method in class edu.cmu.tetrad.graph.LagGraph
-
Iterates through the list and removes any permissible nodes found.
- removeNodes(List<Node>) - Method in class edu.cmu.tetrad.graph.SemGraph
-
Iterates through the list and removes any permissible nodes found.
- removeNodes(List<Node>) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Removes the specified nodes from the graph.
- removeNonSkeletonEdges(Graph, Knowledge) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Removes non-skeleton edges from the given graph based on the provided knowledge.
- removeObserver(ModelObserver) - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Removes the specified observer from the list of observers.
- removeOutputStream(OutputStream) - Method in class edu.cmu.tetrad.util.TetradLogger
-
Removes the given stream from the logger.
- removeProperty(Edge.Property) - Method in class edu.cmu.tetrad.graph.EdgeTypeProbability
-
removeProperty.
- removePropertyChangeListener(PropertyChangeListener) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ActiveLagGraph
-
Unregisters a listener for events concerning the lag graph.
- removeRandomColumns(DataSet, double) - Static method in class edu.cmu.tetrad.data.DataTransforms
-
removeRandomColumns.
- removeRequired(String, String) - Method in class edu.cmu.tetrad.data.Knowledge
-
Marks the edge var1 --> var2 as not required.
- removeRows(int[]) - Method in class edu.cmu.tetrad.data.BoxDataSet
-
Removes the specified rows from the dataBox, updates the selection, multipliers, and knowledge accordingly.
- removeRows(int[]) - Method in interface edu.cmu.tetrad.data.DataSet
-
Removes the given rows from the data set.
- removeRows(int[]) - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
Removes the given rows from the data set.
- removeSimilarEdges(Node, Node) - Method in class edu.cmu.tetrad.search.SvarFges
-
Removes similar edges between two nodes.
- removeTetradLoggerListener(TetradLoggerListener) - Method in class edu.cmu.tetrad.util.TetradLogger
-
Removes a TetradLoggerListener from the TetradLogger.
- removeTriplesNotInGraph() - Method in class edu.cmu.tetrad.graph.Dag
-
Removes triples from the graph that contain nodes not present in the graph or are not adjacent to each other.
- removeTriplesNotInGraph() - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
removeTriplesNotInGraph.
- removeTriplesNotInGraph() - Method in interface edu.cmu.tetrad.graph.Graph
-
removeTriplesNotInGraph.
- removeTriplesNotInGraph() - Method in class edu.cmu.tetrad.graph.LagGraph
-
removeTriplesNotInGraph.
- removeTriplesNotInGraph() - Method in class edu.cmu.tetrad.graph.SemGraph
-
removeTriplesNotInGraph.
- removeTriplesNotInGraph() - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Removes triples from the object's internal lists if any of the nodes in the triple is not present in the graph, or if any of the nodes are not adjacent to each other in the graph.
- removeTriplesNotInGraph() - Method in class edu.cmu.tetrad.graph.Underlines
-
removeTriplesNotInGraph.
- removeUnderlineTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.Dag
-
Removes an underline triple from the list of underline triples.
- removeUnderlineTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
removeUnderlineTriple.
- removeUnderlineTriple(Node, Node, Node) - Method in interface edu.cmu.tetrad.graph.Graph
-
removeUnderlineTriple.
- removeUnderlineTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.LagGraph
-
removeUnderlineTriple.
- removeUnderlineTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.SemGraph
-
removeUnderlineTriple.
- removeUnderlineTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Removes the specified triple (x, y, z) from the list of underline triples.
- removeUnderlineTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.graph.Underlines
-
removeUnderlineTriple.
- removeVariables(List<String>) - Method in class edu.cmu.tetrad.data.CorrelationMatrixOnTheFly
-
Removes variables from the covariance matrix, retaining only the variables specified in the provided list.
- removeVariables(List<String>) - Method in class edu.cmu.tetrad.data.CovarianceMatrix
-
Removes variables from the covariance matrix, retaining only the variables specified in the provided list.
- removeVariables(List<String>) - Method in class edu.cmu.tetrad.data.CovarianceMatrixOnTheFly
-
Removes variables from the covariance matrix, retaining only the variables specified in the provided list.
- removeVariables(List<String>) - Method in interface edu.cmu.tetrad.data.ICovarianceMatrix
-
Removes variables from the covariance matrix, retaining only the variables specified in the provided list.
- removeZeroEdges(Graph) - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsBeam
-
removeZeroEdges.
- renameFactor(String, String) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ActiveLagGraph
-
Renames a factor, changing all occurances of the old name to the new one
- renameFactor(String, String) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ManualLagGraph
-
Renames a factor, changing all occurances of the old name to the new one
- renameFactor(String, String) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BasicLagGraph
-
Renames a factor, changing all occurances of the old name to the new one
- renameFactor(String, String) - Method in interface edu.cmu.tetrad.study.gene.tetrad.gene.history.LagGraph
-
Renames a factor, changing all occurances of the old name to the new one
- render(BayesIm) - Static method in class edu.cmu.tetrad.bayes.BayesBifRenderer
-
Renders the given BayesIm object as a Bayesian network in the BIF (Bayesian Interchange Format) format.
- reorientAllWith(Endpoint) - Method in class edu.cmu.tetrad.graph.Dag
-
Reorients all edges in a Directed Acyclic Graph (DAG) with a single endpoint type.
- reorientAllWith(Endpoint) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
Reorients all edges in the graph with the given endpoint.
- reorientAllWith(Endpoint) - Method in interface edu.cmu.tetrad.graph.Graph
-
Reorients all edges in the graph with the given endpoint.
- reorientAllWith(Endpoint) - Method in class edu.cmu.tetrad.graph.LagGraph
-
Reorients all edges in the graph with the given endpoint.
- reorientAllWith(Endpoint) - Method in class edu.cmu.tetrad.graph.SemGraph
-
Reorients all edges in the graph with the given endpoint.
- reorientAllWith(Endpoint) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Reorients all edges in the graph to point towards the specified endpoint.
- reorientWithCircles(Graph, boolean) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Reorients all edges in a Graph as o-o.
- replaceMissingWithRandom(DataSet) - Static method in class edu.cmu.tetrad.data.DataTransforms
-
replaceMissingWithRandom.
- replaceNodes(Graph, List<Node>) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Converts the given graph,
originalGraph
, to use the new variables (with the same names as the old). - replaceNodes(List<Node>, Graph) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Converts the given list of nodes,
originalNodes
, to use the replacement nodes for them by the same name in the givengraph
. - replaceNodes(List<Node>, List<Node>) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Converts the given list of nodes,
originalNodes
, to use the new variables (with the same names as the old). - repmat(double[][], int) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
Make a n repeat copy of the rows and columns of the matrix mat.
- repmat(double[][], int, int) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
Make a repeat copy of matrix mat.
- REQUIRED - Static variable in class edu.cmu.tetrad.data.KnowledgeGroup
-
The types of groups (Can an enum be used instead?)
- requiredEdgesIterator() - Method in class edu.cmu.tetrad.data.Knowledge
-
Iterator over the KnowledgeEdge's representing required edges.
- requiredViolations(Graph, Knowledge) - Static method in class edu.cmu.tetrad.search.CheckKnowledge
-
Returns a sorted list of edges that are required by knowledge but which do not appear in the graph.
- requiresIndependenceTest(Class) - Method in class edu.cmu.tetrad.annotation.AlgorithmAnnotations
-
Checks if the algorithm requires independence test.
- requiresScore(Class) - Method in class edu.cmu.tetrad.annotation.AlgorithmAnnotations
-
Checks if the algorithm requires a score.
- RESAMPLING_ENSEMBLE - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
RESAMPLING_ENSEMBLE="resamplingEnsemble"
- RESAMPLING_WITH_REPLACEMENT - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
RESAMPLING_WITH_REPLACEMENT="resamplingWithReplacement"
- ResamplingEdgeEnsemble - Enum Class in edu.pitt.dbmi.algo.resampling
-
Sep 12, 2018 4:07:46 PM
- reseedRandomGenerator(long) - Method in class edu.cmu.tetrad.sem.EmpiricalCdf
-
Reseeds the random number generator used by the empirical cumulative distribution function (CDF).
- reset() - Method in class edu.cmu.tetrad.search.utils.GrowShrinkTree
-
reset.
- reset() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.GeneHistory
-
Resets the history initialization array to that a new data set can be generated.
- reset() - Method in class edu.cmu.tetrad.util.TetradLogger
-
Resets the logger by removing any configuration info set with
setTetradLoggerConfig
. - resetCache() - Method in class edu.cmu.tetrad.search.utils.TetradTestDiscrete
-
resetCache.
- resetErrorPositions() - Method in class edu.cmu.tetrad.graph.SemGraph
-
resetErrorPositions.
- resetMag() - Method in class edu.cmu.tetrad.search.work_in_progress.MagCgBicScore
-
Sets the MAG to null.
- resetMag() - Method in class edu.cmu.tetrad.search.work_in_progress.MagDgBicScore
-
Sets the MAG to null.
- resetMag() - Method in class edu.cmu.tetrad.search.work_in_progress.MagSemBicScore
-
Sets the MAG to null.
- resetOrder() - Method in class edu.cmu.tetrad.search.work_in_progress.MagCgBicScore
-
Sets the order ot null.
- resetOrder() - Method in class edu.cmu.tetrad.search.work_in_progress.MagDgBicScore
-
Sets the order ot null.
- resetOrder() - Method in class edu.cmu.tetrad.search.work_in_progress.MagSemBicScore
-
Sets the order ot null.
- residuals(DataSet, Graph) - Static method in class edu.cmu.tetrad.regression.RegressionUtils
-
residuals.
- resolveSepsets(List<SepsetMapDci>, List<IndependenceTest>, ResolveSepsetsDci.Method, SepsetMapDci, SepsetMapDci) - Static method in class edu.cmu.tetrad.search.work_in_progress.ResolveSepsetsDci
-
Resolves all inconsistencies between sepsets using a paricular method.
- ResolveSepsets - Class in edu.cmu.tetrad.search.utils
-
Provides some utilities for resolving inconsistencies that arise between sepsets learned for overlapping datasets.
- ResolveSepsets() - Constructor for class edu.cmu.tetrad.search.utils.ResolveSepsets
-
The method to use for resolving sepsets
- ResolveSepsets.Method - Enum Class in edu.cmu.tetrad.search.utils
-
Gives the method to be used to resolve sepsets when they conflict.
- ResolveSepsetsDci - Class in edu.cmu.tetrad.search.work_in_progress
-
Utilities for resolving inconsistencies that arise between sepsets learned for overlapping datasets.
- ResolveSepsetsDci() - Constructor for class edu.cmu.tetrad.search.work_in_progress.ResolveSepsetsDci
-
Resolves the separation sets using the Decision Component Interface (DCI) algorithm.
- ResolveSepsetsDci.Method - Enum Class in edu.cmu.tetrad.search.work_in_progress
-
A method for combining p values.
- RESTRICTED_BOSS - Enum constant in enum class edu.cmu.tetrad.search.Cstar.CpdagAlgorithm
-
The RESTRICTED_BOSS algorithm.
- RestrictedBoss - Class in edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag
-
BOSS-DC (Best Order Score Search Divide and Conquer)
- RestrictedBoss() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.RestrictedBoss
-
Constructor for RestrictedBoss.
- RestrictedBoss(ScoreWrapper) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.RestrictedBoss
-
Constructor for RestrictedBoss.
- restrictToMeasured(DataSet) - Static method in class edu.cmu.tetrad.data.DataTransforms
-
restrictToMeasured.
- restrictToMeasured(Graph) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Removes all latent nodes from the graph and returns the modified graph.
- restrictToProposition(Proposition) - Method in class edu.cmu.tetrad.bayes.Proposition
-
Restricts this proposition to the categories for each variable that are true in the given proposition.
- Result(double, double, int, boolean) - Constructor for class edu.cmu.tetrad.search.test.ChiSquareTest.Result
-
Constructs a new g square result using the given parameters.
- Result(double, double, int, boolean, boolean) - Constructor for class edu.cmu.tetrad.search.test.ChiSquareTest.Result
-
Constructs a new g square result using the given parameters.
- Result(Matrix) - Constructor for class edu.cmu.tetrad.search.work_in_progress.Glasso.Result
-
Constructor for Result.
- Result(String, List<String>, double[], double[], int, int, int, double[], double[], double[], double, double, double, double) - Constructor for class edu.cmu.tetrad.regression.LogisticRegression.Result
-
Constructs a new LinRegrResult.
- resultGraph() - Method in class edu.cmu.tetrad.search.PcMb
-
Returns the result graph.
- retainValues(SemIm, SemGraph) - Static method in class edu.cmu.tetrad.sem.SemIm
-
Constructs a new SEM IM with the given graph, retaining parameter values from
semIm
for nodes of the same name and edges connecting nodes of the same names. - ReturnsBootstrapGraphs - Interface in edu.cmu.tetrad.algcomparison.algorithm
-
ReturnsBootstrapGraphs interface.
- RevealEvaluator - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.reveal
-
Provides the methods for computing mutual information between expression levels between genes and, for a given gene, between points in time determined by a lag value.
- RevealEvaluator - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin
-
Provides the methods for computing mutual information between expression levels between genes and, for a given gene, between points in time determined by a lag value.
- RevealEvaluator(int[][]) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.reveal.RevealEvaluator
-
Constructor for RevealEvaluator.
- RevealEvaluator(int[][]) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.RevealEvaluator
-
Constructor for RevealEvaluator.
- RevealOutputGraph - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.akutsu
-
RevealOutputGraph class.
- RevealOutputGraph - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.reveal
-
RevealOutputGraph class.
- RevealOutputGraph - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin
-
RevealOutputGraph class.
- RevealOutputGraph(int, int[][], int[][], String[], String) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.akutsu.RevealOutputGraph
-
Constructor for RevealOutputGraph.
- RevealOutputGraph(int, int[][], int[][], String[], String) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.reveal.RevealOutputGraph
-
Constructor for RevealOutputGraph.
- RevealOutputGraph(int, int[][], int[][], String[], String) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.RevealOutputGraph
-
Constructor for RevealOutputGraph.
- RevealSearch - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.reveal
-
This class contains as a member variable (cases) the time series data stored in an int array of microarray measurements.
- RevealSearch - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin
-
This class contains as a member variable (cases) the time series data stored in an int array of microarray measurements.
- RevealSearch(int[][], String[]) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.reveal.RevealSearch
-
Constructor for RevealSearch.
- RevealSearch(int[][], String[]) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.RevealSearch
-
Constructor for RevealSearch.
- reverse() - Method in class edu.cmu.tetrad.graph.Edge
-
reverse.
- revertSeed(long) - Method in class edu.cmu.tetrad.util.RandomUtil
-
revertSeed.
- Rfci - Class in edu.cmu.tetrad.algcomparison.algorithm.oracle.pag
-
RFCI.
- Rfci - Class in edu.cmu.tetrad.search
-
Implements the Really Fast Causal Inference (RFCI) algorithm, which aims to do a correct inference of inferrable causal structure under the assumption that unmeasured common causes of variables in the data may exist.
- Rfci() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Rfci
-
Initializes a new instance of the Rfci class.
- Rfci(IndependenceWrapper) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Rfci
-
Creates an instance of Rfci with the given IndependenceWrapper.
- Rfci(IndependenceTest) - Constructor for class edu.cmu.tetrad.search.Rfci
-
Constructs a new RFCI search for the given independence test and background knowledge.
- Rfci(IndependenceTest, List<Node>) - Constructor for class edu.cmu.tetrad.search.Rfci
-
Constructs a new RFCI search for the given independence test and background knowledge and a list of variables to search over.
- RFCI_PARAMETERS - Static variable in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.PagSampleRfci
-
Constant
RFCI_PARAMETERS
- RfciBsc - Class in edu.cmu.tetrad.algcomparison.algorithm.oracle.pag
-
Runs RFCI-BSC, which is RFCI with bootstrap sampling of PAGs.
- RfciBsc - Class in edu.pitt.dbmi.algo.bayesian.constraint.search
-
Dec 17, 2018 3:28:15 PM
- RfciBsc() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.RfciBsc
-
Blank constructor.
- RfciBsc(Rfci) - Constructor for class edu.pitt.dbmi.algo.bayesian.constraint.search.RfciBsc
-
Constructor for RfciBsc.
- RIC - Enum constant in enum class edu.cmu.tetrad.search.score.GicScores.RuleType
-
The RIC rule.
- RICc - Enum constant in enum class edu.cmu.tetrad.search.score.GicScores.RuleType
-
The RICc rule.
- ricf(SemGraph, ICovarianceMatrix, double) - Method in class edu.cmu.tetrad.sem.Ricf
-
Calculates the Restricted Information Criterion Fusion (RICF) for a given SemGraph.
- Ricf - Class in edu.cmu.tetrad.sem
-
Implements ICF as specified in Drton and Richardson (2003), Iterative Conditional Fitting for Gaussian Ancestral Graph Models, using hints from previous implementations by Drton in the ggm package in R and by Silva in the Purify class.
- Ricf() - Constructor for class edu.cmu.tetrad.sem.Ricf
-
Represents the Ricf class.
- Ricf.FitConGraphResult - Class in edu.cmu.tetrad.sem
-
The fit con graph result.
- Ricf.RicfResult - Class in edu.cmu.tetrad.sem
-
RICF result.
- ricf2(Graph, ICovarianceMatrix, double) - Method in class edu.cmu.tetrad.sem.Ricf
-
Same as above but takes a Graph instead of a SemGraph
- RicfResult(DoubleMatrix2D, DoubleMatrix2D, DoubleMatrix2D, DoubleMatrix2D, int, double, ICovarianceMatrix) - Constructor for class edu.cmu.tetrad.sem.Ricf.RicfResult
-
The result.
- RIGHT_JUSTIFIED - Static variable in class edu.cmu.tetrad.util.TextTable
-
Set
justification
to this if the columns should be right justified. - robustSkew(double[], double[], boolean) - Static method in class edu.cmu.tetrad.search.FaskOrig
-
Calculates a left-right judgment using the robust skewness between two arrays of double values.
- RocCalculator - Class in edu.cmu.tetrad.util
-
Calculates a ROC curve and AUC (area under curve) for a list of scored cases whose inclusion in category C is known.
- RocCalculator(double[], boolean[], int) - Constructor for class edu.cmu.tetrad.util.RocCalculator
-
Constructs a calculator using the parameter information below.
- rowCount() - Method in interface edu.pitt.isp.sverchkov.data.DataTable
-
rowCount.
- rowCount() - Method in class edu.pitt.isp.sverchkov.data.DataTableImpl
-
rowCount.
- RowsSettable - Interface in edu.cmu.tetrad.search.test
-
Interface for tests that can have their rows set on the fly.
- RowSummingExactUpdater - Class in edu.cmu.tetrad.bayes
-
Performs updating operations on a BayesIm by summing over cells in the joint probability table for the BayesIm.
- RowSummingExactUpdater(BayesIm) - Constructor for class edu.cmu.tetrad.bayes.RowSummingExactUpdater
-
Constructs a new updater for the given Bayes net.
- RowSummingExactUpdater(BayesIm, Evidence) - Constructor for class edu.cmu.tetrad.bayes.RowSummingExactUpdater
-
Constructs a new updater for the given Bayes net.
- RPAREN - Enum constant in enum class edu.cmu.tetrad.calculator.parser.Token
-
Right parenthesis.
- Rskew - Class in edu.cmu.tetrad.algcomparison.algorithm.pairwise
-
RSkew.
- Rskew() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.pairwise.Rskew
-
Constructor for Rskew.
- Rskew(Algorithm) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.pairwise.Rskew
-
Constructor for Rskew.
- RSkew - Enum constant in enum class edu.cmu.tetrad.search.Lofs.Rule
-
The RSkew rule.
- RSKEW - Enum constant in enum class edu.cmu.tetrad.search.Fask.LeftRight
-
The robust skew rule from the Hyvarinen and Smith paper.
- RSKEW - Enum constant in enum class edu.cmu.tetrad.search.FaskOrig.LeftRight
-
The robust skew rule from the Hyvarinen and Smith paper.
- RskewE - Class in edu.cmu.tetrad.algcomparison.algorithm.pairwise
-
RSkewE.
- RskewE() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.pairwise.RskewE
-
Constructor for RskewE.
- RskewE(Algorithm) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.pairwise.RskewE
-
Constructor for RskewE.
- RSkewE - Enum constant in enum class edu.cmu.tetrad.search.Lofs.Rule
-
The RSkewE rule.
- ruleR0(Graph, Set<Triple>) - Method in class edu.cmu.tetrad.search.utils.FciOrient
-
Orients unshielded colliders in the graph.
- ruleR1(Node, Node, Node, Graph) - Method in class edu.cmu.tetrad.search.utils.FciOrient
-
R1 If α ∗→ β o−−∗ γ, and α and γ are not adjacent, then orient the triple as α ∗→ β → γ.
- ruleR10(Node, Node, Graph) - Method in class edu.cmu.tetrad.search.utils.FciOrient
-
R10 Suppose α o→ γ, β → γ ← θ, p1 is an uncovered potentially directed (semidirected) path from α to β, and p2 is an uncovered p.d.
- ruleR2(Node, Node, Node, Graph) - Method in class edu.cmu.tetrad.search.utils.FciOrient
-
R2 If α → β ∗→ γ or α ∗→ β → γ, and α ∗−o γ, then orient α ∗−o γ as α ∗→ γ.
- ruleR3(Graph) - Method in class edu.cmu.tetrad.search.utils.FciOrient
-
R3 If α ∗→ β ←∗ γ, α ∗−o θ o−∗ γ, α and γ are not adjacent, and θ ∗−o β, then orient θ ∗−o β as θ ∗→ β.
- ruleR4(Graph) - Method in class edu.cmu.tetrad.search.utils.FciOrient
-
R4 If u = <θ ,...,α,β,γ> is a discriminating path between θ and γ for β, and β o−−∗ γ; then if β ∈ Sepset(θ,γ), orient β o−−∗ γ as β → γ; otherwise orient the triple <α,β,γ> as α ↔ β ↔ γ.
- ruleR5(Graph) - Method in class edu.cmu.tetrad.search.utils.FciOrient
-
R5 For every (remaining) α o−−o β, if there is an uncovered circle path p = <α,γ,...,θ,β> between α and β s.t.
- ruleR6(Graph) - Method in class edu.cmu.tetrad.search.utils.FciOrient
-
R6 If α —- β o−−∗ γ (α and γ may or may not be adjacent), then orient β o−−∗ γ as β −−∗ γ.
- ruleR7(Graph) - Method in class edu.cmu.tetrad.search.utils.FciOrient
-
R7 If α −−o β o−−∗ γ, and α, γ are not adjacent, then orient β o−−∗ γ as β −−∗ γ.
- ruleR8(Node, Node, Graph) - Method in class edu.cmu.tetrad.search.utils.FciOrient
-
R8 If α → β → γ or α−−◦β → γ, and α o→ γ, orient α o→ γ as α → γ.
- ruleR9(Node, Node, Graph) - Method in class edu.cmu.tetrad.search.utils.FciOrient
-
R9 If α o→ γ, and p = <α,β,θ,...,γ> is an uncovered potentialy directed path from α to γ such that γ and β are not adjacent, then orient α o→ γ as α → γ.
- rulesR1R2cycle(Graph) - Method in class edu.cmu.tetrad.search.utils.FciOrient
-
Apply rules R1 and R2 in cycles for a given graph.
- rulesR8R9R10(Graph) - Method in class edu.cmu.tetrad.search.utils.FciOrient
-
Implements Zhang's rules R8, R9, R10, applies them over the graph once.
- run(int) - Method in class edu.cmu.tetrad.simulation.HsimAutoC
-
run.
- run(int) - Method in class edu.cmu.tetrad.simulation.HsimAutoRun
-
run.
- run(int, double, int, double, int, int, boolean) - Static method in class edu.cmu.tetrad.simulation.HsimRobustCompare
-
run.
- run(int, int) - Method in class edu.cmu.tetrad.simulation.HsimRepeatAC
-
run.
- run(int, int) - Method in class edu.cmu.tetrad.simulation.HsimRepeatAutoRun
-
run.
- run(String, String, char, String[], boolean) - Static method in class edu.cmu.tetrad.simulation.HsimRun
-
run.
- run(List<Callable<T>>) - Method in class edu.cmu.tetrad.util.TaskRunner
-
Executes a list of tasks that implement Callable in parallel using multiple threads.
- RunConfig - Class in edu.cmu.tetrad.algcomparison.examples
-
An example script to save out data files and graphs from a simulation.
- RunConfig() - Constructor for class edu.cmu.tetrad.algcomparison.examples.RunConfig
-
Constructs a new instance of the Save.
- RunKemmeren - Class in edu.cmu.tetrad.algcomparison.examples
-
RunKemmeren class.
- RunKemmeren() - Constructor for class edu.cmu.tetrad.algcomparison.examples.RunKemmeren
-
Constructor for RunKemmeren.
- runSearch(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.cluster.Fofc
-
Runs the search algorithm and returns the resulting graph.
- runSearch(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.cluster.Ftfc
-
Runs the search algorithm to find a causal graph.
- runSearch(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.Dagma
-
Runs the DAGMA algorithm to search for a directed acyclic graph (DAG) in the given data model with the specified parameters.
- runSearch(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.DirectLingam
-
Runs the Direct LiNGAM search algorithm on the given data model with the specified parameters.
- runSearch(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.Fask
-
Runs the Fask search algorithm on the given data model with the specified parameters.
- runSearch(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.FaskOrig
-
Runs the Fask search algorithm on the given data model with the specified parameters.
- runSearch(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.IcaLingam
-
Searches for a graph structure based on the given data set and parameters.
- runSearch(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.IcaLingD
-
Runs a search on the provided data set using the given parameters.
- runSearch(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.mixed.Mgm
-
Runs the MGM search algorithm.
- runSearch(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Bfci
-
Runs the search algorithm using the given dataset and parameters and returns the resulting graph.
- runSearch(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.BossDumb
-
Runs the search algorithm to find a graph structure based on a given data model and parameters.
- runSearch(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.BossPag
-
Runs the search algorithm to find a graph structure based on a given data model and parameters.
- runSearch(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Ccd
-
Runs the CCD (Cyclic Causal Discovery) search algorithm on the given data set using the specified parameters.
- runSearch(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Cfci
-
Runs the search algorithm to discover the causal graph.
- runSearch(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Fci
-
Runs a search algorithm to find a graph based on the given data model and parameters.
- runSearch(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.FciMax
-
Runs a search algorithm to discover the causal graph structure.
- runSearch(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Gfci
-
Runs the search algorithm to infer the causal graph given a dataset and specified parameters.
- runSearch(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.GraspFci
-
Runs a search algorithm to find a graph structure based on a given data set and parameters.
- runSearch(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.LvLite
-
Runs the search algorithm to find a graph structure based on a given data model and parameters.
- runSearch(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.PagSampleRfci
-
Runs the search algorithm using the given data set and parameters.
- runSearch(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Rfci
-
Runs the search algorithm on the given data model and parameters.
- runSearch(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.RfciBsc
-
Runs a search algorithm using a given dataset and parameters.
- runSearch(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.SpFci
-
Executes a search algorithm to infer the causal graph structure from a given data model
- runSearch(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.SvarFci
-
Executes the search algorithm to find a graph structure that best fits the given dataset and parameters.
- runSearch(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.SvarGfci
-
Runs a search algorithm on the given data set using the specified parameters.
- runSearch(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.other.FactorAnalysis
-
Executes a factor analysis search on the given data model using the provided parameters.
- runSearch(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.other.Glasso
-
Runs a search algorithm to create a graph representation of the data.
- runSearch(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.Eb
-
Runs a search algorithm to orient the edges in a graph using the given data and parameters.
- runSearch(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.FaskPw
-
Runs the search algorithm using the given data model and parameters.
- runSearch(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.R1
-
Runs the search algorithm on the given data model with the provided parameters.
- runSearch(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.R2
-
Runs the search algorithm using the provided data model and parameters.
- runSearch(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.R3
-
Runs the search algorithm to orient edges in the input graph using the provided data.
- runSearch(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.Rskew
-
Runs the search algorithm using the provided data model and parameters.
- runSearch(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.RskewE
-
Runs a search algorithm to find the orientation of edges in a graph using the given data model and parameters.
- runSearch(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.Skew
-
Runs the search algorithm to orient edges in the input graph using the given data model and parameters.
- runSearch(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.SkewE
-
Executes the SkewE search algorithm.
- runSearch(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.Tanh
-
Runs the search algorithm using the given data model and parameters.
- runWithTimeout(Callable<T>, long, TimeUnit) - Static method in class edu.cmu.tetrad.search.utils.GraphSearchUtils
-
Runs the given task with the given timeout.
S
- SAG - Enum constant in enum class edu.cmu.tetrad.search.Fofc.Algorithm
-
The SAG algorithm.
- SAG - Enum constant in enum class edu.cmu.tetrad.search.Ftfc.Algorithm
-
The SAG algorithm.
- SAG - Enum constant in enum class edu.cmu.tetrad.search.utils.BpcTestType
-
SAG test, for FTFC.
- sample() - Method in class edu.cmu.tetrad.sem.EmpiricalCdf
-
Returns a sample from the empirical cumulative distribution function (CDF).
- sample(int) - Method in class edu.cmu.tetrad.sem.EmpiricalCdf
-
Returns a sample from the empirical cumulative distribution function (CDF).
- sample(DataSet, int) - Method in class edu.cmu.tetrad.data.BootstrapSampler
-
This method takes a dataset and a sample size and creates a new dataset containing that number of samples by drawing with replacement from the original dataset.
- sample(DataSet, int) - Static method in class edu.cmu.tetrad.data.RandomSampler
-
This method takes a dataset and a sample size and creates a new dataset containing that number of samples by drawing with replacement from the original dataset.
- SAMPLE_SIZE - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
SAMPLE_SIZE="sampleSize"
- SAMPLE_STYLE - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
SAMPLE_STYLE="sampleStyle"
- SampleVcpc - Class in edu.cmu.tetrad.search.work_in_progress
-
Implements a conservative version of PC, in which the Markov condition is assumed but faithfulness is tested locally.
- SampleVcpc(IndependenceTest) - Constructor for class edu.cmu.tetrad.search.work_in_progress.SampleVcpc
-
Constructs a CPC algorithm that uses the given independence test as oracle.
- SampleVcpcFast - Class in edu.cmu.tetrad.search.work_in_progress
-
Implements a conservative version of PC, in which the Markov condition is assumed but faithfulness is tested locally.
- SampleVcpcFast(IndependenceTest) - Constructor for class edu.cmu.tetrad.search.work_in_progress.SampleVcpcFast
-
Constructs a CPC algorithm that uses the given independence test as oracle.
- Save - Class in edu.cmu.tetrad.algcomparison.examples
-
An example script to save out data files and graphs from a simulation.
- Save() - Constructor for class edu.cmu.tetrad.algcomparison.examples.Save
-
Constructs a new instance of the Save.
- SAVE_BOOTSTRAP_GRAPHS - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
SAVE_BOOTSTRAP_GRAPHS="saveBootstrapGraphs"
- SAVE_LATENT_VARS - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
SAVE_LATENT_VARS="saveLatentVars"
- saveCSV(DataTable<Attribute, Value>, File, boolean) - Static method in class edu.pitt.isp.sverchkov.data.DataTools
-
Saves a data table to a file.
- SaveDGSimulations - Class in edu.cmu.tetrad.algcomparison.examples
-
An example script to save out data files and graphs from a simulation.
- SaveDGSimulations() - Constructor for class edu.cmu.tetrad.algcomparison.examples.SaveDGSimulations
-
Constructs a new instance of the SaveDGSimulations.
- saveGraph(Graph, File, boolean) - Static method in class edu.cmu.tetrad.graph.GraphSaveLoadUtils
-
saveGraph.
- saveKnowledge(Knowledge, Writer) - Static method in class edu.cmu.tetrad.data.DataWriter
-
saveKnowledge.
- saveToFiles(String, Simulation, Parameters) - Method in class edu.cmu.tetrad.algcomparison.Comparison
-
Saves the simulation data to file in the specified data path.
- saveToFiles(String, Simulation, Parameters) - Method in class edu.cmu.tetrad.algcomparison.TimeoutComparison
-
Saves simulationWrapper data.
- saveToFilesSingleSimulation(String, Simulation, Parameters) - Method in class edu.cmu.tetrad.algcomparison.Comparison
-
Saves the results of a single simulation to files.
- scalarMult(double) - Method in class edu.cmu.tetrad.util.Matrix
-
scalarMult.
- scalarMult(double) - Method in class edu.cmu.tetrad.util.Vector
-
scalarMult.
- scalarProduct(double, double[]) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
scalarProduct.
- scalarProduct(double, double[][]) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
Multiplies the given matrix through by the given scalar.
- scale(DataSet, double) - Static method in class edu.cmu.tetrad.data.DataTransforms
-
Scales the continuous variables in the given DataSet to have values in the range [-1, 1].
- scale(DataSet, double[]) - Static method in class edu.cmu.tetrad.data.DataTransforms
- scale(Matrix) - Static method in class edu.cmu.tetrad.search.IcaLingD
-
Scales the given matrix M by diving each entry (i, j) by M(j, j)
- SCALE_FREE_ALPHA - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
SCALE_FREE_ALPHA="scaleFreeAlpha"
- SCALE_FREE_BETA - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
SCALE_FREE_BETA="scaleFreeBeta"
- SCALE_FREE_DAG - Static variable in class edu.cmu.tetrad.algcomparison.graph.GraphTypes
-
Constant
SCALE_FREE_DAG="Scale Free DAG (Bollobas et al.)"
- SCALE_FREE_DELTA_IN - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
SCALE_FREE_DELTA_IN="scaleFreeDeltaIn"
- SCALE_FREE_DELTA_OUT - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
SCALE_FREE_DELTA_OUT="scaleFreeDeltaOut"
- ScaleFree - Class in edu.cmu.tetrad.algcomparison.graph
-
Returns a scale free graph.
- ScaleFree() - Constructor for class edu.cmu.tetrad.algcomparison.graph.ScaleFree
-
Constructs a new instance of the ScaleFree.
- SCALING_FACTOR - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
BANDWIDTH_ADJUSTMENT="scalingFactor"
- score() - Method in class edu.cmu.tetrad.search.utils.TeyssierScorer
-
score.
- score(Graph) - Method in class edu.cmu.tetrad.sem.DagScorer
-
Scores the given DAG using the implemented algorithm.
- score(Graph) - Method in interface edu.cmu.tetrad.sem.Scorer
-
score.
- score(List<Node>) - Method in class edu.cmu.tetrad.search.utils.TeyssierScorer
-
Scores the given permutation.
- Score - Interface in edu.cmu.tetrad.search.score
-
Interface for a score.
- Score - Annotation Interface in edu.cmu.tetrad.annotation
-
Sep 1, 2017 10:51:13 AM
- Score(Scorer) - Constructor for class edu.cmu.tetrad.search.work_in_progress.HbsmsBeam.Score
-
Constructor for Score.
- Score(Scorer) - Constructor for class edu.cmu.tetrad.search.work_in_progress.HbsmsGes.Score
-
Constructor for Score.
- ScoreAnnotations - Class in edu.cmu.tetrad.annotation
-
Sep 26, 2017 1:14:01 AM
- scoreDag(Graph) - Method in class edu.cmu.tetrad.search.Fges
-
Scores a Directed Acyclic Graph (DAG) based on its structure.
- scoreDag(Graph) - Method in class edu.cmu.tetrad.search.FgesMb
-
Scores the given directed acyclic graph (DAG).
- scoreDag(Graph) - Method in class edu.cmu.tetrad.search.SvarFges
-
Calculates the score of a Directed Acyclic Graph (DAG).
- scoreDag(Graph) - Method in interface edu.cmu.tetrad.search.utils.DagScorer
-
scoreDag.
- scoreDag(Graph) - Method in class edu.cmu.tetrad.search.utils.FgesOrienter
-
scoreDag.
- scoreDag(Graph) - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsGes
-
scoreDag.
- scoreDag(Graph) - Method in class edu.cmu.tetrad.search.work_in_progress.ISFges
-
Computes the score of a given directed acyclic graph (DAG).
- scoreDag(Graph, DataModel, boolean) - Static method in class edu.cmu.tetrad.search.score.SemBicScorer
-
Scores the given DAG using the given data model, usimg a BIC score.
- scoreDag(Graph, DataModel, double, boolean) - Static method in class edu.cmu.tetrad.search.score.SemBicScorer
-
Scores the given DAG using the given data model, usimg a BIC score.
- scoreDag(Graph, Graph) - Method in class edu.cmu.tetrad.search.work_in_progress.ISFges
-
Computes the score of a Directed Acyclic Graph (DAG) based on a given population graph.
- ScoreDescriptions - Class in edu.cmu.tetrad.util
-
May 14, 2019 11:23:54 AM
- ScoredGraph - Class in edu.cmu.tetrad.search.score
-
Stores a graph with a score for the graph.
- ScoredGraph(Graph, Double) - Constructor for class edu.cmu.tetrad.search.score.ScoredGraph
-
Constructs a scored graph.
- scoreGraph(Graph) - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsBeam
-
scoreGraph.
- scoreGraph(Graph) - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsGes
-
scoreGraph.
- ScoreIndTest - Class in edu.cmu.tetrad.search.test
-
Gives a way of interpreting a score as an independence test.
- ScoreIndTest(Score) - Constructor for class edu.cmu.tetrad.search.test.ScoreIndTest
-
Constructor for ScoreIndTest.
- ScoreIndTest(Score, DataModel) - Constructor for class edu.cmu.tetrad.search.test.ScoreIndTest
-
Constructor for ScoreIndTest.
- scoreLnGam(Node, Set<Node>, BayesPm, BayesIm) - Method in class edu.cmu.tetrad.bayes.BdeMetricCache
-
Computes the BDe score, using the logarithm of the gamma function, relative to the data, of the factor determined by a node and its parents.
- Scorer - Interface in edu.cmu.tetrad.sem
-
Interface for a class that represents a scoring of a SEM model.
- scoreRow(int, Matrix, List<List<Integer>>, List<List<Double>>) - Method in class edu.cmu.tetrad.search.Lofs
-
Calculates the score for a given row in a matrix using the specified parameters.
- scoreTest() - Method in class edu.cmu.tetrad.bayes.FactoredBayesStructuralEM
-
scoreTest.
- ScoreType - Enum Class in edu.cmu.tetrad.sem
-
Author : Jeremy Espino MD Created 1/12/18 2:05 PM
- ScoreWrapper - Interface in edu.cmu.tetrad.algcomparison.score
-
Interface that algorithm must implement.
- sd(double[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
sd.
- sd(double[], int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
sd.
- sd(long[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
sd.
- sd(long[], int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
sd.
- search() - Method in class edu.cmu.tetrad.search.BFci
-
Does the search and returns a PAG.
- search() - Method in class edu.cmu.tetrad.search.BossLingam
-
Runs the search and returns the result graph.
- search() - Method in class edu.cmu.tetrad.search.Bpc
-
Runs the search and returns the graph, or null if there is no model.
- search() - Method in class edu.cmu.tetrad.search.Ccd
-
The search method assumes that the IndependenceTest provided to the constructor is a conditional independence oracle for the SEM (or Bayes network) which describes the causal structure of the population.
- search() - Method in class edu.cmu.tetrad.search.Cfci
-
Performs the search and returns the PAG.
- search() - Method in class edu.cmu.tetrad.search.Cpc
-
Runs CPC starting with a fully connected graph over all the variables in the domain of the independence test.
- search() - Method in class edu.cmu.tetrad.search.Dagma
-
Performs a search algorithm to find a graph representation.
- search() - Method in class edu.cmu.tetrad.search.DirectLingam
-
Performs the search.
- search() - Method in class edu.cmu.tetrad.search.Fas
-
Performs a search to discover all adjacencies in the graph.
- search() - Method in class edu.cmu.tetrad.search.Fasd
-
Discovers all adjacencies in data.
- search() - Method in class edu.cmu.tetrad.search.Fask
-
Runs the search on the concatenated data, returning a graph, possibly cyclic, possibly with two-cycles.
- search() - Method in class edu.cmu.tetrad.search.FaskOrig
-
Runs the search on the concatenated data, returning a graph, possibly cyclic, possibly with two-cycles.
- search() - Method in class edu.cmu.tetrad.search.Fci
-
Performs a search using the FCI algorithm.
- search() - Method in class edu.cmu.tetrad.search.FciMax
-
Performs the search and returns the PAG.
- search() - Method in class edu.cmu.tetrad.search.Fges
-
Greedy equivalence search: Start from the empty graph, add edges till the model is significant.
- search() - Method in class edu.cmu.tetrad.search.Fofc
-
Runs the search and returns a graph of clusters with the ir respective latent parents.
- search() - Method in class edu.cmu.tetrad.search.Ftfc
-
Runs the search and returns a graph of clusters, each of which has two common latent parents.
- search() - Method in class edu.cmu.tetrad.search.GFci
-
Runs the graph and returns the search PAG.
- search() - Method in class edu.cmu.tetrad.search.GraspFci
-
Run the search and return s a PAG.
- search() - Method in interface edu.cmu.tetrad.search.IGraphSearch
-
Runs the search and returns a graph.
- search() - Method in class edu.cmu.tetrad.search.LvDumb
-
Run the search and return s a PAG.
- search() - Method in class edu.cmu.tetrad.search.LvLite
-
Run the search and return s a PAG.
- search() - Method in class edu.cmu.tetrad.search.Pc
-
Runs PC starting with a complete graph over all nodes of the given conditional independence test, using the given independence test and knowledge and returns the resultant graph.
- search() - Method in class edu.cmu.tetrad.search.Pcd
-
Runs PC starting with a complete graph over all nodes of the given conditional independence test, using the given independence test and knowledge and returns the resultant graph.
- search() - Method in class edu.cmu.tetrad.search.PcMb
-
Searches for the Markov blanket CPDAG for the given targets.
- search() - Method in class edu.cmu.tetrad.search.PermutationSearch
-
Performs a search for a graph using the default options.
- search() - Method in class edu.cmu.tetrad.search.Rfci
-
Runs the search and returns the RFCI PAG.
- search() - Method in class edu.cmu.tetrad.search.SpFci
-
Runs the search and returns the discovered PAG.
- search() - Method in class edu.cmu.tetrad.search.SvarFas
-
Discovers all adjacencies in data.
- search() - Method in class edu.cmu.tetrad.search.SvarFci
-
Runs the search and returns the PAG.
- search() - Method in class edu.cmu.tetrad.search.SvarFges
-
Greedy equivalence search: Start from the empty graph, add edges till the model is significant.
- search() - Method in class edu.cmu.tetrad.search.SvarGfci
-
Runs the search and returns a PAG.
- search() - Method in class edu.cmu.tetrad.search.utils.FgesOrienter
-
Greedy equivalence search: Start from the empty graph, add edges till model is significant.
- search() - Method in class edu.cmu.tetrad.search.utils.PcCommon
-
Runs the search and returns the search graph.
- search() - Method in class edu.cmu.tetrad.search.utils.PossibleMsepFci
-
Performs pairwise comparisons of each variable in the graph with the variables that have not already been checked.
- search() - Method in class edu.cmu.tetrad.search.utils.Purify
-
****************************************************** SEARCH INTERFACE *******************************************************
- search() - Method in class edu.cmu.tetrad.search.utils.ShiftSearch
-
search.
- search() - Method in class edu.cmu.tetrad.search.work_in_progress.BpcTetradPurifyWashdown
-
Runs the search and returns a graph.
- search() - Method in class edu.cmu.tetrad.search.work_in_progress.Dci
-
Begins the DCI search procedure, described at each step
- search() - Method in class edu.cmu.tetrad.search.work_in_progress.DMSearch
-
search.
- search() - Method in class edu.cmu.tetrad.search.work_in_progress.FasDci
-
Discovers all adjacencies in data.
- search() - Method in class edu.cmu.tetrad.search.work_in_progress.FasFdr
-
Discovers all adjacencies in data.
- search() - Method in class edu.cmu.tetrad.search.work_in_progress.FasLofs
-
Runs the search on the concatenated data, returning a graph, possibly cyclic, possibly with two-cycles.
- search() - Method in class edu.cmu.tetrad.search.work_in_progress.Glasso
-
search.
- search() - Method in interface edu.cmu.tetrad.search.work_in_progress.Hbsms
-
search.
- search() - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsBeam
-
search.
- search() - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsGes
-
search.
- search() - Method in class edu.cmu.tetrad.search.work_in_progress.IGFci
-
Executes the FCI algorithm using the provided independence test, score, and population graph, and returns the resulting graph with edges oriented according to the algorithm's rules.
- search() - Method in class edu.cmu.tetrad.search.work_in_progress.InverseCorrelation
-
search.
- search() - Method in class edu.cmu.tetrad.search.work_in_progress.Ion
-
Runs the ION search and returns a list of compatible graphs.
- search() - Method in class edu.cmu.tetrad.search.work_in_progress.ISFges
-
Greedy equivalence search: Start from the empty graph, add edges till the model is significant.
- search() - Method in class edu.cmu.tetrad.search.work_in_progress.Kpc
-
Runs PC starting with a complete graph over all nodes of the given conditional independence test, using the given independence test and knowledge and returns the resultant graph.
- search() - Method in class edu.cmu.tetrad.search.work_in_progress.Mmhc
-
Runs PC starting with a fully connected graph over all of the variables in the domain of the independence test.
- search() - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpc
-
search.
- search() - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpcFast
-
search.
- search() - Method in class edu.cmu.tetrad.search.work_in_progress.VcFas
-
Discovers all adjacencies in data.
- search() - Method in class edu.cmu.tetrad.search.work_in_progress.VcPc
-
search.
- search() - Method in class edu.cmu.tetrad.search.work_in_progress.VcPcAlt
-
search.
- search() - Method in class edu.cmu.tetrad.search.work_in_progress.VcPcFast
-
search.
- search() - Method in class edu.cmu.tetrad.search.work_in_progress.Washdown
-
Runs the Washdown algorithm and return a graph.
- search() - Method in class edu.pitt.csb.mgm.Mgm
-
Simple search command for GraphSearch implementation.
- search() - Method in class edu.pitt.dbmi.algo.bayesian.constraint.search.PagSamplingRfci
-
Runs the search and returns a graph.
- search() - Method in class edu.pitt.dbmi.algo.bayesian.constraint.search.RfciBsc
-
Runs the search and returns a graph.
- search(boolean) - Method in class edu.cmu.tetrad.search.PermutationSearch
-
Performe the search and return a CPDAG.
- search(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.AbstractBootstrapAlgorithm
-
Runs the search.
- search(DataModel, Parameters) - Method in interface edu.cmu.tetrad.algcomparison.algorithm.Algorithm
-
Runs the search.
- search(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.cluster.Bpc
-
Runs the search algorithm to build a graph using the given data model and parameters.
- search(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.FirstInflection
-
Runs the search.
- search(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FaskConcatenated
-
Runs the search.
- search(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FaskLofsConcatenated
-
Runs the search.
- search(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FaskVote
-
Runs the search.
- search(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FasLofs
-
Runs the search.
- search(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FciIod
-
Runs the search.
- search(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FgesConcatenated
-
Runs the search.
- search(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.Images
-
Searches for a graph using the given data set and parameters.
- search(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.ImagesBoss
-
Runs the search.
- search(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Cstar
-
Runs the search.
- search(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.SingleGraphAlg
-
Runs the search.
- search(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.StabilitySelection
-
Runs the search.
- search(DataModel, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.StARS
-
Runs the search.
- search(DataSet) - Method in class edu.pitt.csb.stability.DataGraphSearch
-
search.
- search(DataSet) - Method in class edu.pitt.csb.stability.SearchWrappers.FgesWrapper
-
Search method.
- search(DataSet) - Method in class edu.pitt.csb.stability.SearchWrappers.MGMWrapper
-
Search method.
- search(DataSet) - Method in class edu.pitt.csb.stability.SearchWrappers.PcStableWrapper
-
Search method.
- search(IFas) - Method in class edu.cmu.tetrad.search.SvarFci
-
Runs the search using a particular implementation of FAS.
- search(IFas, List<Node>) - Method in class edu.cmu.tetrad.search.Pcd
-
Searches for a graph using the given IFas instance and list of nodes.
- search(IFas, List<Node>) - Method in class edu.cmu.tetrad.search.Rfci
-
Runs the search and returns the RFCI PAG.
- search(IFas, Set<Node>) - Method in class edu.cmu.tetrad.search.Pc
-
Runs the search using a particular implementation of the fast adjacency search (FAS), over the given sublist of nodes.
- search(Parameters) - Method in class edu.cmu.tetrad.search.work_in_progress.FaskVote
-
Does the search.
- search(List<DataModel>, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FaskConcatenated
-
Runs the search.
- search(List<DataModel>, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FaskLofsConcatenated
-
Runs the search.
- search(List<DataModel>, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FaskVote
-
Runs the search.
- search(List<DataModel>, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FciIod
-
Runs the search.
- search(List<DataModel>, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FgesConcatenated
-
Runs the search.
- search(List<DataModel>, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.Images
-
Searches for a graph using the given data sets and parameters.
- search(List<DataModel>, Parameters) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.ImagesBoss
-
Runs the search.
- search(List<DataModel>, Parameters) - Method in interface edu.cmu.tetrad.algcomparison.algorithm.MultiDataSetAlgorithm
-
Runs the search.
- search(List<Node>) - Method in class edu.cmu.tetrad.search.Fas
-
Discovers all adjacencies in data.
- search(List<Node>) - Method in class edu.cmu.tetrad.search.FgesMb
-
Greedy equivalence search: Start from the empty graph, add edges till the model is significant.
- search(List<Node>) - Method in class edu.cmu.tetrad.search.Pcd
-
Runs PC starting with a complete graph over the given list of nodes, using the given independence test and knowledge and returns the resultant graph.
- search(List<Node>) - Method in class edu.cmu.tetrad.search.PcMb
-
Searches for the MB CPDAG for the given targets.
- search(List<Node>) - Method in class edu.cmu.tetrad.search.Rfci
-
Searches of a specific sublist of nodes.
- search(List<Node>) - Method in class edu.cmu.tetrad.search.utils.PcCommon
-
Runs the search over the given list of nodes only, returning the search graph.
- search(List<Node>) - Method in class edu.cmu.tetrad.search.work_in_progress.Kpc
-
Runs PC starting with a commplete graph over the given list of nodes, using the given independence test and knowledge and returns the resultant graph.
- search(List<List<Node>>, List<String>, ICovarianceMatrix) - Method in class edu.cmu.tetrad.search.Mimbuild
-
Does a Mimbuild search.
- search(List<List<Node>>, List<String>, ICovarianceMatrix) - Method in class edu.cmu.tetrad.search.MimbuildTrek
-
Does the search and returns the graph.
- search(Set<Node>) - Method in class edu.cmu.tetrad.search.Pc
-
Runs PC starting with a complete graph over the given list of nodes, using the given independence test and knowledge and returns the resultant graph.
- search_for_Markov_blankets - Enum constant in enum class edu.cmu.tetrad.annotation.AlgType
-
If an algorithm searches for Markov blanekts.
- search_for_structure_over_latents - Enum constant in enum class edu.cmu.tetrad.annotation.AlgType
-
If an algorithm searches for structure over latents.
- searchDemixedData() - Method in class edu.cmu.tetrad.search.work_in_progress.MixtureModel
-
Perform an FGES search on each of the demixed data sets.
- searchParams - Variable in class edu.pitt.csb.stability.DataGraphSearch
-
searchParams.
- searchSuborder(List<Node>, List<Node>, Map<Node, GrowShrinkTree>) - Method in class edu.cmu.tetrad.search.Boss
-
Searches a suborder of the variables.
- searchSuborder(List<Node>, List<Node>, Map<Node, GrowShrinkTree>) - Method in class edu.cmu.tetrad.search.Sp
-
Searches for the best suborder of nodes given a prefix and a suborder.
- searchSuborder(List<Node>, List<Node>, Map<Node, GrowShrinkTree>) - Method in interface edu.cmu.tetrad.search.SuborderSearch
-
Searches the suborder.
- SearchWrappers - Class in edu.pitt.csb.stability
-
Created by ajsedgewick on 9/4/15.
- SearchWrappers.FgesWrapper - Class in edu.pitt.csb.stability
-
Wrapper for the Fges search algorithm.
- SearchWrappers.MGMWrapper - Class in edu.pitt.csb.stability
-
Abstract class for search algorithm wrappers.
- SearchWrappers.PcStableWrapper - Class in edu.pitt.csb.stability
-
Abstract class for search algorithm wrappers.
- SEED - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
SEED="seed"
- select(Node) - Method in class edu.cmu.tetrad.data.CorrelationMatrixOnTheFly
-
Selects a specified variable in the covariance matrix.
- select(Node) - Method in class edu.cmu.tetrad.data.CovarianceMatrix
-
Selects a specified variable in the covariance matrix.
- select(Node) - Method in class edu.cmu.tetrad.data.CovarianceMatrixOnTheFly
-
Selects a specified variable in the covariance matrix.
- select(Node) - Method in interface edu.cmu.tetrad.data.ICovarianceMatrix
-
Selects a specified variable in the covariance matrix.
- SELECTION - Enum constant in enum class edu.cmu.tetrad.graph.NodeType
-
Constant
SELECTION
- SELECTION_MIN_EFFECT - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
SELECTION_MIN_EFFECT="selectionMinEffect"
- SelectionGenerator - Class in edu.cmu.tetrad.util
-
Generates (nonrecursively) all of the selections from a items, where a is a nonnegative integer.
- SelectionGenerator(int) - Constructor for class edu.cmu.tetrad.util.SelectionGenerator
-
Constructs a new selection generator for a items.
- SELF_LOOP_COEF - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
SELF_LOOP_COEF="selfLoopCoef"
- SEM_BIC_RULE - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
SEM_BIC_RULE="semBicRule"
- SEM_BIC_STRUCTURE_PRIOR - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
SEM_BIC_STRUCTURE_PRIOR="semBicStructurePrior"
- SEM_GIC_RULE - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
SEM_GIC_RULE="semGicRule"
- SemBic - Enum constant in enum class edu.cmu.tetrad.sem.ScoreType
-
The BIC score
- SemBicDTest - Class in edu.cmu.tetrad.algcomparison.independence
-
The SemBicDTest class implements the IndependenceWrapper interface and represents a test for independence based on SEM BIC algorithm.
- SemBicDTest() - Constructor for class edu.cmu.tetrad.algcomparison.independence.SemBicDTest
-
Constructs a new instance of the SEM BIC test.
- SemBicScore - Class in edu.cmu.tetrad.algcomparison.score
-
Wrapper for linear, Gaussian SEM BIC score.
- SemBicScore - Class in edu.cmu.tetrad.search.score
-
Implements the linear, Gaussian BIC score, with a 'penalty discount' multiplier on the BIC penalty.
- SemBicScore() - Constructor for class edu.cmu.tetrad.algcomparison.score.SemBicScore
-
Constructs a new instance of the SemBicScore.
- SemBicScore(DataSet, boolean) - Constructor for class edu.cmu.tetrad.search.score.SemBicScore
-
Constructs the score using a covariance matrix.
- SemBicScore(ICovarianceMatrix) - Constructor for class edu.cmu.tetrad.search.score.SemBicScore
-
Constructs the score using a covariance matrix.
- SemBicScore.CovAndCoefs - Record Class in edu.cmu.tetrad.search.score
-
Represents a covariance matrix and regression coefficients.
- SemBicScore.RuleType - Enum Class in edu.cmu.tetrad.search.score
-
Gives two options for calculating the BIC score, one describe by Chickering and the other due to Nandy et al.
- SemBicScoreDeterministic - Class in edu.cmu.tetrad.algcomparison.score
-
SemBicScoreDeterministic is a class that implements the ScoreWrapper interface.
- SemBicScoreDeterministic - Class in edu.cmu.tetrad.search.work_in_progress
-
Implements the continuous BIC score for FGES.
- SemBicScoreDeterministic() - Constructor for class edu.cmu.tetrad.algcomparison.score.SemBicScoreDeterministic
-
Constructs a new instance of the SemBicScoreDeterministic.
- SemBicScoreDeterministic(ICovarianceMatrix) - Constructor for class edu.cmu.tetrad.search.work_in_progress.SemBicScoreDeterministic
-
Constructs the score using a covariance matrix.
- SemBicScorer - Class in edu.cmu.tetrad.search.score
-
Scores an entire DAG using the SemBicScore.
- SemBicTest - Class in edu.cmu.tetrad.algcomparison.independence
- SemBicTest() - Constructor for class edu.cmu.tetrad.algcomparison.independence.SemBicTest
-
Constructs a new instance of the SEM BIC test.
- SemEstimator - Class in edu.cmu.tetrad.sem
-
Estimates a SemIm given a CovarianceMatrix and a SemPm.
- SemEstimator(DataSet, SemPm) - Constructor for class edu.cmu.tetrad.sem.SemEstimator
-
Constructs a Sem Estimator that does default estimation.
- SemEstimator(DataSet, SemPm, SemOptimizer) - Constructor for class edu.cmu.tetrad.sem.SemEstimator
-
Constructs a new SemEstimator that uses the specified optimizer.
- SemEstimator(ICovarianceMatrix, SemPm) - Constructor for class edu.cmu.tetrad.sem.SemEstimator
-
Constructs a SEM estimator that does default estimation.
- SemEstimator(ICovarianceMatrix, SemPm, SemOptimizer) - Constructor for class edu.cmu.tetrad.sem.SemEstimator
-
Constructs a new SemEstimator that uses the specified optimizer.
- SemEstimatorGibbs - Class in edu.cmu.tetrad.sem
-
Implements the Gibbs sampler apporach to obtain samples of arbitrary size from the posterior distribution over the freeParameters of a SEM given a continuous dataset and a SemPm.
- SemEstimatorGibbs(int, double, double, double, double, SemPm, SemIm, boolean) - Constructor for class edu.cmu.tetrad.sem.SemEstimatorGibbs
-
Constructor for SemEstimatorGibbs.
- SemEstimatorGibbs(SemPm, SemIm, double[][], boolean, double, int) - Constructor for class edu.cmu.tetrad.sem.SemEstimatorGibbs
-
Constructor for SemEstimatorGibbs.
- SemEstimatorGibbsParams - Class in edu.cmu.tetrad.sem
-
Stores the freeParameters for an instance of a SemEstimatorGibbs.
- SemEvidence - Class in edu.cmu.tetrad.sem
-
Stores information for a SemIm about evidence we have for each variable as well as whether each variable has been manipulated.
- SemEvidence(SemEvidence) - Constructor for class edu.cmu.tetrad.sem.SemEvidence
-
Constructor for SemEvidence.
- SemEvidence(SemIm) - Constructor for class edu.cmu.tetrad.sem.SemEvidence
-
Constructs a container for evidence for the given Bayes IM.
- SemGraph - Class in edu.cmu.tetrad.graph
-
Represents the graphical structure of a structural equation model.
- SemGraph() - Constructor for class edu.cmu.tetrad.graph.SemGraph
-
Constructs a new, empty SemGraph.
- SemGraph(Graph) - Constructor for class edu.cmu.tetrad.graph.SemGraph
-
Constructs a new SemGraph from the nodes and edges of the given graph.
- SemGraph(SemGraph) - Constructor for class edu.cmu.tetrad.graph.SemGraph
-
Copy constructor.
- SemidirectedPathF1 - Class in edu.cmu.tetrad.algcomparison.statistic
-
Calculates the F1 statistic for adjacencies.
- SemidirectedPathF1() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.SemidirectedPathF1
-
Constructs the statistic.
- semidirectedPaths(Node, Node, int) - Method in class edu.cmu.tetrad.graph.Paths
-
Finds all semi-directed paths between two nodes up to a maximum length.
- SemidirectedPrecision - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- SemidirectedPrecision() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.SemidirectedPrecision
-
Constructs the statistic.
- SemidirectedRecall - Class in edu.cmu.tetrad.algcomparison.statistic
-
A class implementing the Semidirected-Rec statistic.
- SemidirectedRecall() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.SemidirectedRecall
-
Constructs the statistic.
- semigraphoid() - Method in class edu.cmu.tetrad.search.utils.GraphoidAxioms
-
Checked whether the IM is a semigraphoid.
- SemIm - Class in edu.cmu.tetrad.sem
-
Stores an instantiated structural equation model (SEM), with error covariance terms, possibly cyclic, suitable for estimation and simulation.
- SemIm(SemIm) - Constructor for class edu.cmu.tetrad.sem.SemIm
-
Copy constructor.
- SemIm(SemPm) - Constructor for class edu.cmu.tetrad.sem.SemIm
-
Constructs a new SEM IM from a SEM PM.
- SemIm(SemPm, ICovarianceMatrix) - Constructor for class edu.cmu.tetrad.sem.SemIm
-
Constructs a SEM model using the given SEM PM and sample covariance matrix.
- SemIm(SemPm, SemIm, Parameters) - Constructor for class edu.cmu.tetrad.sem.SemIm
-
Constructs a new SEM IM from the given SEM PM, using the old SEM IM and params object to guide the choice of parameter values.
- SemIm(SemPm, Parameters) - Constructor for class edu.cmu.tetrad.sem.SemIm
-
Constructs a new SEM IM from the given SEM PM, using the given params object to guide the choice of parameter values.
- SemIm(SemPm, List<Node>, List<Node>, Matrix, double[]) - Constructor for class edu.cmu.tetrad.sem.SemIm
-
Constructor for SemIm.
- SemManipulation - Class in edu.cmu.tetrad.sem
-
Stores information for a BayesIm about evidence we have for each variable as well as whether each variable has been manipulated.
- SemManipulation(SemIm) - Constructor for class edu.cmu.tetrad.sem.SemManipulation
-
Constructs a container for evidence for the given Bayes IM.
- SemManipulation(SemManipulation) - Constructor for class edu.cmu.tetrad.sem.SemManipulation
-
Constructor for SemManipulation.
- SemOptimizer - Interface in edu.cmu.tetrad.sem
-
Interface for algorithm that optimize the fitting function of a SemIm model by adjusting its freeParameters in search of a global maximum.
- SemOptimizerEm - Class in edu.cmu.tetrad.sem
-
Optimizes a DAG SEM with hidden variables using expectation-maximization.
- SemOptimizerEm() - Constructor for class edu.cmu.tetrad.sem.SemOptimizerEm
-
Constructor for SemOptimizerEm.
- SemOptimizerPowell - Class in edu.cmu.tetrad.sem
-
Optimizes a SEM using Powell's method from the Apache library.
- SemOptimizerPowell() - Constructor for class edu.cmu.tetrad.sem.SemOptimizerPowell
-
Blank constructor.
- SemOptimizerRegression - Class in edu.cmu.tetrad.sem
-
Optimizes a DAG SEM by regressing each varaible onto its parents using a linear regression.
- SemOptimizerRegression() - Constructor for class edu.cmu.tetrad.sem.SemOptimizerRegression
-
Blank constructor.
- SemOptimizerRicf - Class in edu.cmu.tetrad.sem
-
Optimizes a SEM using RICF (see that class).
- SemOptimizerRicf() - Constructor for class edu.cmu.tetrad.sem.SemOptimizerRicf
-
Blank constructor.
- SemOptimizerScattershot - Class in edu.cmu.tetrad.sem
-
Optimizes a SEM by randomly selecting points in cubes of decreasing size about a given point.
- SemOptimizerScattershot() - Constructor for class edu.cmu.tetrad.sem.SemOptimizerScattershot
-
Blank constructor.
- SemPm - Class in edu.cmu.tetrad.sem
-
Parametric model for Structural Equation Models.
- SemPm(Graph) - Constructor for class edu.cmu.tetrad.sem.SemPm
-
Constructs a BayesPm from the given Graph, which must be convertible first into a ProtoSemGraph and then into a SemGraph.
- SemPm(SemGraph) - Constructor for class edu.cmu.tetrad.sem.SemPm
-
Constructs a new SemPm from the given SemGraph.
- SemPm(SemPm) - Constructor for class edu.cmu.tetrad.sem.SemPm
-
Copy constructor.
- SemProposition - Class in edu.cmu.tetrad.sem
-
Represents propositions over the variables of a particular BayesIm describing and event of a fairly general sort--namely, conjunctions of propositions that particular variables take on values from a particular disjunctive list of categories.
- SemProposition(SemIm) - Constructor for class edu.cmu.tetrad.sem.SemProposition
-
Creates a new Proposition which allows all values.
- SemProposition(SemProposition) - Constructor for class edu.cmu.tetrad.sem.SemProposition
-
Creates a new SemProposition object by copying the values and semIm from the given proposition.
- SemSimulation - Class in edu.cmu.tetrad.algcomparison.simulation
-
This class represents a Simulation using Structural Equation Modeling (SEM).
- SemSimulation(RandomGraph) - Constructor for class edu.cmu.tetrad.algcomparison.simulation.SemSimulation
-
Constructs a SemSimulation object with the given RandomGraph object.
- SemSimulation(SemIm) - Constructor for class edu.cmu.tetrad.algcomparison.simulation.SemSimulation
-
Constructs a GeneralSemSimulation object with the given SemIm object.
- SemSimulation(SemPm) - Constructor for class edu.cmu.tetrad.algcomparison.simulation.SemSimulation
-
Initializes a SemSimulation with the given SemPm object.
- SemStdErrorEstimator - Class in edu.cmu.tetrad.sem
-
Includes methods for estimating the standard errors of the freeParameters of an estimated SEM.
- SemStdErrorEstimator() - Constructor for class edu.cmu.tetrad.sem.SemStdErrorEstimator
-
Blank constructor.
- SemThenDiscretize - Class in edu.cmu.tetrad.algcomparison.simulation
-
SEM the discretize.
- SemThenDiscretize(RandomGraph) - Constructor for class edu.cmu.tetrad.algcomparison.simulation.SemThenDiscretize
-
Constructor for SemThenDiscretize.
- SemThenDiscretize(RandomGraph, DataType) - Constructor for class edu.cmu.tetrad.algcomparison.simulation.SemThenDiscretize
-
Constructor for SemThenDiscretize.
- SemUpdater - Class in edu.cmu.tetrad.sem
-
Calculates updated structural equation models given evidence of the form X1=x1',...,The main task of such and algorithm is to calculate P(X = x' | evidence), where evidence takes the form of a Proposition over the variables in the Bayes net, possibly with additional information about which variables in the Bayes net have been manipulated.
- SemUpdater(SemIm) - Constructor for class edu.cmu.tetrad.sem.SemUpdater
-
Constructor for SemUpdater.
- SemXmlParser - Class in edu.cmu.tetrad.sem
-
This class takes an xml element representing a SEM im and converts it to a SemIM
- SemXmlParser() - Constructor for class edu.cmu.tetrad.sem.SemXmlParser
-
This class represents a parser for SEM XML representation.
- SemXmlRenderer - Class in edu.cmu.tetrad.sem
-
This class converts a SemIm into xml.
- SEPSET_FINDER_METHOD - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
SEPSET_FINDER_METHOD="sepsetFinderMethod"
- SepsetFinder - Class in edu.cmu.tetrad.search
-
This class provides methods for finding sepsets in a given graph.
- SepsetFinder() - Constructor for class edu.cmu.tetrad.search.SepsetFinder
-
Private constructor to prevent instantiation.
- SepsetMap - Class in edu.cmu.tetrad.search.utils
-
Stores a map from pairs of nodes to separating sets--that is, for each unordered pair of nodes {node1, node2} in a graph, stores a set of nodes conditional on which node1 and node2 are independent (where the nodes are considered as variables) or stores null if the pair was not judged to be independent.
- SepsetMap() - Constructor for class edu.cmu.tetrad.search.utils.SepsetMap
-
Constructor.
- SepsetMap(SepsetMap) - Constructor for class edu.cmu.tetrad.search.utils.SepsetMap
-
Copy constructor.
- SepsetMapDci - Class in edu.cmu.tetrad.search.work_in_progress
-
This is the same as the usual SepsetMap described below, but also keeps up with the individual sets of conditioning nodes for d-separation relations for use with the Distributed Causal Inference (DCI) algorithm.
- SepsetMapDci() - Constructor for class edu.cmu.tetrad.search.work_in_progress.SepsetMapDci
-
Constructor for SepsetMapDci.
- SepsetMapDci(SepsetMapDci) - Constructor for class edu.cmu.tetrad.search.work_in_progress.SepsetMapDci
-
Constructor for SepsetMapDci.
- SepsetProducer - Interface in edu.cmu.tetrad.search.utils
-
Provides a covenience interface for classes that can generate and keep track of sepsets.
- SepsetsGreedy - Class in edu.cmu.tetrad.search.utils
-
Provides a SepsetProducer that selects the first sepset it comes to from among the extra sepsets or the adjacents of i or k, or null if none is found.
- SepsetsGreedy(Graph, IndependenceTest, int) - Constructor for class edu.cmu.tetrad.search.utils.SepsetsGreedy
-
Constructor for Sepsets.
- SepsetsMaxP - Class in edu.cmu.tetrad.search.utils
-
The class SepsetsMaxP implements the SepsetProducer interface and provides methods for generating sepsets based on a given graph and an independence test.
- SepsetsMaxP(Graph, IndependenceTest, int) - Constructor for class edu.cmu.tetrad.search.utils.SepsetsMaxP
-
Constructs a SepsetsMaxP object with the given graph, independence test, and depth.
- SepsetsMinP - Class in edu.cmu.tetrad.search.utils
-
The SepsetsMinP class is a concrete implementation of the SepsetProducer interface.
- SepsetsMinP(Graph, IndependenceTest, int) - Constructor for class edu.cmu.tetrad.search.utils.SepsetsMinP
-
Initializes a new instance of the SepsetsMinP class.
- SepsetsPossibleMsep - Class in edu.cmu.tetrad.search.utils
-
Provides a sepset producer using conditional independence tests to generate the Sepset map, for the case where possible msep sets are required.
- SepsetsPossibleMsep(Graph, IndependenceTest, Knowledge, int, int) - Constructor for class edu.cmu.tetrad.search.utils.SepsetsPossibleMsep
-
Constructor for SepsetsPossibleMsep.
- SepsetsSet - Class in edu.cmu.tetrad.search.utils
-
Provides a sepset producer using conditional independence tests to generate the Sepset map.
- SepsetsSet(SepsetMap, IndependenceTest) - Constructor for class edu.cmu.tetrad.search.utils.SepsetsSet
-
Constructor for SepsetsSet.
- SERIAL - Enum constant in enum class edu.cmu.tetrad.search.LvLite.ExtraEdgeRemovalStyle
-
Remove extra edges in serial.
- serializableInstance() - Static method in class edu.cmu.tetrad.bayes.ApproximateUpdater
-
Returns a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.bayes.BayesImProbs
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.bayes.BayesPm
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.bayes.CptInvariantMarginalCalculator
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.bayes.CptInvariantUpdater
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.bayes.DirichletBayesIm
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.bayes.Evidence
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.bayes.Identifiability
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.bayes.Manipulation
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.bayes.MlBayesIm
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.bayes.MlBayesImObs
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.bayes.Proposition
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.bayes.RowSummingExactUpdater
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.bayes.StoredCellProbs
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.bayes.StoredCellProbsObs
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.bayes.UpdatedBayesIm
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.calculator.expression.ConstantExpression
-
serializableInstance.
- serializableInstance() - Static method in class edu.cmu.tetrad.calculator.expression.EvaluationExpression
-
serializableInstance.
- serializableInstance() - Static method in enum class edu.cmu.tetrad.calculator.expression.ExpressionDescriptor.Position
-
serializableInstance.
- serializableInstance() - Static method in class edu.cmu.tetrad.calculator.expression.VariableExpression
-
serializableInstance.
- serializableInstance() - Static method in class edu.cmu.tetrad.classify.ClassifierBayesUpdaterDiscrete
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.data.BoxDataSet
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.data.ByteDataBox
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.data.Clusters
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.data.ContinuousDiscretizationSpec
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.data.ContinuousVariable
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.data.CorrelationMatrix
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.data.CorrelationMatrixOnTheFly
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.data.CovarianceMatrix
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.data.CovarianceMatrixOnTheFly
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.data.DataModelList
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.data.DelimiterType
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.data.DiscreteDiscretizationSpec
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.data.DiscreteVariable
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.data.DiscreteVariableType
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.data.DoubleDataBox
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.data.FloatDataBox
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.data.IndependenceFacts
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.data.IntDataBox
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.data.Knowledge
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.data.KnowledgeEdge
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.data.KnowledgeGroup
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.data.LongDataBox
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.data.MixedDataBox
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.data.ShortDataBox
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.data.SplitCasesSpec
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.data.TimeSeriesData
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.data.VerticalDoubleDataBox
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.data.VerticalIntDataBox
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.graph.Dag
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.graph.Edge
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.graph.EdgeListGraph
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.graph.GraphNode
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.graph.IndependenceFact
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.graph.LagGraph
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.graph.SemGraph
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.graph.Triple
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.regression.LogisticRegression.Result
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.regression.LogisticRegression
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.regression.RegressionResult
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.search.score.ScoredGraph
-
Returns a serializable instance of this class.
- serializableInstance() - Static method in class edu.cmu.tetrad.search.test.IndependenceResult
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in enum class edu.cmu.tetrad.search.utils.BpcAlgorithmType
-
Returns the serializable instance of the algorithm type.
- serializableInstance() - Static method in enum class edu.cmu.tetrad.search.utils.BpcTestType
-
Returns the serializable instance of the test type.
- serializableInstance() - Static method in class edu.cmu.tetrad.search.utils.DeltaSextadTest
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.search.utils.SepsetMap
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.search.utils.Sextad
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.search.work_in_progress.SepsetMapDci
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.search.work_in_progress.Sextad
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.sem.DagScorer
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.sem.GeneralizedSemIm
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.sem.GeneralizedSemPm
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.sem.Mapping
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.sem.ParamConstraint
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.sem.Parameter
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.sem.ParameterPair
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.sem.SemEstimator
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.sem.SemEstimatorGibbsParams
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.sem.SemEvidence
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.sem.SemIm
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.sem.SemManipulation
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.sem.SemOptimizerEm
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.sem.SemOptimizerPowell
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.sem.SemOptimizerRegression
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.sem.SemOptimizerRicf
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.sem.SemOptimizerScattershot
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.sem.SemPm
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.sem.SemProposition
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.sem.SemUpdater
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.sem.StandardizedSemIm.ParameterRange
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.sem.StandardizedSemIm
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ActiveLagGraph
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.LagGraphParams
-
serializableInstance.
- serializableInstance() - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ManualLagGraph
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ManualLagGraphParams
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.StoredLagGraphParams
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BasalInitializer
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BasicLagGraph
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BooleanFunction
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BooleanGlassFunction
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.DishModel
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.GeneHistory
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.IndexedConnectivity
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.IndexedLagGraph
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.IndexedParent
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.LaggedEdge
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.LaggedFactor
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.LinearFunction
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.Polynomial
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.PolynomialFunction
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.PolynomialTerm
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.MeasurementSimulator
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.study.gene.tetradapp.model.MeasurementSimulatorParams
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.util.DefaultTetradLoggerConfig.DefaultEvent
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.util.DefaultTetradLoggerConfig
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.util.dist.Beta
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.util.dist.ChiSquare
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.util.dist.Discrete
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.util.dist.Exponential
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.util.dist.Gamma
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.util.dist.GaussianPower
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.util.dist.Indicator
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.util.dist.LogNormal
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.util.dist.MixtureOfGaussians
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.util.dist.Normal
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.util.dist.Poisson
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.util.dist.SingleValue
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.util.dist.Split
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.util.dist.TruncatedNormal
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.util.dist.Uniform
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.util.Matrix
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.util.Parameters
-
serializableInstance.
- serializableInstance() - Static method in class edu.cmu.tetrad.util.PartialCorrelationPdf
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.util.PointXy
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.util.TetradLogger.EmptyConfig
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.util.Vector
-
Generates a simple exemplar of this class to test serialization.
- serializableInstance() - Static method in class edu.cmu.tetrad.util.Version
-
Generates a simple exemplar of this class to test serialization.
- serializeCurrentDirectory() - Method in class edu.cmu.tetrad.util.TetradSerializableUtils
-
Finds all classes inside the stated scope that implement TetradSerializable and serializes them out to the getCurrentDirectory() directory.
- serialVersionUID - Static variable in interface edu.cmu.tetrad.algcomparison.graph.RandomGraph
-
Constant
serialVersionUID=23L
- serialVersionUID - Static variable in interface edu.cmu.tetrad.algcomparison.independence.IndependenceWrapper
-
Constant
serialVersionUID=23L
- serialVersionUID - Static variable in interface edu.cmu.tetrad.algcomparison.score.ScoreWrapper
-
Constant
serialVersionUID=23L
- serialVersionUID - Static variable in interface edu.cmu.tetrad.algcomparison.simulation.Simulation
-
Constant
serialVersionUID=23L
- serialVersionUID - Static variable in interface edu.cmu.tetrad.algcomparison.statistic.Statistic
-
Constant
serialVersionUID=23L
- serialVersionUID - Static variable in interface edu.cmu.tetrad.bayes.ManipulatingBayesUpdater
-
Constant
serialVersionUID=23L
- serialVersionUID - Static variable in interface edu.cmu.tetrad.calculator.expression.Expression
-
Constant
serialVersionUID=23L
- serialVersionUID - Static variable in interface edu.cmu.tetrad.calculator.expression.ExpressionDescriptor
-
Constant
serialVersionUID=23L
- serialVersionUID - Static variable in interface edu.cmu.tetrad.calculator.expression.ExpressionSignature
-
Constant
serialVersionUID=23L
- serialVersionUID - Static variable in interface edu.cmu.tetrad.data.Covariances
-
Constant
serialVersionUID=23L
- serialVersionUID - Static variable in interface edu.cmu.tetrad.data.DataBox
-
Constant
serialVersionUID=23L
- serialVersionUID - Static variable in interface edu.cmu.tetrad.data.DataModel
-
Constant
serialVersionUID=23L
- serialVersionUID - Static variable in interface edu.cmu.tetrad.data.DataSet
-
Constant
serialVersionUID=23L
- serialVersionUID - Static variable in interface edu.cmu.tetrad.data.KnowledgeTransferable
-
Constant
serialVersionUID=23L
- serialVersionUID - Static variable in interface edu.cmu.tetrad.data.Simulator
-
Constant
serialVersionUID=23L
- serialVersionUID - Static variable in interface edu.cmu.tetrad.data.Variable
-
Required serial version UID for serialization.
- serialVersionUID - Static variable in interface edu.cmu.tetrad.graph.Graph
-
Constant
serialVersionUID=23L
- serialVersionUID - Static variable in interface edu.cmu.tetrad.graph.Node
-
Constant
serialVersionUID=23L
- serialVersionUID - Static variable in interface edu.cmu.tetrad.sem.ISemIm
-
Constant
serialVersionUID=23L
- serialVersionUID - Static variable in interface edu.cmu.tetrad.sem.SemOptimizer
-
Constant
serialVersionUID=23L
- serialVersionUID - Static variable in interface edu.cmu.tetrad.study.gene.tetrad.gene.history.GraphRandomizer
-
Constant
serialVersionUID=23L
- serialVersionUID - Static variable in interface edu.cmu.tetrad.study.gene.tetrad.gene.history.Initializer
-
Constant
serialVersionUID=23L
- serialVersionUID - Static variable in interface edu.cmu.tetrad.study.gene.tetrad.gene.history.RandomDistribution
-
Constant
serialVersionUID=23L
- serialVersionUID - Static variable in interface edu.cmu.tetrad.util.dist.Distribution
-
Constant
serialVersionUID=23L
- serialVersionUID - Static variable in interface edu.cmu.tetrad.util.Im
-
Constant
serialVersionUID=23L
- SESSION - Enum constant in enum class edu.cmu.tetrad.graph.NodeType
-
Constant
SESSION
- set(int, double) - Method in class edu.cmu.tetrad.util.Vector
-
set.
- set(int, int, double) - Method in class edu.cmu.tetrad.bayes.CptMapProbs
-
Sets the probability of the node taking on the value specified by the given row and column to the given value.
- set(int, int, double) - Method in class edu.cmu.tetrad.util.Matrix
-
set.
- set(int, int, Number) - Method in class edu.cmu.tetrad.data.ByteDataBox
-
Sets the value at the given row and column to the given Number.
- set(int, int, Number) - Method in interface edu.cmu.tetrad.data.DataBox
-
Sets the value at the given row and column to the given Number.
- set(int, int, Number) - Method in class edu.cmu.tetrad.data.DoubleDataBox
-
Sets the value at the given row and column to the given Number.
- set(int, int, Number) - Method in class edu.cmu.tetrad.data.FloatDataBox
-
Sets the value at the given row and column to the given Number.
- set(int, int, Number) - Method in class edu.cmu.tetrad.data.IntDataBox
-
Sets the value at the given row and column to the given Number.
- set(int, int, Number) - Method in class edu.cmu.tetrad.data.LongDataBox
-
Sets the value at the given row and column to the given Number.
- set(int, int, Number) - Method in class edu.cmu.tetrad.data.MixedDataBox
-
Sets the value at the given row and column to the given Number.
- set(int, int, Number) - Method in class edu.cmu.tetrad.data.ShortDataBox
-
Sets the value at the given row and column to the given Number.
- set(int, int, Number) - Method in class edu.cmu.tetrad.data.VerticalDoubleDataBox
-
Sets the value at the given row and column to the given Number.
- set(int, int, Number) - Method in class edu.cmu.tetrad.data.VerticalIntDataBox
-
Sets the value at the given row and column to the given Number.
- set(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.utils.SepsetMap
-
Sets the sepset for {x, y} to be z.
- set(Node, Node, Set<Node>) - Method in class edu.cmu.tetrad.search.work_in_progress.SepsetMapDci
-
Sets the sepset for {x, y} to be z.
- set(Node, LinkedHashSet<Node>) - Method in class edu.cmu.tetrad.search.utils.SepsetMap
-
Sets the parents of x to the (ordered) set z.
- set(Node, LinkedHashSet<Node>) - Method in class edu.cmu.tetrad.search.work_in_progress.SepsetMapDci
-
set.
- set(String, Object) - Method in class edu.cmu.tetrad.util.Parameters
-
Sets the given parameter to the given value.
- set(String, Object...) - Method in class edu.cmu.tetrad.util.Parameters
-
Sets the value(s) of the given parameter to a list of strings.
- set(String, String) - Method in class edu.cmu.tetrad.util.Parameters
-
Sets the given parameter to the given value.
- set(String, String...) - Method in class edu.cmu.tetrad.util.Parameters
-
Sets the value(s) of the given parameter to a list of values.
- setAdjacencies(Graph) - Method in class edu.cmu.tetrad.search.SvarFges
-
Sets the set of preset adjacencies for the algorithm; edges not in this adjacencies graph will not be added.
- setAdjacencies(Graph) - Method in class edu.cmu.tetrad.search.utils.FgesOrienter
-
Sets the set of preset adjacenies for the algorithm; edges not in this adjacencies graph will not be added.
- setAdjacencies(Graph) - Method in class edu.cmu.tetrad.search.work_in_progress.ISFges
-
Sets the preset adjacency information for the graph.
- setAdjacencyMethod(FaskOrig.AdjacencyMethod) - Method in class edu.cmu.tetrad.search.FaskOrig
-
Sets the adjacency method used.
- setAlgorithm(ComparisonParameters.Algorithm) - Method in class edu.cmu.tetrad.study.performance.ComparisonParameters
-
Setter for the field
algorithm
. - setAlgorithmType(int) - Method in class edu.cmu.tetrad.search.FastIca
-
If algorithmType == PARALLEL, the components are extracted simultaneously (the default).
- setAllowedColliders(Set<Triple>) - Method in class edu.cmu.tetrad.search.utils.FciOrient
-
Sets the allowed colliders for this object.
- setAllowedColliders(Set<Triple>) - Method in interface edu.cmu.tetrad.search.utils.R0R4Strategy
-
Sets the allowed colliders for the current strategy.
- setAllowedColliders(Set<Triple>) - Method in class edu.cmu.tetrad.search.utils.R0R4StrategyScoreBased
- setAllowedColliders(Set<Triple>) - Method in class edu.cmu.tetrad.search.utils.R0R4StrategyTestBased
-
Sets the allowed colliders for the FciOrientDataExaminationStrategy.
- setAllowInternalRandomness(boolean) - Method in class edu.cmu.tetrad.search.Grasp
-
Sets whether to allow internal randomness in the algorithm.
- setAllowRandomnessInsideAlgorithm(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.GraspTol
-
Setter for the field
allowRandomnessInsideAlgorithm
. - setAllValuesToZero() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.BasicMatrix
-
Assign zero to all elements in the matrix
- setAllValuesToZero() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.LTMatrix
-
Assign zero to all elements in the matrix
- setAllValuesToZero() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.LTMatrixF
-
Assign zero to all elements in the matrix
- setAllValuesToZero() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.Matrix
-
Assign zero to all elements in the matrix
- setAllValuesToZero() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.MatrixF
-
Assign zero to all elements in the matrix
- setAlpha(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.FractionDependentUnderAlternative
-
Setter for the field
alpha
. - setAlpha(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.FractionDependentUnderNull
-
Setter for the field
alpha
. - setAlpha(double) - Method in class edu.cmu.tetrad.regression.LogisticRegression
-
Sets the alpha level.
- setAlpha(double) - Method in interface edu.cmu.tetrad.regression.Regression
-
Sets the significance level at which coefficients are judged to be significant.
- setAlpha(double) - Method in class edu.cmu.tetrad.regression.RegressionCovariance
-
Sets the significance level at which coefficients are judged to be significant.
- setAlpha(double) - Method in class edu.cmu.tetrad.regression.RegressionDataset
-
Sets the significance level at which coefficients are judged to be significant.
- setAlpha(double) - Method in class edu.cmu.tetrad.search.BossLingam
-
Sets the alpha level for the search.
- setAlpha(double) - Method in class edu.cmu.tetrad.search.Fask
-
Sets the significance level for making independence judgments.
- setAlpha(double) - Method in class edu.cmu.tetrad.search.FastIca
-
Sets the FastICA alpha constant in range [1, 2] used in approximation to neg-entropy when 'fun == "logcosh"'
- setAlpha(double) - Method in interface edu.cmu.tetrad.search.IndependenceTest
-
Sets the significance level.
- setAlpha(double) - Method in class edu.cmu.tetrad.search.IndTestIod
- setAlpha(double) - Method in class edu.cmu.tetrad.search.Lofs
-
Sets the alpha to use, where applicable.
- setAlpha(double) - Method in class edu.cmu.tetrad.search.MimbuildTrek
-
The alpha to use.
- setAlpha(double) - Method in class edu.cmu.tetrad.search.test.ChiSquareTest
-
Sets the significance level to be used for tests.
- setAlpha(double) - Method in class edu.cmu.tetrad.search.test.IndTestChiSquare
-
Sets the significance level at which independence judgments should be made.
- setAlpha(double) - Method in class edu.cmu.tetrad.search.test.IndTestConditionalGaussianLrt
-
Sets the significance level.
- setAlpha(double) - Method in class edu.cmu.tetrad.search.test.IndTestDegenerateGaussianLrt
-
Sets the significance level.
- setAlpha(double) - Method in class edu.cmu.tetrad.search.test.IndTestFisherZ
-
Sets the significance level at which independence judgments should be made.
- setAlpha(double) - Method in class edu.cmu.tetrad.search.test.IndTestFisherZConcatenateResiduals
-
Sets the alpha significance cutoff value.
- setAlpha(double) - Method in class edu.cmu.tetrad.search.test.IndTestFisherZFisherPValue
-
Sets the alpha significance cutoff value.
- setAlpha(double) - Method in class edu.cmu.tetrad.search.test.IndTestGSquare
-
Sets the significance level at which independence judgments should be made.
- setAlpha(double) - Method in class edu.cmu.tetrad.search.test.IndTestHsic
-
Sets the significance level.
- setAlpha(double) - Method in class edu.cmu.tetrad.search.test.IndTestIndependenceFacts
-
Sets the alpha value used for checking independence.
- setAlpha(double) - Method in class edu.cmu.tetrad.search.test.IndTestMulti
-
Sets the significance level for the independence test.
- setAlpha(double) - Method in class edu.cmu.tetrad.search.test.IndTestMvpLrt
-
Sets the significance level of the independence test.
- setAlpha(double) - Method in class edu.cmu.tetrad.search.test.IndTestProbabilistic
-
Sets the alpha parameter for the probabilistic test.
- setAlpha(double) - Method in class edu.cmu.tetrad.search.test.IndTestRegression
-
Sets the significance level.
- setAlpha(double) - Method in class edu.cmu.tetrad.search.test.IndTestTrekSep
-
Sets the significance level for the independence test.
- setAlpha(double) - Method in class edu.cmu.tetrad.search.test.Kci
-
Sets the alpha level for the test.
- setAlpha(double) - Method in class edu.cmu.tetrad.search.test.MsepTest
-
Sets the alpha level for the independence test.
- setAlpha(double) - Method in class edu.cmu.tetrad.search.test.ScoreIndTest
-
Sets the significance level for the independence test.
- setAlpha(double) - Method in interface edu.cmu.tetrad.search.work_in_progress.Hbsms
-
setAlpha.
- setAlpha(double) - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsBeam
-
setAlpha.
- setAlpha(double) - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsGes
-
setAlpha.
- setAlpha(double) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestCramerT
-
Sets the significance level for the independence test.
- setAlpha(double) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestFisherZPercentIndependent
-
Sets the significance level for the independence test.
- setAlpha(double) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestFisherZRecursive
-
Sets the significance level.
- setAlpha(double) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestMixedMultipleTTest
-
Sets the significance level for the independence test.
- setAlpha(double) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestMnlrLr
-
Sets the significance level for the independence test.
- setAlpha(double) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestMultinomialLogisticRegression
-
Sets the significance level for the independence test.
- setAlpha(double) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestPositiveCorr
-
Set the alpha level for the significance of the test.
- setAlpha(double) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestSepsetDci
-
Sets the alpha level for the independence test.
- setAlpha(double) - Method in class edu.cmu.tetrad.search.work_in_progress.Kpc
-
Sets the significance level at which independence judgments should be made.
- setAlpha(double) - Method in class edu.cmu.tetrad.search.work_in_progress.ProbabilisticMapIndependence
-
Sets the significance level.
- setAlpha(double) - Method in class edu.cmu.tetrad.study.performance.ComparisonParameters
-
Setter for the field
alpha
. - setAlpha(double) - Method in class edu.pitt.csb.mgm.IndTestMultinomialLogisticRegressionWald
-
Sets the significance level of the independence test.
- setAlphaPC(double) - Method in class edu.cmu.tetrad.search.work_in_progress.DMSearch
-
Setter for the field
alphaPC
. - setAlphaSober(double) - Method in class edu.cmu.tetrad.search.work_in_progress.DMSearch
-
Setter for the field
alphaSober
. - setAmbiguousTriples(Set<Triple>) - Method in class edu.cmu.tetrad.graph.Dag
-
Sets the ambiguous triples for the object.
- setAmbiguousTriples(Set<Triple>) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
setAmbiguousTriples.
- setAmbiguousTriples(Set<Triple>) - Method in interface edu.cmu.tetrad.graph.Graph
-
setAmbiguousTriples.
- setAmbiguousTriples(Set<Triple>) - Method in class edu.cmu.tetrad.graph.LagGraph
-
setAmbiguousTriples.
- setAmbiguousTriples(Set<Triple>) - Method in class edu.cmu.tetrad.graph.SemGraph
-
setAmbiguousTriples.
- setAmbiguousTriples(Set<Triple>) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Sets the set of ambiguous triples.
- setAmbiguousTriples(Set<Triple>) - Method in class edu.cmu.tetrad.graph.Underlines
-
Setter for the field
ambiguousTriples
. - setAntilogCalculated(boolean) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.MeasurementSimulator
-
Sets whether the antilog of each expression level should be calculated.
- setAntilogCalculated(boolean) - Method in class edu.cmu.tetrad.study.gene.tetradapp.model.MeasurementSimulatorParams
-
setAntilogCalculated.
- setApplyR1(boolean) - Method in class edu.cmu.tetrad.search.Ccd
-
Sets whether the R1 rule should be applied.
- setApproximate(boolean) - Method in class edu.cmu.tetrad.search.test.Kci
-
Sets whether the approximate algorithm should be used.
- setAutomaticLogDisplayEnabled(boolean) - Method in class edu.cmu.tetrad.util.TetradLogger
-
States whether log displays should be automatically displayed or not.
- setBasalExpression(double) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BooleanGlassFunction
-
Sets the basalExpression.
- setBeamWidth(int) - Method in interface edu.cmu.tetrad.search.work_in_progress.Hbsms
-
setBeamWidth.
- setBeamWidth(int) - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsBeam
-
setBeamWidth.
- setBeamWidth(int) - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsGes
-
setBeamWidth.
- setBeta(double) - Method in class edu.cmu.tetrad.algcomparison.statistic.FBetaAdj
-
Setter for the field
beta
. - setBeta(DoubleMatrix2D) - Method in class edu.pitt.csb.mgm.Mgm.MGMParams
-
Sets beta.
- setBetaHigh(double) - Method in class edu.cmu.tetrad.algcomparison.simulation.LinearSineSimulation
-
Setter for the field
betaHigh
. - setBetaLow(double) - Method in class edu.cmu.tetrad.algcomparison.simulation.LinearSineSimulation
-
Setter for the field
betaLow
. - setBlockingType(R0R4StrategyTestBased.BlockingType) - Method in class edu.cmu.tetrad.search.utils.R0R4StrategyTestBased
-
Sets the blocking type for the strategy.
- setBollenTest(DeltaTetradTest) - Method in class edu.cmu.tetrad.search.utils.TetradTestContinuous
-
setBollenTest.
- setBooleanInfluenceRate(double) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BooleanGlassFunction
-
Sets the rate at which the output of the Glass function influences the change in expression level of a gene.
- setBossUseBes(boolean) - Method in class edu.cmu.tetrad.search.BFci
-
Sets whether the BES should be used.
- setBoundGraph(Graph) - Method in class edu.cmu.tetrad.search.Fges
-
If non-null, edges not adjacent in this graph will not be added.
- setBoundGraph(Graph) - Method in class edu.cmu.tetrad.search.FgesMb
-
If non-null, edges not adjacent in this graph will not be added.
- setBoundsEnforced(boolean) - Method in class edu.cmu.tetrad.bayes.DirichletDataSetProbs
-
True iff bounds checking is performed on variable values indices.
- setBThreshold(double) - Method in class edu.cmu.tetrad.search.IcaLingam
-
The threshold to use for set small elements to zero in the B Hat matrices.
- setBThreshold(double) - Method in class edu.cmu.tetrad.search.IcaLingD
-
Sets the threshold value for the B matrix.
- setC(int) - Method in class edu.cmu.tetrad.search.utils.ShiftSearch
-
Setter for the field
c
. - setCacheDepthLimit(int) - Method in class edu.cmu.tetrad.search.utils.AdTree
-
Sets the maximum depth of the cache.
- setCanceled(boolean) - Method in class edu.cmu.tetrad.util.TaskManager
-
Setter for the field
canceled
. - setCategories(Node, List<String>) - Method in class edu.cmu.tetrad.bayes.BayesPm
-
Sets the number of values for the given node to the given number.
- setCategory(int, int) - Method in class edu.cmu.tetrad.bayes.Proposition
-
Sets the given value to true and all other values to false for the given variable.
- setCategoryNamesDisplayed(boolean) - Method in class edu.cmu.tetrad.data.DiscreteVariable
-
Sets whether categories for this variable should be displayed.
- setCellProbability(int[], double) - Method in class edu.cmu.tetrad.bayes.StoredCellProbsObs
-
setCellProbability.
- setCellTableType(ChiSquareTest.CellTableType) - Method in class edu.cmu.tetrad.search.test.ChiSquareTest
-
Sets the type of cell table to use.
- setCellTableType(ChiSquareTest.CellTableType) - Method in class edu.cmu.tetrad.search.test.IndTestChiSquare
-
Sets the cell table type.
- setCellTableType(ChiSquareTest.CellTableType) - Method in class edu.cmu.tetrad.search.test.IndTestGSquare
-
Sets the cell table type.
- setCenter(int, int) - Method in class edu.cmu.tetrad.data.ContinuousVariable
-
Sets the (x, y) coordinates of the center of this node.
- setCenter(int, int) - Method in class edu.cmu.tetrad.data.DiscreteVariable
-
Sets the (x, y) coordinates of the center of this node.
- setCenter(int, int) - Method in class edu.cmu.tetrad.graph.GraphNode
-
Sets the (x, y) coordinates of the center of this node.
- setCenter(int, int) - Method in interface edu.cmu.tetrad.graph.Node
-
Sets the (x, y) coordinates of the center of this node.
- setCenteringComp(JComponent) - Static method in class edu.cmu.tetrad.util.JOptionUtils
-
Sets the centering component used throughout.
- setCenterX(int) - Method in class edu.cmu.tetrad.data.ContinuousVariable
-
Sets the x coordinate of the center of this node.
- setCenterX(int) - Method in class edu.cmu.tetrad.data.DiscreteVariable
-
Sets the x coordinate of the center of this node.
- setCenterX(int) - Method in class edu.cmu.tetrad.graph.GraphNode
-
Sets the x coordinate of the center of this node.
- setCenterX(int) - Method in interface edu.cmu.tetrad.graph.Node
-
Sets the x coordinate of the center of this node.
- setCenterY(int) - Method in class edu.cmu.tetrad.data.ContinuousVariable
-
Sets the y coordinate of the center of this node.
- setCenterY(int) - Method in class edu.cmu.tetrad.data.DiscreteVariable
-
Sets the y coordinate of the center of this node.
- setCenterY(int) - Method in class edu.cmu.tetrad.graph.GraphNode
-
Sets the y coordinate of the center of this node.
- setCenterY(int) - Method in interface edu.cmu.tetrad.graph.Node
-
Sets the y coordinate of the center of this node.
- setCheckType(ClusterSignificance.CheckType) - Method in class edu.cmu.tetrad.search.Bpc
-
Sets the cluster significance type.
- setCheckType(ClusterSignificance.CheckType) - Method in class edu.cmu.tetrad.search.Fofc
-
Sets which type of cluster check should be performed.
- setCheckType(ClusterSignificance.CheckType) - Method in class edu.cmu.tetrad.search.utils.ClusterSignificance
-
Sets the type of check to perform.
- setChipChipVariability(double) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.MeasurementSimulator
-
Sets the chip to chip variability.
- setChipChipVariability(double) - Method in class edu.cmu.tetrad.study.gene.tetradapp.model.MeasurementSimulatorParams
-
setChipChipVariability.
- setClusterName(int, String) - Method in class edu.cmu.tetrad.data.Clusters
-
setClusterName.
- setCoefficient(double) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.PolynomialTerm
-
Sets the coefficient.
- setCoefficient(int, int, double) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.LinearFunction
-
Sets the coefficient for the given parent of the given factor.
- setCoefficient(String, LaggedFactor, double) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.LinearFunction
-
Sets the intercept for the given factor.
- setCoefHigh(double) - Method in class edu.cmu.tetrad.algcomparison.simulation.ConditionalGaussianSimulation
-
Setter for the field
coefHigh
. - setCoefLow(double) - Method in class edu.cmu.tetrad.algcomparison.simulation.ConditionalGaussianSimulation
-
Setter for the field
coefLow
. - setCoefRange(double, double) - Method in class edu.cmu.tetrad.sem.LargeScaleSimulation
-
setCoefRange.
- setCoefSymmetric(boolean) - Method in class edu.cmu.tetrad.algcomparison.simulation.ConditionalGaussianSimulation
-
Setter for the field
coefSymmetric
. - setColliderDiscovery(PcCommon.ColliderDiscovery) - Method in class edu.cmu.tetrad.search.utils.PcCommon
-
Sets the type of collider discovery to do.
- setColumnSpacing(int) - Method in class edu.cmu.tetrad.util.TextTable
-
Sets the number of spaces between columns, to some number >= 0.
- setCompareToTrue(boolean) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FgesConcatenated
-
Setter for the field
compareToTrue
. - setComparisonGraph(Comparison.ComparisonGraph) - Method in class edu.cmu.tetrad.algcomparison.Comparison
-
Sets the comparison graph.
- setComparisonGraph(TimeoutComparison.ComparisonGraph) - Method in class edu.cmu.tetrad.algcomparison.TimeoutComparison
-
The type of graph the results are compared to.
- setCompleteRuleSetUsed(boolean) - Method in class edu.cmu.tetrad.search.BFci
-
Sets whether the complete (Zhang's) rule set should be used.
- setCompleteRuleSetUsed(boolean) - Method in class edu.cmu.tetrad.search.Cfci
-
Sets whether the complete rule set should be used.
- setCompleteRuleSetUsed(boolean) - Method in class edu.cmu.tetrad.search.Fci
-
Sets whether the Zhang complete rule set should be used; false if only R1-R4 (the rule set of the original FCI) should be used.
- setCompleteRuleSetUsed(boolean) - Method in class edu.cmu.tetrad.search.FciMax
-
Sets whether Zhang's complete rule set is used in the search.
- setCompleteRuleSetUsed(boolean) - Method in class edu.cmu.tetrad.search.GFci
-
Sets whether Zhang's complete rules are used.
- setCompleteRuleSetUsed(boolean) - Method in class edu.cmu.tetrad.search.GraspFci
-
Sets whether Zhang's complete rules set is used.
- setCompleteRuleSetUsed(boolean) - Method in class edu.cmu.tetrad.search.LvLite
-
Sets whether the complete rule set should be used during the search algorithm.
- setCompleteRuleSetUsed(boolean) - Method in class edu.cmu.tetrad.search.SpFci
-
Sets whether Zhang's complete rule set is used.
- setCompleteRuleSetUsed(boolean) - Method in class edu.cmu.tetrad.search.SvarFci
-
Sets whether Zhang's complete rule set is to be used.
- setCompleteRuleSetUsed(boolean) - Method in class edu.cmu.tetrad.search.SvarGfci
-
Sets whether the complete rule set is used.
- setCompleteRuleSetUsed(boolean) - Method in class edu.cmu.tetrad.search.utils.DagToPag
-
Setter for the field
completeRuleSetUsed
. - setCompleteRuleSetUsed(boolean) - Method in class edu.cmu.tetrad.search.utils.FciOrient
-
Sets the flag indicating if the complete rule set is being used.
- setCompleteRuleSetUsed(boolean) - Method in class edu.cmu.tetrad.search.utils.TsDagToPag
-
Setter for the field
completeRuleSetUsed
. - setCompleteRuleSetUsed(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.IGFci
-
Sets whether the complete rule set should be used in the IGFci algorithm.
- setConfigForClass(Class<?>) - Method in class edu.cmu.tetrad.util.TetradLogger
-
If there is a pre-defined configuration for the given model it is set, otherwise an exception is thrown.
- setConflictRule(PcCommon.ConflictRule) - Method in class edu.cmu.tetrad.search.Cpc
-
Sets which conflict rule to use for resolving collider orientation conflicts.
- setConflictRule(PcCommon.ConflictRule) - Method in class edu.cmu.tetrad.search.Pc
-
Sets which conflict-rule to use for resolving collider orientation conflicts.
- setConflictRule(PcCommon.ConflictRule) - Method in class edu.cmu.tetrad.search.utils.MaxP
-
Sets the PC conflict rule to use for orientation.
- setConflictRule(PcCommon.ConflictRule) - Method in class edu.cmu.tetrad.search.utils.PcCommon
-
Sets the conflict rule to use.
- setCopyData(boolean) - Method in class edu.cmu.tetrad.algcomparison.TimeoutComparison
-
Setter for the field
copyData
. - setCorrectResult(Graph) - Method in class edu.cmu.tetrad.study.performance.ComparisonResult
-
Setter for the field
correctResult
. - setCountMap(int, CptMapCounts) - Method in class edu.cmu.tetrad.bayes.MlBayesIm
-
Sets the count map for a specific node index in the Bayesian network.
- setCovariance(int, int, double) - Method in interface edu.cmu.tetrad.data.Covariances
-
Sets the covariance at (i, j) to a particular value.
- setCovarianceMatrix(ICovarianceMatrix) - Method in class edu.cmu.tetrad.search.work_in_progress.IGFci
-
Sets the covariance matrix to be used in the IGFci algorithm.
- setCovMatrix(ICovarianceMatrix) - Method in class edu.cmu.tetrad.search.utils.TetradTestContinuous
-
Setter for the field
covMatrix
. - setCovMatrix(ICovarianceMatrix) - Method in class edu.cmu.tetrad.sem.SemIm
-
Sets the sample covariance matrix for this Sem as a submatrix of the given matrix.
- setCpdag(boolean) - Method in class edu.cmu.tetrad.search.Dagma
-
Sets the value of the cpdag field.
- setCpdag(boolean) - Method in class edu.cmu.tetrad.search.PermutationSearch
-
Sets the flag indicating whether a CPDAG (partially directed acyclic graph) is wanted or not.
- setCpdagAlgorithm(Cstar.CpdagAlgorithm) - Method in class edu.cmu.tetrad.search.Cstar
-
The CSTaR algorithm can use any CPDAG algorithm; here you can set it.
- setCutoff(double) - Method in class edu.cmu.tetrad.search.Fask
-
Sets the significance level at which independence judgments should be made.
- setCutoff(double) - Method in class edu.cmu.tetrad.search.test.IndTestProbabilistic
-
Sets the cutoff for the independence test.
- setCutoff(double) - Method in class edu.pitt.dbmi.algo.bayesian.constraint.search.PagSamplingRfci
-
Set the cutoff.
- setCutoffConstrainSearch(double) - Method in class edu.pitt.dbmi.algo.bayesian.constraint.search.RfciBsc
-
Setter for the field
cutoffConstrainSearch
. - setCutoffDataSearch(double) - Method in class edu.pitt.dbmi.algo.bayesian.constraint.search.RfciBsc
-
Setter for the field
cutoffDataSearch
. - setData(DataSet) - Method in class edu.cmu.tetrad.search.work_in_progress.DMSearch
-
Setter for the field
data
. - setDataFile(String) - Method in class edu.cmu.tetrad.study.performance.ComparisonParameters
-
Setter for the field
dataFile
. - setDataFromFile(boolean) - Method in class edu.cmu.tetrad.study.performance.ComparisonParameters
-
Setter for the field
dataFromFile
. - setDataSet(DataSet) - Method in class edu.cmu.tetrad.sem.SemIm
-
Calculates the covariance matrix of the given DataSet and sets the sample covariance matrix for this model to a subset of it.
- setDataType(ComparisonParameters.DataType) - Method in class edu.cmu.tetrad.study.performance.ComparisonParameters
-
Setter for the field
dataType
. - setDecayRate(double) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BooleanGlassFunction
-
Sets the rate at which expression levels tend to return to equilibrium.
- setDefaultBw(DataSet, Node) - Method in interface edu.cmu.tetrad.search.utils.Kernel
-
Sets bandwidth from data using default method
- setDefaultBw(DataSet, Node) - Method in class edu.cmu.tetrad.search.utils.KernelGaussian
-
Sets bandwidth from data using default method
- setDefaultToKnowledgeLayout(boolean) - Method in class edu.cmu.tetrad.data.Knowledge
-
Setter for the field
defaultToKnowledgeLayout
. - setDefaultValue(Serializable) - Method in class edu.cmu.tetrad.util.ParamDescription
-
Setter for the field
defaultValue
. - setDelimiter(char) - Method in class edu.cmu.tetrad.simulation.HsimAutoC
-
Setter for the field
delimiter
. - setDelimiter(char) - Method in class edu.cmu.tetrad.simulation.HsimAutoRun
-
Setter for the field
delimiter
. - setDelimiter(char) - Method in class edu.cmu.tetrad.simulation.HsimRepeatAC
-
Setter for the field
delimiter
. - setDelimiter(char) - Method in class edu.cmu.tetrad.simulation.HsimRepeatAutoRun
-
Setter for the field
delimiter
. - setDelimiter(TextTable.Delimiter) - Method in class edu.cmu.tetrad.util.TextTable
-
Setter for the field
delimiter
. - setDelta(double) - Method in class edu.cmu.tetrad.search.Fask
-
Sets the delta value for the current instance of the FaskOrig class.
- setDelta(double) - Method in class edu.cmu.tetrad.search.FaskOrig
-
Sets the delta to use.
- setDepth(int) - Method in class edu.cmu.tetrad.search.BFci
-
Sets the depth of the search (for the constraint-based step).
- setDepth(int) - Method in class edu.cmu.tetrad.search.Cfci
-
Sets the depth--i.e., the maximum number of variables conditioned on in any test.
- setDepth(int) - Method in class edu.cmu.tetrad.search.Cpc
-
Sets the maximum number of variables conditioned on in any conditional independence test.
- setDepth(int) - Method in class edu.cmu.tetrad.search.Fas
-
Sets the maximum depth for the search.
- setDepth(int) - Method in class edu.cmu.tetrad.search.Fasd
-
Sets the depth of the search.
- setDepth(int) - Method in class edu.cmu.tetrad.search.Fask
-
Sets the depth of the search for the Fast Adjacency Search.
- setDepth(int) - Method in class edu.cmu.tetrad.search.FaskOrig
-
Setter for the field
depth
. - setDepth(int) - Method in class edu.cmu.tetrad.search.Fci
-
Sets the depth of search, which is the maximum number of variables conditioned on in any test.
- setDepth(int) - Method in class edu.cmu.tetrad.search.FciMax
-
Sets the maximum nubmer of variables conditioned in any test.
- setDepth(int) - Method in class edu.cmu.tetrad.search.GFci
-
Sets the depth of the search for the possible m-sep search.
- setDepth(int) - Method in class edu.cmu.tetrad.search.Grasp
-
Sets the maximum depth of the depth-first search that GRaSP performs while searching for a weakly increasing tuck sequence that improves the score.
- setDepth(int) - Method in class edu.cmu.tetrad.search.GraspFci
-
Sets the depth for the search algorithm.
- setDepth(int) - Method in interface edu.cmu.tetrad.search.IFas
-
Sets the depth of the search--that is, the maximum number of variables conditioned on in the search.
- setDepth(int) - Method in class edu.cmu.tetrad.search.LvLite
-
Sets the maximum size of the separating set used in the graph search algorithm.
- setDepth(int) - Method in class edu.cmu.tetrad.search.Pc
-
Sets the depth of the search--that is, the maximum number of conditioning nodes for any conditional independence checked.
- setDepth(int) - Method in class edu.cmu.tetrad.search.Pcd
-
Sets the depth of the search--that is, the maximum number of conditioning nodes for any conditional independence checked.
- setDepth(int) - Method in class edu.cmu.tetrad.search.PcMb
-
Sets the maximum number of conditioning variables for any conditional independence test.
- setDepth(int) - Method in class edu.cmu.tetrad.search.Rfci
-
Sets the maximum number of variables conditioned on in any test.
- setDepth(int) - Method in class edu.cmu.tetrad.search.SpFci
-
Sets the maximum number of variables conditioned on.
- setDepth(int) - Method in class edu.cmu.tetrad.search.SvarFas
-
Sets the depth of the search--that is, the maximum number of variables conditioned on in the search.
- setDepth(int) - Method in class edu.cmu.tetrad.search.SvarFci
-
Sets the depth of search.
- setDepth(int) - Method in class edu.cmu.tetrad.search.utils.Bes
-
Sets the depth for the search, which is the maximum number of variables conditioned on.
- setDepth(int) - Method in class edu.cmu.tetrad.search.utils.FgesOrienter
-
-1 for unlimited depth, otherwise a number >= 0.
- setDepth(int) - Method in class edu.cmu.tetrad.search.utils.MaxP
-
Setter for the field
depth
. - setDepth(int) - Method in class edu.cmu.tetrad.search.utils.PcCommon
-
Sets the maximum number of variables conditioned on in any conditional independence test.
- setDepth(int) - Method in class edu.cmu.tetrad.search.utils.PossibleMsepFci
-
Setter for the field
depth
. - setDepth(int) - Method in class edu.cmu.tetrad.search.utils.R0R4StrategyScoreBased
-
Sets the depth value of the FciOrientDataExaminationStrategyScoreBased object.
- setDepth(int) - Method in class edu.cmu.tetrad.search.utils.R0R4StrategyTestBased
-
Sets the depth for the FciOrientDataExaminationStrategy object.
- setDepth(int) - Method in class edu.cmu.tetrad.search.work_in_progress.Dci
-
Setter for the field
depth
. - setDepth(int) - Method in class edu.cmu.tetrad.search.work_in_progress.FasDci
-
Setter for the field
depth
. - setDepth(int) - Method in class edu.cmu.tetrad.search.work_in_progress.FasFdr
-
Sets the depth of the search--that is, the maximum number of variables conditioned on in the search.
- setDepth(int) - Method in class edu.cmu.tetrad.search.work_in_progress.FasLofs
-
Setter for the field
depth
. - setDepth(int) - Method in class edu.cmu.tetrad.search.work_in_progress.GraspTol
-
Setter for the field
depth
. - setDepth(int) - Method in class edu.cmu.tetrad.search.work_in_progress.Kpc
-
Sets the depth of the search--that is, the maximum number of conditioning nodes for any conditional independence checked.
- setDepth(int) - Method in class edu.cmu.tetrad.search.work_in_progress.Mmhc
-
Setter for the field
depth
. - setDepth(int) - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpc
-
Sets the maximum number of variables conditioned on in any conditional independence test.
- setDepth(int) - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpcFast
-
Sets the maximum number of variables conditioned on in any conditional independence test.
- setDepth(int) - Method in class edu.cmu.tetrad.search.work_in_progress.VcFas
-
Setter for the field
depth
. - setDepth(int) - Method in class edu.cmu.tetrad.search.work_in_progress.VcPc
-
Sets the maximum number of variables conditioned on in any conditional independence test.
- setDepth(int) - Method in class edu.cmu.tetrad.search.work_in_progress.VcPcAlt
-
Sets the maximum number of variables conditioned on in any conditional independence test.
- setDepth(int) - Method in class edu.cmu.tetrad.search.work_in_progress.VcPcFast
-
Sets the maximum number of variables conditioned on in any conditional independence test.
- setDepth(int) - Method in class edu.pitt.dbmi.algo.bayesian.constraint.search.PagSamplingRfci
-
Set the depth.
- setDeterminationP(double) - Method in class edu.cmu.tetrad.search.test.IndTestChiSquare
-
Sets the threshold for making judgments of determination.
- setDeterminationP(double) - Method in class edu.cmu.tetrad.search.test.IndTestGSquare
-
Sets the threshold for making judgments of determination.
- setDeterminismThreshold(double) - Method in class edu.cmu.tetrad.search.work_in_progress.SemBicScoreDeterministic
-
Setter for the field
determinismThreshold
. - setDiscount(double) - Method in class edu.cmu.tetrad.search.work_in_progress.DMSearch
-
setDiscount.
- setDiscreteScore(DiscreteScore) - Method in class edu.cmu.tetrad.search.utils.FgesOrienter
-
Sets the discrete scoring function to use.
- setDiscretize(boolean) - Method in class edu.cmu.tetrad.search.score.ConditionalGaussianLikelihood
-
Sets whether to discretize child variables to avoid integration.
- setDishBumpStDev(double) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.DishModel
-
Setter for the field
dishBumpStDev
. - setDishDishVariability(double) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.MeasurementSimulator
-
Sets the standard deviation sd% (in percent) of the distribution N(100.0, sd%), from which errors will be drawn for the dish model.
- setDishDishVariability(double) - Method in class edu.cmu.tetrad.study.gene.tetradapp.model.MeasurementSimulatorParams
-
setDishDishVariability.
- setDishModel(DishModel) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.GeneHistory
-
Sets the dish model.
- setDishNumber(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.DishModel
-
Sets the number of the getModel dish.
- setDisplayLogEnabled(boolean) - Method in class edu.cmu.tetrad.util.TetradLogger
-
Sets whether the display log should be used or not.
- setDistribution(Distribution) - Method in class edu.cmu.tetrad.sem.Parameter
-
Sets the distribution that initial values should be drawn from for this parameter.
- setDmStructure(DMSearch.LatentStructure) - Method in class edu.cmu.tetrad.search.work_in_progress.DMSearch
-
Setter for the field
dmStructure
. - setDoAdjacencySearch(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.Ion
-
Sets adjacency search on or off
- setDoDdpEdgeRemovalStep(boolean) - Method in class edu.cmu.tetrad.search.LvLite
-
Sets whether to perform DDP edge removal step.
- setDoPathLengthSearch(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.Ion
-
Sets path length search on or off.
- setDoR4(boolean) - Method in class edu.cmu.tetrad.search.utils.FciOrient
-
Sets whether R4 should be run.
- setDottedUnderLineTriples(Set<Triple>) - Method in class edu.cmu.tetrad.graph.Dag
-
Sets the dotted underline triples for the given set of Triples.
- setDottedUnderLineTriples(Set<Triple>) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
setDottedUnderLineTriples.
- setDottedUnderLineTriples(Set<Triple>) - Method in interface edu.cmu.tetrad.graph.Graph
-
setDottedUnderLineTriples.
- setDottedUnderLineTriples(Set<Triple>) - Method in class edu.cmu.tetrad.graph.LagGraph
-
setDottedUnderLineTriples.
- setDottedUnderLineTriples(Set<Triple>) - Method in class edu.cmu.tetrad.graph.SemGraph
-
setDottedUnderLineTriples.
- setDottedUnderLineTriples(Set<Triple>) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Sets the dotted underline triples.
- setDottedUnderLineTriples(Set<Triple>) - Method in class edu.cmu.tetrad.graph.Underlines
-
Setter for the field
dottedUnderLineTriples
. - setDouble(int, int, double) - Method in class edu.cmu.tetrad.data.BoxDataSet
-
Sets the value at the given (row, column) to the given double value, assuming the variable for the column is continuous.
- setDouble(int, int, double) - Method in interface edu.cmu.tetrad.data.DataSet
-
Sets the value at the given (row, column) to the given double value, assuming the variable for the column is continuous.
- setDouble(int, int, double) - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
Sets the value at the given (row, column) to the given double value, assuming the variable for the column is continuous.
- setDoubleValue(int, int, double) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.BasicMatrix
-
Assigns double value x in matrix element (r, c).
- setDoubleValue(int, int, double) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.LTMatrix
-
Assigns double value x in matrix element (r, c).
- setDoubleValue(int, int, double) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.LTMatrixF
-
Assigns double value x in matrix element (r, c).
- setDoubleValue(int, int, double) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.Matrix
-
Assigns double value x in matrix element (r, c).
- setDoubleValue(int, int, double) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.MatrixF
-
Assigns double value x in matrix element (r, c).
- setEdge(int, int, double) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.biolingua.Digraph
-
Sets a value of edge between nodes i and j
- setEdge(int, int, double) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.BasicGraph
-
Sets a value of edge between nodes i and j
- setEdgeChangeTol(int) - Method in class edu.pitt.csb.mgm.ProximalGradient
-
Positive edge change tolerance is the number of iterations with 0 edge changes needed to converge.
- setEdgeCoef(Node, Node, double) - Method in interface edu.cmu.tetrad.sem.ISemIm
-
setEdgeCoef.
- setEdgeCoef(Node, Node, double) - Method in class edu.cmu.tetrad.sem.SemIm
-
Sets the coefficient value for the edge between two nodes in the graph.
- setEdgeCoefficient(Node, Node, double) - Method in class edu.cmu.tetrad.sem.StandardizedSemIm
-
Sets the coefficient for the a->b edge to the given coefficient, if within range.
- setEdgeType(EdgeTypeProbability.EdgeType) - Method in class edu.cmu.tetrad.graph.EdgeTypeProbability
-
Setter for the field
edgeType
. - setEffectiveSampleSize(int) - Method in interface edu.cmu.tetrad.search.EffectiveSampleSizeSettable
-
Sets the sample size if the sample size of the data or covariance matrix is not the sample size that should be used by the class.
- setEffectiveSampleSize(int) - Method in class edu.cmu.tetrad.search.MarkovCheck
- setEffectiveSampleSize(int) - Method in class edu.cmu.tetrad.search.test.IndTestChiSquare
- setEffectiveSampleSize(int) - Method in class edu.cmu.tetrad.search.test.IndTestFisherZ
-
Sets the sample size to use for the independence test, which may be different from the sample size of the data set or covariance matrix.
- setEffectiveSampleSize(int) - Method in class edu.cmu.tetrad.search.test.IndTestGSquare
-
Sets the sample size if the sample size of the data or covariance matrix is not the sample size that the test should use.
- setEffects(LinkedList<Double>) - Method in class edu.cmu.tetrad.search.Ida.NodeEffects
-
Sets the effects.
- setElapsed(long) - Method in class edu.cmu.tetrad.study.performance.ComparisonResult
-
Setter for the field
elapsed
. - setEmpirical(boolean) - Method in class edu.cmu.tetrad.search.FaskOrig
-
Sets whether the empirical option is selected.
- setEndpoint(Graph, Node, Node, Endpoint) - Method in class edu.cmu.tetrad.search.utils.DefaultSetEndpointStrategy
-
Sets the endpoint of a graph given the two nodes and the desired endpoint.
- setEndpoint(Graph, Node, Node, Endpoint) - Method in interface edu.cmu.tetrad.search.utils.SetEndpointStrategy
-
Sets the endpoint of a graph given the two nodes and the desired endpoint.
- setEndpoint(Graph, Node, Node, Endpoint) - Method in class edu.cmu.tetrad.search.utils.SvarSetEndpointStrategy
-
Sets the endpoint of a graph given the two nodes and the desired endpoint.
- setEndpoint(Node, Node, Endpoint) - Method in class edu.cmu.tetrad.graph.Dag
-
Sets the endpoint of a directed edge between two nodes in a graph.
- setEndpoint(Node, Node, Endpoint) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
Sets the endpoint type at the 'to' end of the edge from 'from' to 'to' to the given endpoint.
- setEndpoint(Node, Node, Endpoint) - Method in interface edu.cmu.tetrad.graph.Graph
-
Sets the endpoint type at the 'to' end of the edge from 'from' to 'to' to the given endpoint.
- setEndpoint(Node, Node, Endpoint) - Method in class edu.cmu.tetrad.graph.LagGraph
-
Sets the endpoint type at the 'to' end of the edge from 'from' to 'to' to the given endpoint.
- setEndpoint(Node, Node, Endpoint) - Method in class edu.cmu.tetrad.graph.SemGraph
-
Sets the endpoint type at the 'to' end of the edge from 'from' to 'to' to the given endpoint.
- setEndpoint(Node, Node, Endpoint) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Sets the endpoint of an edge between two nodes in the graph.
- setEndpoint1(Endpoint) - Method in class edu.cmu.tetrad.graph.Edge
-
Setter for the field
endpoint1
. - setEndpoint2(Endpoint) - Method in class edu.cmu.tetrad.graph.Edge
-
Setter for the field
endpoint2
. - setEndpointStrategy(SetEndpointStrategy) - Method in class edu.cmu.tetrad.search.utils.FciOrient
-
Sets the endpoint strategy for this object.
- SetEndpointStrategy - Interface in edu.cmu.tetrad.search.utils
-
The SetEndpointStrategy interface provides a strategy for setting the endpoint of an edge in a graph.
- setEnsureMarkov(boolean) - Method in class edu.cmu.tetrad.search.LvLite
-
Sets the value indicating whether the process should ensure Markov property.
- setEnsureMarkov(boolean) - Method in class edu.cmu.tetrad.search.utils.EnsureMarkov
-
Sets whether to ensure Markov property.
- setEnsureMarkovHelper(EnsureMarkov) - Method in class edu.cmu.tetrad.search.utils.R0R4StrategyTestBased
-
Sets the EnsureMarkov object used by the R0R4StrategyTestBased.
- setEpsilon(double) - Method in class edu.cmu.tetrad.search.Lofs
-
Sets the epsilon value.
- setEpsilon(double) - Method in class edu.cmu.tetrad.search.MimbuildTrek
-
Sets the parameter convergence threshold.
- setErrCovar(Node, double) - Method in class edu.cmu.tetrad.sem.SemIm
-
Setter for the field
errCovar
. - setErrCovar(Node, Node, double) - Method in class edu.cmu.tetrad.sem.SemIm
-
Setter for the field
errCovar
. - setErrorCovariance(Node, Node, double) - Method in class edu.cmu.tetrad.sem.StandardizedSemIm
-
Sets the covariance for the a<->b edge to the given covariance, if within range.
- setErrorDistribution(int, Distribution) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BooleanGlassFunction
-
Sets the error distribution for the
factor
'th factor. - setErrorDistribution(int, Distribution) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.LinearFunction
-
Method setIntenalNoiseModel
- setErrorDistribution(int, Distribution) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.PolynomialFunction
-
Method setIntenalNoiseModel
- setErrorsNormal(boolean) - Method in class edu.cmu.tetrad.sem.LargeScaleSimulation
-
Setter for the field
errorsNormal
. - setErrorsTemplate(String) - Method in class edu.cmu.tetrad.sem.GeneralizedSemPm
-
Sets the error template for the software.
- setErrVar(Node, double) - Method in interface edu.cmu.tetrad.sem.ISemIm
-
setErrVar.
- setErrVar(Node, double) - Method in class edu.cmu.tetrad.sem.SemIm
-
Sets the error variance value for a specific node in the model's structural equation.
- setEstimated(boolean) - Method in class edu.cmu.tetrad.sem.SemIm
-
Setter for the field
estimated
. - setEstimator(EmBayesProperties.Estimator) - Method in class edu.cmu.tetrad.bayes.EmBayesProperties
-
Setter for the field
estimator
. - setEventActive(String, boolean) - Method in class edu.cmu.tetrad.util.DefaultTetradLoggerConfig
-
Sets whether the event associated with the given id is active or not.
- setEventActive(String, boolean) - Method in class edu.cmu.tetrad.util.TetradLogger.EmptyConfig
-
setEventActive.
- setEventActive(String, boolean) - Method in interface edu.cmu.tetrad.util.TetradLoggerConfig
-
Sets whether the event associated with the given id is active or not.
- setEvidence(int, int) - Method in class edu.cmu.tetrad.bayes.JunctionTreeAlgorithm
-
setEvidence.
- setEvidence(Evidence) - Method in class edu.cmu.tetrad.bayes.ApproximateUpdater
-
Sets new evidence for the updater.
- setEvidence(Evidence) - Method in interface edu.cmu.tetrad.bayes.BayesUpdater
-
Sets new evidence for the updater.
- setEvidence(Evidence) - Method in class edu.cmu.tetrad.bayes.CptInvariantUpdater
-
Sets new evidence for the updater.
- setEvidence(Evidence) - Method in class edu.cmu.tetrad.bayes.Identifiability
-
Sets new evidence for the updater.
- setEvidence(Evidence) - Method in class edu.cmu.tetrad.bayes.JunctionTreeUpdater
-
Sets new evidence for the updater.
- setEvidence(Evidence) - Method in interface edu.cmu.tetrad.bayes.ManipulatingBayesUpdater
-
Sets new evidence for the updater.
- setEvidence(Evidence) - Method in class edu.cmu.tetrad.bayes.RowSummingExactUpdater
-
Sets new evidence for the updater.
- setEvidence(SemEvidence) - Method in class edu.cmu.tetrad.sem.SemUpdater
-
Sets new evidence for the updater.
- setExternalGraph(Algorithm) - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.Fask
-
Sets the external graph to be used by the algorithm.
- setExternalGraph(Algorithm) - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.FaskOrig
-
Sets the external graph to be used by the algorithm.
- setExternalGraph(Algorithm) - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.Eb
-
Sets the external graph to be used by the algorithm.
- setExternalGraph(Algorithm) - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.FaskPw
-
Sets the external graph to be used by the algorithm.
- setExternalGraph(Algorithm) - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.R1
-
Sets the external graph for the algorithm.
- setExternalGraph(Algorithm) - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.R2
-
Sets the external graph for the algorithm.
- setExternalGraph(Algorithm) - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.R3
-
Sets the external graph to be used by the algorithm.
- setExternalGraph(Algorithm) - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.Rskew
-
Sets the external graph for this algorithm.
- setExternalGraph(Algorithm) - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.RskewE
-
Sets the external graph for the algorithm.
- setExternalGraph(Algorithm) - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.Skew
-
Sets the external graph to be used by the algorithm.
- setExternalGraph(Algorithm) - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.SkewE
-
Sets the external graph to be used by the algorithm.
- setExternalGraph(Algorithm) - Method in class edu.cmu.tetrad.algcomparison.algorithm.pairwise.Tanh
-
Sets the external graph for the algorithm.
- setExternalGraph(Algorithm) - Method in interface edu.cmu.tetrad.algcomparison.utils.TakesExternalGraph
-
setExternalGraph.
- setExternalGraph(Graph) - Method in class edu.cmu.tetrad.search.Fasd
-
Sets the external graph.
- setExternalGraph(Graph) - Method in class edu.cmu.tetrad.search.Fask
-
Sets the initial graph for the FaskOrig class.
- setExternalGraph(Graph) - Method in class edu.cmu.tetrad.search.FaskOrig
-
Sets the external graph to use.
- setExternalGraph(Graph) - Method in class edu.cmu.tetrad.search.SvarFas
-
Sets an external graph.
- setExternalGraph(Graph) - Method in class edu.cmu.tetrad.search.SvarFges
-
Sets the initial graph.
- setExternalGraph(Graph) - Method in class edu.cmu.tetrad.search.utils.FgesOrienter
-
Sets the initial graph.
- setExternalGraph(Graph) - Method in class edu.cmu.tetrad.search.work_in_progress.VcFas
-
Setter for the field
externalGraph
. - setExtraEdgeRemovalStyle(LvLite.ExtraEdgeRemovalStyle) - Method in class edu.cmu.tetrad.search.LvLite
-
Sets the style for removing extra edges.
- setExtraEdgeThreshold(double) - Method in class edu.cmu.tetrad.search.Fask
-
` Sets the extra-edge threshold for the FaskOrig class.
- setFactor(double) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.AbstractNbComponent
-
Sets the factor.
- setFactor(String) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.LaggedFactor
-
Sets the name of the lagged factor
- setFacts() - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpc
-
setFacts.
- setFacts(IndependenceFacts) - Method in class edu.cmu.tetrad.search.work_in_progress.VcPc
-
Setter for the field
facts
. - setFacts(IndependenceFacts) - Method in class edu.cmu.tetrad.search.work_in_progress.VcPcFast
-
Setter for the field
facts
. - setFaithfulnessAssumed(boolean) - Method in class edu.cmu.tetrad.search.Fges
-
Sets whether one-edge faithfulness should be assumed.
- setFaithfulnessAssumed(boolean) - Method in class edu.cmu.tetrad.search.FgesMb
-
Sets whether one-edge faithfulness should be assumed.
- setFaithfulnessAssumed(boolean) - Method in class edu.cmu.tetrad.search.GFci
-
Sets whether one-edge faithfulness is assumed.
- setFaithfulnessAssumed(boolean) - Method in class edu.cmu.tetrad.search.SvarFges
-
Set to true if it is assumed that all path pairs with one length 1 path do not cancel.
- setFaithfulnessAssumed(boolean) - Method in class edu.cmu.tetrad.search.utils.FgesOrienter
-
Set to true if it is assumed that all path pairs with one length 1 path do not cancelAll.
- setFaithfulnessAssumed(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.IGFci
-
Sets whether faithfulness is assumed in the IGFci algorithm.
- setFaithfulnessAssumed(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.ISFges
-
Sets the faithfulness assumption status for the current instance.
- setFasType(PcCommon.FasType) - Method in class edu.cmu.tetrad.search.utils.PcCommon
-
Setter for the field
fasType
. - setFdr(boolean) - Method in class edu.cmu.tetrad.search.Pcd
-
Sets whether this test will run with False Discovery Rate tests.
- setFdr(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestFisherZPercentIndependent
-
Sets the value of the fdr field.
- setFileLoggingEnabled(boolean) - Method in class edu.cmu.tetrad.util.TetradLogger
-
Sets whether "file logging" is enabled or not; that is whether calls to
setNextOutputStream
will be respected. - setFilename(String) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.StoredLagGraphParams
-
Sets the stored file.
- setFilenameOut(String) - Method in class edu.cmu.tetrad.simulation.HsimAutoC
-
Setter for the field
filenameOut
. - setFilenameOut(String) - Method in class edu.cmu.tetrad.simulation.HsimAutoRun
-
Setter for the field
filenameOut
. - setFilenameOut(String) - Method in class edu.cmu.tetrad.simulation.HsimRepeatAC
-
Setter for the field
filenameOut
. - setFilenameOut(String) - Method in class edu.cmu.tetrad.simulation.HsimRepeatAutoRun
-
Setter for the field
filenameOut
. - setFindMb(boolean) - Method in class edu.cmu.tetrad.search.PcMb
-
Setter for the field
findMb
. - setFindSmallestSubset(boolean) - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Sets the flag indicating whether a smallest subset of each conditioning set yielding independence should be reported.
- setFirstStepStored(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.MeasurementSimulator
-
Sets the index of the first step to actually be stored out.
- setFirstStepStored(int) - Method in class edu.cmu.tetrad.study.gene.tetradapp.model.MeasurementSimulatorParams
-
setFirstStepStored.
- setFixed(boolean) - Method in class edu.cmu.tetrad.sem.Parameter
-
Sets whether this parameter should be held fixed during estimation.
- setFixedParamValue(Parameter, double) - Method in interface edu.cmu.tetrad.sem.ISemIm
-
setFixedParamValue.
- setFixedParamValue(Parameter, double) - Method in class edu.cmu.tetrad.sem.SemIm
-
Sets the fixed value for a specified parameter in the model.
- setFlatPrior(boolean) - Method in class edu.cmu.tetrad.sem.SemEstimatorGibbsParams
-
Setter for the field
flatPrior
. - setForbidden(String, String) - Method in class edu.cmu.tetrad.data.Knowledge
-
Marks the edge var1 --> var2 as forbid.
- setForwardSearch(boolean) - Method in class edu.cmu.tetrad.search.utils.ShiftSearch
-
Setter for the field
forwardSearch
. - setFreeParamValues(double[]) - Method in interface edu.cmu.tetrad.sem.ISemIm
-
setFreeParamValues.
- setFreeParamValues(double[]) - Method in class edu.cmu.tetrad.sem.SemIm
-
Sets the values of the free freeParameters (in the order in which they appear in getFreeParameters()) to the values contained in the given array.
- setFunction(int) - Method in class edu.cmu.tetrad.search.FastIca
-
Sets the function type to be used, either LOGCOSH or EXP.
- setGamma(double) - Method in class edu.cmu.tetrad.search.score.EbicScore
-
Sets the gamma parameter for EBIC.
- setGammaHigh(double) - Method in class edu.cmu.tetrad.algcomparison.simulation.LinearSineSimulation
-
Setter for the field
gammaHigh
. - setGammaLow(double) - Method in class edu.cmu.tetrad.algcomparison.simulation.LinearSineSimulation
-
Setter for the field
gammaLow
. - setGesDepth(int) - Method in class edu.cmu.tetrad.search.work_in_progress.DMSearch
-
Setter for the field
gesDepth
. - setGraph(Dag) - Method in class edu.cmu.tetrad.graph.LagGraph
-
Setter for the field
graph
. - setGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.independence.MSeparationTest
-
Setter for the field
graph
. - setGraph(Graph) - Method in interface edu.cmu.tetrad.algcomparison.independence.TakesGraph
-
setGraph.
- setGraph(Graph) - Method in class edu.cmu.tetrad.algcomparison.score.MSeparationScore
-
Setter for the field
graph
. - setGraph(Graph) - Method in class edu.cmu.tetrad.bayes.EmBayesProperties
-
Setter for the field
graph
. - setGraph(Graph) - Method in class edu.cmu.tetrad.search.utils.DagSepsets
- setGraph(Graph) - Method in interface edu.cmu.tetrad.search.utils.SepsetProducer
-
Sets the graph for the SepsetProducer object.
- setGraph(Graph) - Method in class edu.cmu.tetrad.search.utils.SepsetsGreedy
-
Sets the graph for the Sepsets object.
- setGraph(Graph) - Method in class edu.cmu.tetrad.search.utils.SepsetsMaxP
-
Sets the graph for the SepsetsMaxP object.
- setGraph(Graph) - Method in class edu.cmu.tetrad.search.utils.SepsetsMinP
-
Sets the graph for the Sepsets object.
- setGraph(Graph) - Method in class edu.cmu.tetrad.search.utils.SepsetsPossibleMsep
- setGraph(Graph) - Method in class edu.cmu.tetrad.search.utils.SepsetsSet
- setGraph(Graph) - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpc
-
Setter for the field
graph
. - setGraph(Graph) - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpcFast
-
Setter for the field
graph
. - setGraph(Graph) - Method in class edu.cmu.tetrad.search.work_in_progress.VcPc
-
Setter for the field
graph
. - setGraph(Graph) - Method in class edu.cmu.tetrad.search.work_in_progress.VcPcAlt
-
Setter for the field
graph
. - setGraph(Graph) - Method in class edu.cmu.tetrad.search.work_in_progress.VcPcFast
-
Setter for the field
graph
. - setGraphFile(String) - Method in class edu.cmu.tetrad.study.performance.ComparisonParameters
-
Setter for the field
graphFile
. - setGraphName(String) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.BasicGraph
-
Sets the name of the graph
- setGraphNum(int) - Method in class edu.cmu.tetrad.study.performance.ComparisonParameters
-
Setter for the field
graphNum
. - setGuaranteeCpdag(boolean) - Method in class edu.cmu.tetrad.search.Cpc
-
Sets to true just in case the algorithm should guarantee that the output is consistent with a CPDAG, i.e., no bidirected edges and no actual or implied cycles.
- setGuaranteeCpdag(boolean) - Method in class edu.cmu.tetrad.search.Pc
-
Sets whether cycles should be checked.
- setGuaranteeCpdag(boolean) - Method in class edu.cmu.tetrad.search.Pcd
-
Sets whether the algorithm should prevent cycles during the search.
- setGuaranteeCpdag(boolean) - Method in class edu.cmu.tetrad.search.utils.PcCommon
-
Sets to true just in case edges will not be added if they create cycles.
- setGuaranteeCpdag(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.Kpc
-
Sets the flag to determine whether to guarantee a CPDAG (Consensus Partially Directed Acyclic Graph) result in the search.
- setGuaranteeIid(boolean) - Method in class edu.cmu.tetrad.sem.GeneralizedSemIm
-
Setter for the field
guaranteeIid
. - setGuaranteePag(boolean) - Method in class edu.cmu.tetrad.search.BFci
-
Sets whether to guarantee the output is a PAG by repairing a faulty PAG.
- setGuaranteePag(boolean) - Method in class edu.cmu.tetrad.search.Fci
-
Sets whether to guarantee the output is a PAG by repairing a faulty PAG.
- setGuaranteePag(boolean) - Method in class edu.cmu.tetrad.search.FciMax
-
Sets whether to guarantee a PAG.
- setGuaranteePag(boolean) - Method in class edu.cmu.tetrad.search.GFci
-
Sets the flag indicating whether to guarantee the output is a legal PAG.
- setGuaranteePag(boolean) - Method in class edu.cmu.tetrad.search.GraspFci
-
Sets the flag for whether to guarantee the output is a legal PAG.
- setGuaranteePag(boolean) - Method in class edu.cmu.tetrad.search.LvLite
-
Sets whether to guarantee a PAG output by repairing a faulty PAG.
- setGuaranteePag(boolean) - Method in class edu.cmu.tetrad.search.SpFci
-
Sets whether the search should guarantee the output is a legal PAG.
- setGuaranteePag(boolean) - Method in class edu.cmu.tetrad.search.SvarFci
-
Sets whether a guaranteed partial ancestral graph (PAG) should be built during the search.
- setHighlighted(boolean) - Method in class edu.cmu.tetrad.graph.Edge
-
Setter for the field
highlighted
. - setHighPValueAlpha(double) - Method in interface edu.cmu.tetrad.search.work_in_progress.Hbsms
-
setHighPValueAlpha.
- setHighPValueAlpha(double) - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsBeam
-
setHighPValueAlpha.
- setHighPValueAlpha(double) - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsGes
-
setHighPValueAlpha.
- setHistory(GeneHistory) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.MeasurementSimulator
-
Sets the history.
- setHistory(GeneHistory) - Method in class edu.cmu.tetrad.study.gene.tetradapp.model.MeasurementSimulatorParams
-
setHistory.
- setIa(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.Glasso
-
Setter for the field
ia
. - setIncludeDishAndChipColumns(boolean) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.MeasurementSimulator
-
setIncludeDishAndChipColumns.
- setIncludeDishAndChipVariables(boolean) - Method in class edu.cmu.tetrad.study.gene.tetradapp.model.MeasurementSimulatorParams
-
Setter for the field
includeDishAndChipVariables
. - setIncludeNegativeCoefs(boolean) - Method in class edu.cmu.tetrad.sem.LargeScaleSimulation
-
Setter for the field
includeNegativeCoefs
. - setIncludePositiveCoefs(boolean) - Method in class edu.cmu.tetrad.sem.LargeScaleSimulation
-
Setter for the field
includePositiveCoefs
. - setIncompleteCholesky(double) - Method in class edu.cmu.tetrad.search.test.IndTestHsic
-
Sets the precision for the Incomplete Choleksy factorization method for approximating Gram matrices.
- setIndegree(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.LagGraphParams
-
Setter for the field
indegree
. - setIndegreeType(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.LagGraphParams
-
Setter for the field
indegreeType
. - setIndependenceTest(IndependenceTest) - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Sets the independence test to be used for determining independence between variables.
- setIndependenceTest(IndependenceTest) - Method in class edu.cmu.tetrad.search.work_in_progress.IGFci
-
Sets the independence test for the IGFci algorithm.
- setIndependenceTest(ComparisonParameters.IndependenceTestType) - Method in class edu.cmu.tetrad.study.performance.ComparisonParameters
-
Setter for the field
independenceTest
. - setIndependenceWrapper(IndependenceWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.FaskOrig
-
Sets the independence wrapper for the object.
- setIndependenceWrapper(IndependenceWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FaskConcatenated
-
Sets the independence wrapper.
- setIndependenceWrapper(IndependenceWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FaskVote
-
Sets the independence wrapper.
- setIndependenceWrapper(IndependenceWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FciIod
-
Sets the independence wrapper.
- setIndependenceWrapper(IndependenceWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Cpc
-
Sets the independence wrapper for the algorithm.
- setIndependenceWrapper(IndependenceWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Cstar
-
Sets the independence wrapper.
- setIndependenceWrapper(IndependenceWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Fas
-
Sets the independence wrapper.
- setIndependenceWrapper(IndependenceWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Grasp
-
Sets the independence wrapper.
- setIndependenceWrapper(IndependenceWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Pc
-
Sets the independence wrapper.
- setIndependenceWrapper(IndependenceWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.PcMb
-
Sets the independence wrapper.
- setIndependenceWrapper(IndependenceWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Bfci
-
Sets the IndependenceWrapper object for this algorithm.
- setIndependenceWrapper(IndependenceWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Ccd
-
Updates the independence wrapper for this algorithm.
- setIndependenceWrapper(IndependenceWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Cfci
-
Sets the independence wrapper for the algorithm.
- setIndependenceWrapper(IndependenceWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Fci
-
Sets the IndependenceWrapper object associated with this method.
- setIndependenceWrapper(IndependenceWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.FciMax
-
Sets the independence wrapper for the algorithm.
- setIndependenceWrapper(IndependenceWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Gfci
-
Sets the independence wrapper for the algorithm.
- setIndependenceWrapper(IndependenceWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.GraspFci
-
Sets the independence wrapper.
- setIndependenceWrapper(IndependenceWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.LvLite
- setIndependenceWrapper(IndependenceWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Rfci
-
Sets the independence wrapper.
- setIndependenceWrapper(IndependenceWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.SpFci
-
Sets the IndependenceWrapper object for the algorithm.
- setIndependenceWrapper(IndependenceWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.SvarFci
-
Sets the independence wrapper for the algorithm.
- setIndependenceWrapper(IndependenceWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.SvarGfci
-
Sets the independence wrapper for the algorithm.
- setIndependenceWrapper(IndependenceWrapper) - Method in interface edu.cmu.tetrad.algcomparison.utils.TakesIndependenceWrapper
-
Sets the independence wrapper.
- setIndices(int[]) - Method in class edu.cmu.tetrad.util.IndexedMatrix
-
Sets the index array.
- setIndTestWrapper(IndependenceWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FaskConcatenated
-
Sets a test wrapper if not null.
- setIndTestWrapper(IndependenceWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FaskLofsConcatenated
-
Sets a test wrapper if not null.
- setIndTestWrapper(IndependenceWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FaskVote
-
Sets a test wrapper if not null.
- setIndTestWrapper(IndependenceWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FciIod
-
Sets a test wrapper if not null.
- setIndTestWrapper(IndependenceWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FgesConcatenated
-
Sets a test wrapper if not null.
- setIndTestWrapper(IndependenceWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.Images
-
Sets the IndependenceWrapper for this algorithm.
- setIndTestWrapper(IndependenceWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.ImagesBoss
-
Sets a test wrapper if not null.
- setIndTestWrapper(IndependenceWrapper) - Method in interface edu.cmu.tetrad.algcomparison.algorithm.MultiDataSetAlgorithm
-
Sets a test wrapper if not null.
- setInhibitExcite(int[]) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.AbstractNbComponent
-
Sets the inhibit/excite.
- setInitialAllowedColliders(HashSet<Triple>) - Method in class edu.cmu.tetrad.search.utils.FciOrient
-
Sets the initial allowed colliders for the strategy.
- setInitialAllowedColliders(HashSet<Triple>) - Method in interface edu.cmu.tetrad.search.utils.R0R4Strategy
-
Sets the initial allowed colliders for the current strategy.
- setInitialAllowedColliders(HashSet<Triple>) - Method in class edu.cmu.tetrad.search.utils.R0R4StrategyTestBased
-
Sets the initial set of allowed colliders for the FciOrientDataExaminationStrategy.
- setInitialGraph(Graph) - Method in class edu.cmu.tetrad.search.Fges
-
Sets the initial graph for the application.
- setInitialGraph(Graph) - Method in class edu.cmu.tetrad.search.FgesMb
-
Sets the initial graph for the software.
- setInitialGraph(Graph) - Method in class edu.cmu.tetrad.search.work_in_progress.ISFges
-
Sets the initial graph, ensuring the graph's nodes match the expected variables.
- setInitializedRandomly(boolean) - Method in class edu.cmu.tetrad.sem.Parameter
-
Set to true iff this parameter should be initialized randomly by drawing an initial value from its preset random distribution.
- setInitSync(boolean) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.GeneHistory
-
Sets whether initialization should be synchronized.
- setInitSync(boolean) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.MeasurementSimulator
-
Sets whether the expression levels of cells should be synchronized on initialization.
- setInitSync(boolean) - Method in class edu.cmu.tetrad.study.gene.tetradapp.model.MeasurementSimulatorParams
-
setInitSync.
- setInputs(int[]) - Method in class edu.cmu.tetrad.search.work_in_progress.DMSearch
-
Setter for the field
inputs
. - setInt(int, int, int) - Method in class edu.cmu.tetrad.data.BoxDataSet
-
Sets the value at the given (row, column) to the given int value, assuming the variable for the column is discrete.
- setInt(int, int, int) - Method in interface edu.cmu.tetrad.data.DataSet
-
Sets the value at the given (row, column) to the given int value, assuming the variable for the column is discrete.
- setInt(int, int, int) - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
Sets the value at the given (row, column) to the given int value, assuming the variable for the column is discrete.
- setIntercept(int, double) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.LinearFunction
-
Sets the intercept for the given factor.
- setIntercept(Node, double) - Method in interface edu.cmu.tetrad.sem.ISemIm
-
setIntercept.
- setIntercept(Node, double) - Method in class edu.cmu.tetrad.sem.SemIm
-
Sets the intercept for a specified node in the SEM model.
- setIntercept(String, double) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.LinearFunction
-
Sets the intercept for the given factor.
- setInterceptHigh(double) - Method in class edu.cmu.tetrad.algcomparison.simulation.LinearSineSimulation
-
Setter for the field
interceptHigh
. - setInterceptLow(double) - Method in class edu.cmu.tetrad.algcomparison.simulation.LinearSineSimulation
-
Setter for the field
interceptLow
. - setInterval(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.MeasurementSimulator
-
Returns the interval (int time steps) between time steps stored out.
- setInterval(int) - Method in class edu.cmu.tetrad.study.gene.tetradapp.model.MeasurementSimulatorParams
-
setInterval.
- setIpen(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.Glasso
-
Setter for the field
ipen
. - setIs(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.Glasso
-
Setter for the field
is
. - setItr(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.Glasso
-
Setter for the field
itr
. - setJustification(int) - Method in class edu.cmu.tetrad.util.TextTable
-
Sets the justification, either LEFT_JUSTIFIED or RIGHT_JUSTIFIED.
- setKAddition(double) - Method in class edu.cmu.tetrad.search.work_in_progress.ISBDeuScore
-
Sets the value of k_addition.
- setKDeletion(double) - Method in class edu.cmu.tetrad.search.work_in_progress.ISBDeuScore
-
Sets the value of k_deletion.
- setKernelType(Kci.KernelType) - Method in class edu.cmu.tetrad.search.test.Kci
-
Sets the type of kernel to be used in computations.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.algcomparison.algorithm.cluster.Fofc
-
Sets the knowledge associated with this object.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.algcomparison.algorithm.cluster.Ftfc
-
Sets the knowledge associated with this algorithm.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.Fask
-
Sets the knowledge associated with this object.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.FaskOrig
-
Sets the knowledge associated with this object.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FaskConcatenated
-
Sets a knowledge object.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FaskLofsConcatenated
-
Sets a knowledge object.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FaskVote
-
Sets a knowledge object.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FasLofs
-
Sets a knowledge object.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FciIod
-
Sets a knowledge object.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FgesConcatenated
-
Sets a knowledge object.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.Images
-
Sets the knowledge object for this instance.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.ImagesBoss
-
Sets a knowledge object.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Boss
-
Sets a knowledge object.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.BossLingam
-
Sets a knowledge object.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Cpc
-
Sets the knowledge associated with this object.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Fas
-
Sets a knowledge object.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Fges
-
Sets a knowledge object.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.FgesMb
-
Sets a knowledge object.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.FgesMeasurement
-
Sets a knowledge object.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Grasp
-
Sets a knowledge object.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Pc
-
Sets a knowledge object.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Pcd
-
Sets a knowledge object.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.PcMb
-
Sets a knowledge object.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.SingleGraphAlg
-
Sets a knowledge object.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Sp
-
Sets a knowledge object.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Bfci
-
Sets the knowledge associated with the algorithm.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.BossDumb
-
Sets the knowledge object associated with this method.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.BossPag
-
Sets the knowledge object associated with this method.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Cfci
-
Sets the knowledge object for the algorithm.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Fci
-
Sets the knowledge object for this method.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.FciMax
-
Sets the knowledge associated with the algorithm.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Gfci
-
Sets the Knowledge object associated with this instance.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.GraspFci
-
Sets the knowledge object associated with this method.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.LvLite
-
Sets the knowledge object associated with this method.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.PagSampleRfci
-
Sets the knowledge associated with this method.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Rfci
-
Sets a knowledge object.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.RfciBsc
-
Sets the knowledge object.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.SpFci
-
Sets the knowledge object associated with this algorithm.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.SvarFci
-
Sets the knowledge object associated with this algorithm.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.SvarGfci
-
Sets the knowledge associated with this object.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.algcomparison.Comparison
-
Sets the knowledge for the current instance.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.algcomparison.simulation.TimeSeriesSemSimulation
-
Sets a knowledge object.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.algcomparison.statistic.KnowledgeSatisfied
- setKnowledge(Knowledge) - Method in interface edu.cmu.tetrad.algcomparison.utils.HasKnowledge
-
Sets a knowledge object.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.data.BoxDataSet
-
Sets knowledge to a copy of the given object.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.data.CorrelationMatrixOnTheFly
-
Sets the knowledge associated with the ICovarianceMatrix.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.data.CovarianceMatrix
-
Sets the knowledge associated with the ICovarianceMatrix.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.data.CovarianceMatrixOnTheFly
-
Sets the knowledge associated with the ICovarianceMatrix.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.data.DataModelList
-
Sets knowledge to a copy of the given object.
- setKnowledge(Knowledge) - Method in interface edu.cmu.tetrad.data.ICovarianceMatrix
-
Sets the knowledge associated with the ICovarianceMatrix.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.data.IndependenceFacts
-
Sets knowledge to a copy of the given object.
- setKnowledge(Knowledge) - Method in interface edu.cmu.tetrad.data.KnowledgeTransferable
-
Sets knowledge to a copy of the given object.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
Sets knowledge to a copy of the given object.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.data.TimeSeriesData
-
Sets knowledge to a copy of the given object.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.BFci
-
Sets the knowledge to be used for the search.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.Boss
-
Sets the knowledge to be used for the search.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.Cfci
-
Set the knowledge used in the search.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.Cpc
-
Sets the knowledge specification used in the search.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.Fas
-
Sets the knowledge for this object.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.Fasd
-
Sets the knowledge for this object.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.Fask
-
Sets the knowledge object for the current instance.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.FaskOrig
-
Setter for the field
knowledge
. - setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.Fci
-
Sets background knowledge for the search.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.FciMax
-
Sets background knowledge for the search.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.Fges
-
Sets the background knowledge.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.FgesMb
-
Sets the background knowledge.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.GFci
-
Sets the knowledge to use in search.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.Grasp
-
Sets the knowledge used in the search.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.GraspFci
-
Sets the knowledge used in search.
- setKnowledge(Knowledge) - Method in interface edu.cmu.tetrad.search.IFas
-
Sets the knowledge for the search.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.Lofs
-
Sets the knowledge for the object.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.LvDumb
-
Sets the knowledge used in search.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.LvLite
-
Sets the knowledge used in search.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Sets the knowledge object for the Markov checker.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.Mimbuild
-
Sets the knowledge to be used in the search.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.MimbuildTrek
-
The knowledge to use in the search.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.Pc
-
Sets the knowledge specification to be used in the search.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.Pcd
-
Sets the knowledge object used by this method.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.PcMb
-
Sets knowledge, to which the algorithm is in fact sensitive.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.PermutationSearch
-
Sets the knowledge to be used for the search.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.Rfci
-
Sets the knowledge used in search.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.Sp
-
Sets the knowledge associated with this object.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.SpFci
-
Sets the knoweldge used in the search.
- setKnowledge(Knowledge) - Method in interface edu.cmu.tetrad.search.SuborderSearch
-
The knowledge being used.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.SvarFas
-
Sets the knowledge for the search.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.SvarFci
-
Sets the knowledge for the search.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.SvarFges
-
Sets the background knowledge.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.SvarGfci
-
Sets the knowledge for the search.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.utils.Bes
-
Sets the knowledge for the search.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.utils.BesPermutation
-
Sets the knowledge that BES will use.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.utils.DagToPag
-
Setter for the field
knowledge
. - setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.utils.FciOrient
-
Sets the knowledge to use for the final orientation.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.utils.FgesOrienter
-
Sets the background knowledge.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.utils.MaxP
-
Sets the knowledge to use for orientation.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.utils.MeekRules
-
Sets the knowledge to be used in the orientation.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.utils.PcCommon
-
Sets the knowledge specification used in the search.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.utils.PossibleMsepFci
-
Setter for the field
knowledge
. - setKnowledge(Knowledge) - Method in interface edu.cmu.tetrad.search.utils.R0R4Strategy
-
Sets the knowledge object to be used by the strategy.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.utils.R0R4StrategyScoreBased
-
Sets the Knowledge object for this instance.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.utils.R0R4StrategyTestBased
-
Sets the knowledge object used by the FciOrientDataExaminationStrategy.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.utils.ShiftSearch
-
Setter for the field
knowledge
. - setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.utils.TeyssierScorer
-
Setter for the field
knowledge
. - setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.utils.TsDagToPag
-
Setter for the field
knowledge
. - setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.work_in_progress.FasDci
-
Setter for the field
knowledge
. - setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.work_in_progress.FasFdr
-
Sets the knowledge for the search.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.work_in_progress.FaskVote
-
Setter for the field
knowledge
. - setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.work_in_progress.FasLofs
-
Setter for the field
knowledge
. - setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.work_in_progress.GraspTol
-
Setter for the field
knowledge
. - setKnowledge(Knowledge) - Method in interface edu.cmu.tetrad.search.work_in_progress.Hbsms
-
setKnowledge.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsBeam
-
setKnowledge.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsGes
-
setKnowledge.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.work_in_progress.IGFci
-
Sets the knowledge for the IGFci algorithm.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.work_in_progress.Ion
-
Sets the knowledge to be used for this search.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.work_in_progress.ISFges
-
Sets the background knowledge.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.work_in_progress.Kpc
-
Sets the knowledge specification to be used in the search.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.work_in_progress.Mmhc
-
Setter for the field
knowledge
. - setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpc
-
Sets the knowledge specification used in the search.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpcFast
-
Sets the knowledge specification used in the search.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.work_in_progress.VcFas
-
Setter for the field
knowledge
. - setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.work_in_progress.VcPc
-
Sets the knowledge specification used in the search.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.work_in_progress.VcPcAlt
-
Sets the knowledge specification used in the search.
- setKnowledge(Knowledge) - Method in class edu.cmu.tetrad.search.work_in_progress.VcPcFast
-
Sets the knowledge specification used in the search.
- setKnowledge(Knowledge) - Method in class edu.pitt.dbmi.algo.bayesian.constraint.search.PagSamplingRfci
-
Set the knowledge.
- setKnowledge(List<Node>, List<Node>) - Method in class edu.cmu.tetrad.search.utils.GrowShrinkTree
-
setKnowledge.
- setKnowledgeGroup(int, KnowledgeGroup) - Method in class edu.cmu.tetrad.data.Knowledge
-
Legacy, do not use.
- setKReorientation(double) - Method in class edu.cmu.tetrad.search.work_in_progress.ISBDeuScore
-
Sets the value of the K-reorientation parameter.
- setLambda(double) - Method in class edu.cmu.tetrad.search.score.GicScores
-
Sets the lambda parameter.
- setLambda(double) - Method in class edu.cmu.tetrad.search.score.PoissonPriorScore
-
Sets the lambda parameter.
- setLambda1(double) - Method in class edu.cmu.tetrad.search.Dagma
-
Sets the value of lambda1.
- setLeftRight(Fask.LeftRight) - Method in class edu.cmu.tetrad.search.Fask
-
Sets the left-right rule used.
- setLeftRight(FaskOrig.LeftRight) - Method in class edu.cmu.tetrad.search.FaskOrig
-
Sets the left-right rule used
- setLevel(OutputStream, Level) - Method in class edu.cmu.tetrad.util.LogUtils
-
Sets the logging level for the given stream.
- setLinearHigh(double) - Method in class edu.cmu.tetrad.algcomparison.simulation.LinearSineSimulation
-
Setter for the field
linearHigh
. - setLinearLow(double) - Method in class edu.cmu.tetrad.algcomparison.simulation.LinearSineSimulation
-
Setter for the field
linearLow
. - setLocation(String, PointXy) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ActiveLagGraph
-
Sets the location.
- setLocation(String, PointXy) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ManualLagGraph
-
Sets the location.
- setLocation(String, PointXy) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BasicLagGraph
-
Sets the location.
- setLocation(String, PointXy) - Method in interface edu.cmu.tetrad.study.gene.tetrad.gene.history.LagGraph
-
Sets the location.
- setLocationMap(DataSet) - Method in class edu.cmu.tetrad.simulation.GdistanceRandom
-
Setter for the field
locationMap
. - setLog(boolean) - Method in class edu.cmu.tetrad.search.utils.FgesOrienter
-
Sets whether log output should be produced.
- setLogging(boolean) - Method in class edu.cmu.tetrad.util.TetradLogger
-
Sets whether the logger is on or not.
- setLoggingDirectory(String) - Method in class edu.cmu.tetrad.util.TetradLogger
-
Sets the logging directory, but first checks whether we can write to it, etc.
- setLoggingFilePrefix(String) - Method in class edu.cmu.tetrad.util.TetradLogger
-
Sets the logging prefix.
- setLongDescription(String) - Method in class edu.cmu.tetrad.util.ParamDescription
-
Setter for the field
longDescription
. - setLowerBound(double) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BooleanGlassFunction
-
Sets the lower bound for expression levels.
- setLowerBound(double) - Method in class edu.pitt.dbmi.algo.bayesian.constraint.search.RfciBsc
-
Sets the lower bound.
- setLowerBoundDouble(double) - Method in class edu.cmu.tetrad.util.ParamDescription
-
Setter for the field
lowerBoundDouble
. - setLowerBoundInt(int) - Method in class edu.cmu.tetrad.util.ParamDescription
-
Setter for the field
lowerBoundInt
. - setLowerBoundLong(long) - Method in class edu.cmu.tetrad.util.ParamDescription
-
Setter for the field
lowerBoundLong
. - setMag(Graph) - Method in class edu.cmu.tetrad.search.work_in_progress.MagCgBicScore
-
Sets the MAG to wrap.
- setMag(Graph) - Method in class edu.cmu.tetrad.search.work_in_progress.MagDgBicScore
-
Sets the MAG to wrap.
- setMag(Graph) - Method in class edu.cmu.tetrad.search.work_in_progress.MagSemBicScore
-
Sets the MAG to wrap.
- setManipulated(int, boolean) - Method in class edu.cmu.tetrad.bayes.Evidence
-
setManipulated.
- setManipulated(int, boolean) - Method in class edu.cmu.tetrad.bayes.Manipulation
-
Setter for the field
manipulated
. - setManipulated(int, boolean) - Method in class edu.cmu.tetrad.sem.SemEvidence
-
setManipulated.
- setManipulated(int, boolean) - Method in class edu.cmu.tetrad.sem.SemManipulation
-
Setter for the field
manipulated
. - setMatrix(Matrix) - Method in class edu.cmu.tetrad.data.CorrelationMatrix
-
Sets the covariance matrix.
- setMatrix(Matrix) - Method in class edu.cmu.tetrad.data.CorrelationMatrixOnTheFly
-
Sets the covariance matrix.
- setMatrix(Matrix) - Method in class edu.cmu.tetrad.data.CovarianceMatrix
-
Sets the covariance matrix.
- setMatrix(Matrix) - Method in class edu.cmu.tetrad.data.CovarianceMatrixOnTheFly
-
Sets the covariance matrix.
- setMatrix(Matrix) - Method in interface edu.cmu.tetrad.data.ICovarianceMatrix
-
Sets the covariance matrix.
- setMaxBlockingPathLength(int) - Method in class edu.cmu.tetrad.search.LvLite
-
Sets the maximum length of any discriminating path.
- setMaxCacheSize(int) - Method in class edu.cmu.tetrad.search.utils.AdTree
-
Sets the maximum size of the cache.
- setMaxDdpPathLength(int) - Method in class edu.cmu.tetrad.search.LvLite
-
Sets the maximum DDP path length.
- setMaxDegree(int) - Method in class edu.cmu.tetrad.graph.RandomGraph.UniformGraphGenerator
-
Sets the maximum degree of any nodes in the graph.
- setMaxDegree(int) - Method in class edu.cmu.tetrad.search.Fges
-
The maximum of parents any nodes can have in the output pattern.
- setMaxDegree(int) - Method in class edu.cmu.tetrad.search.FgesMb
-
The maximum of parents any nodes can have in the output pattern.
- setMaxDegree(int) - Method in class edu.cmu.tetrad.search.GFci
-
Sets the maximum indegree of the output graph.
- setMaxDegree(int) - Method in class edu.cmu.tetrad.search.SpFci
-
Sets the max degree of the search.
- setMaxDegree(int) - Method in class edu.cmu.tetrad.search.work_in_progress.IGFci
-
Sets the maximum degree for the graph.
- setMaxDegree(int) - Method in class edu.cmu.tetrad.search.work_in_progress.ISFges
-
The maximum of parents any nodes can have in an output pattern.
- setMaxDiscriminatingPathLength(int) - Method in class edu.cmu.tetrad.search.BFci
-
Sets the maximum length of any discriminating path.
- setMaxDiscriminatingPathLength(int) - Method in class edu.cmu.tetrad.search.Cfci
-
Sets the maximum length of any discriminating path.
- setMaxDiscriminatingPathLength(int) - Method in class edu.cmu.tetrad.search.Fci
-
Sets the maximum length of any discriminating path.
- setMaxDiscriminatingPathLength(int) - Method in class edu.cmu.tetrad.search.FciMax
-
Sets the maximum length of any discriminating path.
- setMaxDiscriminatingPathLength(int) - Method in class edu.cmu.tetrad.search.GFci
-
Sets the maximum length of any discriminating path.
- setMaxDiscriminatingPathLength(int) - Method in class edu.cmu.tetrad.search.GraspFci
-
Sets the maximum length of any discriminating path.
- setMaxDiscriminatingPathLength(int) - Method in class edu.cmu.tetrad.search.Rfci
-
Sets the maximum length of any discriminating path.
- setMaxDiscriminatingPathLength(int) - Method in class edu.cmu.tetrad.search.SpFci
-
Sets the maximum length of any discriminating path.
- setMaxDiscriminatingPathLength(int) - Method in class edu.cmu.tetrad.search.SvarFci
-
Sets the maximum length of any discriminating path.
- setMaxDiscriminatingPathLength(int) - Method in class edu.cmu.tetrad.search.SvarGfci
-
Sets the maximum length of any discriminating path.
- setMaxDiscriminatingPathLength(int) - Method in class edu.cmu.tetrad.search.utils.FciOrient
-
Sets the maximum length of any discriminating path.
- setMaxDiscriminatingPathLength(int) - Method in class edu.cmu.tetrad.search.utils.MaxP
-
Sets the maximum length of any discriminating path.
- setMaxDiscriminatingPathLength(int) - Method in class edu.cmu.tetrad.search.utils.PcCommon
-
Setter for the field
maxPathLength
. - setMaxDiscriminatingPathLength(int) - Method in class edu.cmu.tetrad.search.utils.TsDagToPag
-
Sets the maximum length of any discriminating path.
- setMaxDiscriminatingPathLength(int) - Method in class edu.pitt.dbmi.algo.bayesian.constraint.search.PagSamplingRfci
-
Sets the maximum length of any discriminating path.
- setMaxEdges(int) - Method in class edu.cmu.tetrad.graph.RandomGraph.UniformGraphGenerator
-
Sets the maximum number of edges in the graph.
- setMaxIndegree(int) - Method in class edu.cmu.tetrad.search.SvarFges
-
The maximum of parents any nodes can have in the output pattern.
- setMaxInDegree(int) - Method in class edu.cmu.tetrad.graph.RandomGraph.UniformGraphGenerator
-
Sets the maximum indegree of any node in the graph.
- setMaxit(int) - Method in class edu.cmu.tetrad.search.work_in_progress.Glasso
-
Setter for the field
maxit
. - setMaxIterations(int) - Method in class edu.cmu.tetrad.cluster.KMeans
-
Sets the maximum number of iterations, or -1 if the algorithm is allowed to run unconstrainted.
- setMaxIterations(int) - Method in class edu.cmu.tetrad.search.FastIca
-
Sets the maximum number of iterations to allow.
- setMaxLag(int) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Setter for the field
maxLag
. - setMaxLagAllowable(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ActiveLagGraph
-
Sets the maximum allowable lag.
- setMaxLagAllowable(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ManualLagGraph
-
Sets the maximum allowable lag.
- setMaxLagAllowable(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BasicLagGraph
-
Sets the maximum allowable lag.
- setMaxLagAllowable(int) - Method in interface edu.cmu.tetrad.study.gene.tetrad.gene.history.LagGraph
-
Sets the maximum allowable lag.
- setMaxLength(int) - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Sets the maximum path length for relevant paths.
- setMaxLength(int) - Method in class edu.cmu.tetrad.search.utils.R0R4StrategyTestBased
-
Sets the maximum length for relevant paths.
- setMaxNumShifts(int) - Method in class edu.cmu.tetrad.search.utils.ShiftSearch
-
Setter for the field
maxNumShifts
. - setMaxOutDegree(int) - Method in class edu.cmu.tetrad.graph.RandomGraph.UniformGraphGenerator
-
Sets the maximum outdegree of any node in the graph.
- setMaxPathLength(int) - Method in class edu.cmu.tetrad.search.work_in_progress.IGFci
-
Sets the maximum length for any path in the graph.
- setMaxReachablePathLength(int) - Method in class edu.cmu.tetrad.search.Cfci
-
Sets the maximum length for any discriminating path.
- setMaxReachablePathLength(int) - Method in class edu.cmu.tetrad.search.utils.PossibleMsepFci
-
Sets the maximum reachable path length for the search algorithm.
- setMaxShift(int) - Method in class edu.cmu.tetrad.search.utils.ShiftSearch
-
Setter for the field
maxShift
. - setMean(Node, double) - Method in interface edu.cmu.tetrad.sem.ISemIm
-
setMean.
- setMean(Node, double) - Method in class edu.cmu.tetrad.sem.SemIm
-
Sets the mean value for a given node in the variableNodes list.
- setMeanHigh(double) - Method in class edu.cmu.tetrad.algcomparison.simulation.ConditionalGaussianSimulation
-
Setter for the field
meanHigh
. - setMeanLow(double) - Method in class edu.cmu.tetrad.algcomparison.simulation.ConditionalGaussianSimulation
-
Setter for the field
meanLow
. - setMeanRange(double, double) - Method in class edu.cmu.tetrad.sem.LargeScaleSimulation
-
setMeanRange.
- setMeanStandardDeviation(Node, double) - Method in class edu.cmu.tetrad.sem.SemIm
-
Sets the mean associated with the given node.
- setMeasuredDataSaved(boolean) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.MeasurementSimulator
-
Sets whether measured data should be saved out for this simulation.
- setMedianBandwidth(DataSet, Node) - Method in class edu.cmu.tetrad.search.utils.KernelGaussian
-
Sets the bandwidth of the kernel to median distance between two points in the given vector
- setMeekPreventCycles(boolean) - Method in class edu.cmu.tetrad.search.PcMb
-
Sets whether cycles should be prevented, using a cycle checker.
- setMeekPreventCycles(boolean) - Method in class edu.cmu.tetrad.search.utils.MeekRules
-
Sets whether cycles should be prevented by cycle checking.
- setMeekPreventCycles(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpc
-
Sets to true just in case edges will not be added if they would create cycles.
- setMeekPreventCycles(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpcFast
-
Sets to true just in case the output is guaranteed to be compatible with a CPDAG--i.e., no bidirected edges and no actual or implied cycles due to the Meek rules.
- setMeekPreventCycles(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.VcPc
-
Sets to true just in case edges will not be added if they would create cycles.
- setMeekPreventCycles(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.VcPcAlt
-
Sets to true just in case edges will not be added if they would create cycles.
- setMeekPreventCycles(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.VcPcFast
-
Sets to true just in case edges will not be added if they would create cycles.
- setMethod(int) - Method in class edu.cmu.tetrad.data.ContinuousDiscretizationSpec
-
Sets the method used for discretization.
- setMinClusterSize(int) - Method in class edu.cmu.tetrad.search.Mimbuild
-
Setter for the field
minClusterSize
. - setMinClusterSize(int) - Method in class edu.cmu.tetrad.search.MimbuildTrek
-
Sets the minimum cluster size.
- setMinCountPerCell(double) - Method in class edu.cmu.tetrad.search.test.ChiSquareTest
-
The minimum number of counts per conditional table for chi-square for that table and its degrees of freedom to be included in the overall chi-square and degrees of freedom.
- setMinCountPerCell(double) - Method in class edu.cmu.tetrad.search.test.IndTestChiSquare
-
The minimum number of counts per conditional table for chi-square for that table and its degrees of freedom to be included in the overall chi-square and degrees of freedom.
- setMinCountPerCell(double) - Method in class edu.cmu.tetrad.search.test.IndTestGSquare
-
The minimum number of counts per conditional table for chi-square for that table and its degrees of freedom to be included in the overall chi-square and degrees of freedom.
- setMinDiscount(int) - Method in class edu.cmu.tetrad.search.work_in_progress.DMSearch
-
Setter for the field
minDiscount
. - setMinSampleSizePerCell(int) - Method in class edu.cmu.tetrad.search.score.ConditionalGaussianLikelihood
-
Sets the minimum sample size per cell.
- setMinSampleSizePerCell(int) - Method in class edu.cmu.tetrad.search.test.IndTestConditionalGaussianLrt
-
Sets the minimum sample size per cell for the independence test.
- setMlag(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.LagGraphParams
-
Setter for the field
mlag
. - setMlag(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ManualLagGraphParams
-
Sets the maximum lag.
- setN(int) - Method in class edu.cmu.tetrad.search.work_in_progress.Glasso
-
Setter for the field
n
. - setName(String) - Method in class edu.cmu.tetrad.data.AbstractVariable
-
Sets the name of this node.
- setName(String) - Method in class edu.cmu.tetrad.data.BoxDataSet
-
Sets the name of the data model (may be null).
- setName(String) - Method in class edu.cmu.tetrad.data.CorrelationMatrixOnTheFly
-
Sets the name of the covariance matrix.
- setName(String) - Method in class edu.cmu.tetrad.data.CovarianceMatrix
-
Sets the name of the covariance matrix.
- setName(String) - Method in class edu.cmu.tetrad.data.CovarianceMatrixOnTheFly
-
Sets the name of the covariance matrix.
- setName(String) - Method in interface edu.cmu.tetrad.data.DataModel
-
Sets the name of the data model (may be null).
- setName(String) - Method in class edu.cmu.tetrad.data.DataModelList
-
Sets the name of the data model (may be null).
- setName(String) - Method in interface edu.cmu.tetrad.data.ICovarianceMatrix
-
Sets the name of the covariance matrix.
- setName(String) - Method in class edu.cmu.tetrad.data.IndependenceFacts
-
Sets the name of the data model (may be null).
- setName(String) - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
Sets the name of the data model (may be null).
- setName(String) - Method in class edu.cmu.tetrad.data.TimeSeriesData
-
Sets the name of the data model (may be null).
- setName(String) - Method in class edu.cmu.tetrad.graph.GraphNode
-
Sets the name of this node.
- setName(String) - Method in interface edu.cmu.tetrad.graph.Node
-
Sets the name of this node.
- setName(String) - Method in class edu.cmu.tetrad.sem.Parameter
-
Sets the name for this parameter.
- setName(String) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.AbstractNbComponent
-
Sets the name.
- setName(String) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.BasicMatrix
-
Sets the name of this matrix
- setNaturalEdgeLength(double) - Method in class edu.cmu.tetrad.graph.LayoutUtil.KamadaKawaiLayout
-
Sets the natural length of an edge.
- setNextOutputStream() - Method in class edu.cmu.tetrad.util.TetradLogger
-
Sets the next output stream to use it for logging, call
removeNextOutputStream
to remove it. - setNoData(boolean) - Method in class edu.cmu.tetrad.study.performance.ComparisonParameters
-
Setter for the field
noData
. - setNodeExpression(Node, String) - Method in class edu.cmu.tetrad.sem.GeneralizedSemPm
-
Sets the expression for a given node.
- setNodeName(int, String) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.BasicGraph
-
Sets the name of node
i
in this graph - setNodes(List<Node>) - Method in class edu.cmu.tetrad.data.IndependenceFacts
-
Setter for the field
nodes
. - setNodes(List<Node>) - Method in class edu.cmu.tetrad.graph.Dag
-
Set the nodes of the graph.
- setNodes(List<Node>) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
setNodes.
- setNodes(List<Node>) - Method in interface edu.cmu.tetrad.graph.Graph
-
setNodes.
- setNodes(List<Node>) - Method in class edu.cmu.tetrad.graph.LagGraph
-
setNodes.
- setNodes(List<Node>) - Method in class edu.cmu.tetrad.graph.SemGraph
-
setNodes.
- setNodes(List<Node>) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Sets the nodes of the graph.
- setNodes(List<Node>) - Method in class edu.cmu.tetrad.search.Ida.NodeEffects
-
Sets the nodes.
- setNodeType(NodeType) - Method in class edu.cmu.tetrad.data.ContinuousVariable
-
Sets the node type for this node.
- setNodeType(NodeType) - Method in class edu.cmu.tetrad.data.DiscreteVariable
-
Sets the node type for this node.
- setNodeType(NodeType) - Method in class edu.cmu.tetrad.graph.GraphNode
-
Sets the node type for this node.
- setNodeType(NodeType) - Method in interface edu.cmu.tetrad.graph.Node
-
Sets the node type for this node.
- setNodeVariableType(NodeVariableType) - Method in class edu.cmu.tetrad.data.ContinuousVariable
-
Sets the type (domain, interventional status, interventional value..) for this node variable
- setNodeVariableType(NodeVariableType) - Method in class edu.cmu.tetrad.data.DiscreteVariable
-
Sets the type (domain, interventional status, interventional value..) for this node variable
- setNodeVariableType(NodeVariableType) - Method in class edu.cmu.tetrad.graph.GraphNode
-
Sets the type (domain, interventional status, interventional value..) for this node variable
- setNodeVariableType(NodeVariableType) - Method in interface edu.cmu.tetrad.graph.Node
-
Sets the type (domain, interventional status, interventional value..) for this node variable
- setNonSingularDepth(int) - Method in class edu.cmu.tetrad.search.Grasp
-
Sets the maximum depth at which singular tucks can be performed within the depth-first search of GRaSP.
- setNonSingularDepth(int) - Method in class edu.cmu.tetrad.search.GraspFci
-
Sets depth for non-singular tucks.
- setNonSingularDepth(int) - Method in class edu.cmu.tetrad.search.work_in_progress.GraspTol
-
Setter for the field
nonSingularDepth
. - setNparents(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.AbstractNbComponent
-
Sets the number of parents.
- setNumberFormat(NumberFormat) - Method in class edu.cmu.tetrad.data.BoxDataSet
-
The number formatter used to print out continuous values.
- setNumberFormat(NumberFormat) - Method in interface edu.cmu.tetrad.data.DataSet
-
The number formatter used to print out continuous values.
- setNumberFormat(NumberFormat) - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
The number formatter used to print out continuous values.
- setNumberFormat(NumberFormat) - Method in class edu.cmu.tetrad.util.NumberFormatUtil
-
Sets the number format,
nf
. - setNumBins(int) - Method in class edu.cmu.tetrad.data.Histogram
-
For a continuous target, sets the number of bins for the histogram.
- setNumBootstraps(int) - Method in class edu.cmu.tetrad.search.test.Kci
-
Sets the number of bootstraps to do.
- setNumBscBootstrapSamples(int) - Method in class edu.pitt.dbmi.algo.bayesian.constraint.search.RfciBsc
-
Sets the number of bootstrap samples.
- setNumCategories(Node, int) - Method in class edu.cmu.tetrad.bayes.BayesPm
-
Sets the number of values for the given node to the given number.
- setNumCategoriesToDiscretize(int) - Method in class edu.cmu.tetrad.search.score.ConditionalGaussianLikelihood
-
Sets the number of categories to use to discretize child variables to avoid integration
- setNumCategoriesToDiscretize(int) - Method in class edu.cmu.tetrad.search.score.ConditionalGaussianScore
-
Sets tne number of categories used to discretize, when this optimization is used.
- setNumCategoriesToDiscretize(int) - Method in class edu.cmu.tetrad.search.test.IndTestConditionalGaussianLrt
-
Sets the number of categories used to discretize variables.
- setNumCellsPerDish(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.MeasurementSimulator
-
Sets the number of cells per dish.
- setNumCellsPerDish(int) - Method in class edu.cmu.tetrad.study.gene.tetradapp.model.MeasurementSimulatorParams
-
setNumCellsPerDish.
- setNumClusters(int) - Method in class edu.cmu.tetrad.data.Clusters
-
Sets the number of clusters represented, or -1 if the number is allowed to vary.
- setNumCPDAGsToStore(int) - Method in class edu.cmu.tetrad.search.SvarFges
-
Sets the number of patterns to store.
- setNumDishes(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.MeasurementSimulator
-
Sets the number of dishes that are to be simulated.
- setNumDishes(int) - Method in class edu.cmu.tetrad.study.gene.tetradapp.model.MeasurementSimulatorParams
-
setNumDishes.
- setNumEdges(int) - Method in class edu.cmu.tetrad.study.performance.ComparisonParameters
-
Setter for the field
numEdges
. - setNumEdges1(int) - Method in class edu.cmu.tetrad.simulation.GdistanceRandom
-
Setter for the field
numEdges1
. - setNumEdges2(int) - Method in class edu.cmu.tetrad.simulation.GdistanceRandom
-
Setter for the field
numEdges2
. - setNumExpansions(int) - Method in class edu.cmu.tetrad.search.FgesMb
-
Sets the number of expansions for a given object.
- setNumFactors(int) - Method in class edu.cmu.tetrad.search.FactorAnalysis
-
Sets the number of factors to find.
- setNumFunctions(int) - Method in class edu.cmu.tetrad.search.test.ConditionalCorrelationIndependence
-
Sets the number of functions used in the ConditionalCorrelationIndependence analysis.
- setNumInitialLags(int) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Setter for the field
numInitialLags
. - setNumIterations(int) - Method in class edu.cmu.tetrad.graph.RandomGraph.UniformGraphGenerator
-
Sets the number of iterations for the Markov chain process.
- setNumIterations(int) - Method in class edu.cmu.tetrad.sem.SemEstimatorGibbsParams
-
Setter for the field
numIterations
. - setNumNodes(int) - Method in class edu.cmu.tetrad.graph.RandomGraph.UniformGraphGenerator
-
Sets the number of nodes and resets all of the other parameters to default values accordingly.
- setNumRandomizedSearchModels(int) - Method in class edu.pitt.dbmi.algo.bayesian.constraint.search.PagSamplingRfci
-
Set the number of randomized search models.
- setNumRandomizedSearchModels(int) - Method in class edu.pitt.dbmi.algo.bayesian.constraint.search.RfciBsc
-
Sets the number of randomized search models.
- setNumRestarts(int) - Method in class edu.cmu.tetrad.sem.SemEstimator
-
Setter for the field
numRestarts
. - setNumRestarts(int) - Method in interface edu.cmu.tetrad.sem.SemOptimizer
-
setNumRestarts.
- setNumRestarts(int) - Method in class edu.cmu.tetrad.sem.SemOptimizerEm
-
setNumRestarts.
- setNumRestarts(int) - Method in class edu.cmu.tetrad.sem.SemOptimizerPowell
-
setNumRestarts.
- setNumRestarts(int) - Method in class edu.cmu.tetrad.sem.SemOptimizerRegression
-
setNumRestarts.
- setNumRestarts(int) - Method in class edu.cmu.tetrad.sem.SemOptimizerRicf
-
setNumRestarts.
- setNumRestarts(int) - Method in class edu.cmu.tetrad.sem.SemOptimizerScattershot
-
setNumRestarts.
- setNumSamplesPerDish(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.MeasurementSimulator
-
Sets the number of samples that will be generated in the measured data for each dish.
- setNumSamplesPerDish(int) - Method in class edu.cmu.tetrad.study.gene.tetradapp.model.MeasurementSimulatorParams
-
setNumSamplesPerDish.
- setNumStarts(int) - Method in class edu.cmu.tetrad.search.BFci
-
Returns the number of times to restart the search.
- setNumStarts(int) - Method in class edu.cmu.tetrad.search.Boss
-
Sets the number of random starts to use.
- setNumStarts(int) - Method in class edu.cmu.tetrad.search.Grasp
-
Sets the number of times the best order algorithm should be rerun with different starting permutations in search of a best BIC scoring permutation.
- setNumStarts(int) - Method in class edu.cmu.tetrad.search.GraspFci
-
Sets the number of starts for GRaSP.
- setNumStarts(int) - Method in class edu.cmu.tetrad.search.LvDumb
-
Sets the number of starts for BOSS.
- setNumStarts(int) - Method in class edu.cmu.tetrad.search.LvLite
-
Sets the number of starts for BOSS.
- setNumStarts(int) - Method in class edu.cmu.tetrad.search.work_in_progress.GraspTol
-
Setter for the field
numStarts
. - setNumSubsamples(int) - Method in class edu.cmu.tetrad.search.Cstar
-
Sets the number of subsamples.
- setNumThreads(int) - Method in class edu.cmu.tetrad.search.BFci
-
Sets the number of threads to use.
- setNumThreads(int) - Method in class edu.cmu.tetrad.search.Boss
-
Sets the number of threads to use.
- setNumThreads(int) - Method in class edu.cmu.tetrad.search.Fges
-
Sets the number of threads to use.
- setNumThreads(int) - Method in class edu.cmu.tetrad.search.GFci
-
Sets the number of threads to use in the search.
- setNumVars(int) - Method in class edu.cmu.tetrad.study.performance.ComparisonParameters
-
Setter for the field
numVars
. - setObject(int, int, Object) - Method in class edu.cmu.tetrad.data.BoxDataSet
-
Sets the value at the given (row, column) to the given value.
- setObject(int, int, Object) - Method in interface edu.cmu.tetrad.data.DataSet
-
Sets the value at the given (row, column) to the given value.
- setObject(int, int, Object) - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
Sets the value at the given (row, column) to the given value.
- setOneEdgeFaithfulnessAssumed(boolean) - Method in class edu.cmu.tetrad.study.performance.ComparisonParameters
-
Setter for the field
oneEdgeFaithfulnessAssumed
. - setOnlyCanCauseNextTier(int, boolean) - Method in class edu.cmu.tetrad.data.Knowledge
-
setOnlyCanCauseNextTier.
- setOrder(List<Node>) - Method in class edu.cmu.tetrad.search.PermutationSearch
-
Sets the order list for the search.
- setOrder(List<Node>) - Method in class edu.cmu.tetrad.search.work_in_progress.MagCgBicScore
-
Sets the order.
- setOrder(List<Node>) - Method in class edu.cmu.tetrad.search.work_in_progress.MagDgBicScore
-
Sets the order.
- setOrder(List<Node>) - Method in class edu.cmu.tetrad.search.work_in_progress.MagSemBicScore
-
Sets the order.
- setOrdered(boolean) - Method in class edu.cmu.tetrad.search.Grasp
-
True if GRasP0 should be performed before GRaSP1 and GRaSP1 before GRaSP2.
- setOrdered(boolean) - Method in class edu.cmu.tetrad.search.GraspFci
-
Sets whether to use the ordered version of GRaSP.
- setOrdered(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.GraspTol
-
Setter for the field
ordered
. - setOrientationAlpha(double) - Method in class edu.cmu.tetrad.search.FaskOrig
-
Sets the orientation alpha.
- setOrientStrongerDirection(boolean) - Method in class edu.cmu.tetrad.search.Lofs
-
Sets whether orientation should be done in the stronger direction, where applicable.
- setOut(OutputStream) - Method in class edu.cmu.tetrad.search.utils.ShiftSearch
-
Setter for the field
out
. - setOut(PrintStream) - Method in class edu.cmu.tetrad.search.Fas
-
Sets the PrintStream to be used for output.
- setOut(PrintStream) - Method in class edu.cmu.tetrad.search.Fasd
-
Sets the output stream for this object.
- setOut(PrintStream) - Method in class edu.cmu.tetrad.search.Fges
-
Sets the output stream that output (except for log output) should be sent to.
- setOut(PrintStream) - Method in class edu.cmu.tetrad.search.FgesMb
-
Sets the output stream that output (except for log output) should be sent to.
- setOut(PrintStream) - Method in class edu.cmu.tetrad.search.GFci
-
Sets the print stream used for output, default System.out.
- setOut(PrintStream) - Method in interface edu.cmu.tetrad.search.IFas
-
sets the print stream to send text to.
- setOut(PrintStream) - Method in class edu.cmu.tetrad.search.SpFci
-
Sets the output stream used to print.
- setOut(PrintStream) - Method in class edu.cmu.tetrad.search.SvarFas
-
Sets the output stream for printing.
- setOut(PrintStream) - Method in class edu.cmu.tetrad.search.SvarFges
-
Sets the output stream that output (except for log output) should be sent to.
- setOut(PrintStream) - Method in class edu.cmu.tetrad.search.utils.FgesOrienter
-
Sets the output stream that output (except for log output) should be sent to.
- setOut(PrintStream) - Method in class edu.cmu.tetrad.search.work_in_progress.FasFdr
-
sets the print stream to send text to.
- setOut(PrintStream) - Method in class edu.cmu.tetrad.search.work_in_progress.IGFci
-
Sets the PrintStream object used for output by the IGFci instance.
- setOut(PrintStream) - Method in class edu.cmu.tetrad.search.work_in_progress.ISFges
-
Sets the output stream for this instance.
- setOut(PrintStream) - Method in class edu.cmu.tetrad.sem.LargeScaleSimulation
-
Setter for the field
out
. - setOut(PrintStream) - Method in class edu.pitt.dbmi.algo.bayesian.constraint.search.RfciBsc
-
Sets the output stream that output (except for log output) should be sent to.
- setOut(String, int, int, int, int, String, int, double, double, String) - Method in class edu.cmu.tetrad.calibration.DataForCalibrationRfci
-
setOut.
- setOutputDelimiter(Character) - Method in class edu.cmu.tetrad.data.BoxDataSet
-
The character used a delimiter when the dataset is output
- setOutputDelimiter(Character) - Method in interface edu.cmu.tetrad.data.DataSet
-
The character used a delimiter when the dataset is output
- setOutputDelimiter(Character) - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
The character used a delimiter when the dataset is output
- setOutputRBD(boolean) - Method in class edu.pitt.dbmi.algo.bayesian.constraint.search.RfciBsc
-
Sets whether the output should be RBD.
- setOutputs(int[]) - Method in class edu.cmu.tetrad.search.work_in_progress.DMSearch
-
Setter for the field
outputs
. - setPag(boolean) - Method in class edu.cmu.tetrad.search.test.MsepTest
-
True iff the graph is a PAG
- setPag(Graph) - Method in class edu.cmu.tetrad.search.utils.R0R4StrategyTestBased
-
Sets the PAG (partial ancestral graph) for the strategy.
- setParallel(boolean) - Method in class edu.cmu.tetrad.search.utils.FciOrient
-
Sets whether the discriminating path orientation should be run in parallel.
- setParallelism(int) - Method in class edu.cmu.tetrad.algcomparison.Comparison
-
Sets the number of threads to be used for parallel processing.
- setParallelism(int) - Method in class edu.cmu.tetrad.search.work_in_progress.ISFges
-
Sets the level of parallelism for the ForkJoinPool by specifying the number of processors to be used.
- setParallelized(boolean) - Method in class edu.cmu.tetrad.algcomparison.TimeoutComparison
-
Setter for the field
parallelized
. - setParallelized(boolean) - Method in class edu.cmu.tetrad.search.Cstar
-
Sets whether the algorithm should be parallelized.
- setParallelized(boolean) - Method in class edu.cmu.tetrad.search.FgesMb
-
Sets the parallelized flag of the object.
- setParallelized(boolean) - Method in class edu.cmu.tetrad.search.MarkovCheck
-
True if the checks should be parallelized.
- setParamComparison(Parameter, Parameter, ParamComparison) - Method in class edu.cmu.tetrad.sem.SemPm
-
Sets the comparison of parameter a to parameter b.
- setParameter(int, double) - Method in class edu.cmu.tetrad.util.dist.Beta
-
Sets the index'th parameter to the given value.
- setParameter(int, double) - Method in class edu.cmu.tetrad.util.dist.ChiSquare
-
Sets the index'th parameter to the given value.
- setParameter(int, double) - Method in class edu.cmu.tetrad.util.dist.Discrete
-
Sets the index'th parameter to the given value.
- setParameter(int, double) - Method in interface edu.cmu.tetrad.util.dist.Distribution
-
Sets the index'th parameter to the given value.
- setParameter(int, double) - Method in class edu.cmu.tetrad.util.dist.Exponential
-
Sets the index'th parameter to the given value.
- setParameter(int, double) - Method in class edu.cmu.tetrad.util.dist.Gamma
-
Sets the index'th parameter to the given value.
- setParameter(int, double) - Method in class edu.cmu.tetrad.util.dist.GaussianPower
-
Sets the index'th parameter to the given value.
- setParameter(int, double) - Method in class edu.cmu.tetrad.util.dist.Indicator
-
Sets the index'th parameter to the given value.
- setParameter(int, double) - Method in class edu.cmu.tetrad.util.dist.LogNormal
-
Sets the index'th parameter to the given value.
- setParameter(int, double) - Method in class edu.cmu.tetrad.util.dist.MixtureOfGaussians
-
Sets the index'th parameter to the given value.
- setParameter(int, double) - Method in class edu.cmu.tetrad.util.dist.Normal
-
Sets the index'th parameter to the given value.
- setParameter(int, double) - Method in class edu.cmu.tetrad.util.dist.Poisson
-
Sets the index'th parameter to the given value.
- setParameter(int, double) - Method in class edu.cmu.tetrad.util.dist.SingleValue
-
Sets the index'th parameter to the given value.
- setParameter(int, double) - Method in class edu.cmu.tetrad.util.dist.Split
-
Sets the index'th parameter to the given value.
- setParameter(int, double) - Method in class edu.cmu.tetrad.util.dist.TruncatedNormal
-
Sets the index'th parameter to the given value.
- setParameter(int, double) - Method in class edu.cmu.tetrad.util.dist.Uniform
-
Sets the index'th parameter to the given value.
- setParameterBoundsEnforced(boolean) - Method in interface edu.cmu.tetrad.sem.ISemIm
-
setParameterBoundsEnforced.
- setParameterBoundsEnforced(boolean) - Method in class edu.cmu.tetrad.sem.SemIm
-
setParameterBoundsEnforced.
- setParameterEstimationInitializationExpression(String, String) - Method in class edu.cmu.tetrad.sem.GeneralizedSemPm
-
Sets the parameter estimation initialization expression for the given parameter.
- setParameterEstimationInitializationExpression(String, String, String) - Method in class edu.cmu.tetrad.sem.GeneralizedSemPm
-
Sets the expression which should be evaluated when calculating new values for the given parameter.
- setParameterExpression(String, String) - Method in class edu.cmu.tetrad.sem.GeneralizedSemPm
-
Sets the expression which should be evaluated when calculating new values for the given parameter.
- setParameterExpression(String, String, String) - Method in class edu.cmu.tetrad.sem.GeneralizedSemPm
-
Sets the expression which should be evaluated when calculating new values for the given parameter.
- setParametersEstimationInitializationTemplate(String) - Method in class edu.cmu.tetrad.sem.GeneralizedSemPm
-
Sets the template for parameter estimation initialization.
- setParametersTemplate(String) - Method in class edu.cmu.tetrad.sem.GeneralizedSemPm
-
Sets the parameter template for the object.
- setParameterValue(Edge, double) - Method in class edu.cmu.tetrad.sem.StandardizedSemIm
-
setParameterValue.
- setParameterValue(String, double) - Method in class edu.cmu.tetrad.sem.GeneralizedSemIm
-
setParameterValue.
- setParamName(String) - Method in class edu.cmu.tetrad.util.ParamDescription
-
Setter for the field
paramName
. - setParams(Parameters) - Method in class edu.cmu.tetrad.sem.SemIm
-
Setter for the field
params
. - setParams(Mgm.MGMParams) - Method in class edu.pitt.csb.mgm.Mgm
-
Setter for the field
params
. - setParamValue(Node, Node, double) - Method in interface edu.cmu.tetrad.sem.ISemIm
-
setParamValue.
- setParamValue(Node, Node, double) - Method in class edu.cmu.tetrad.sem.SemIm
-
setParamValue.
- setParamValue(Parameter, double) - Method in interface edu.cmu.tetrad.sem.ISemIm
-
setParamValue.
- setParamValue(Parameter, double) - Method in class edu.cmu.tetrad.sem.SemIm
-
Sets the value of a parameter in the model.
- setParents(NbComponent[]) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.AbstractNbComponent
-
Sets the parents.
- setPath(String) - Method in class edu.cmu.tetrad.algcomparison.algorithm.ExternalAlgorithm
-
Setter for the field
path
. - setPcHeuristicType(PcCommon.PcHeuristicType) - Method in class edu.cmu.tetrad.search.Cpc
-
Sets the PC heuristic type.
- setPcHeuristicType(PcCommon.PcHeuristicType) - Method in class edu.cmu.tetrad.search.Fas
-
Sets the type of heuristic to be used in the PC algorithm.
- setPcHeuristicType(PcCommon.PcHeuristicType) - Method in class edu.cmu.tetrad.search.Fci
-
Sets which PC heuristic type should be used in the initial adjacency search.
- setPcHeuristicType(PcCommon.PcHeuristicType) - Method in class edu.cmu.tetrad.search.FciMax
-
Sets the FAS heuristic from PC used in search.
- setPcHeuristicType(PcCommon.PcHeuristicType) - Method in class edu.cmu.tetrad.search.Pc
-
Sets the PC heuristic type.
- setPcHeuristicType(PcCommon.PcHeuristicType) - Method in class edu.cmu.tetrad.search.utils.PcCommon
-
Setter for the field
pcHeuristicType
. - setPenaltyDiscount(double) - Method in class edu.cmu.tetrad.search.Mimbuild
-
Sets the penalty discount of the score used to infer the structure graph.
- setPenaltyDiscount(double) - Method in class edu.cmu.tetrad.search.score.BasisFunctionBicScore
-
Sets the penalty discount value, which is used to adjust the penalty term in the BIC score calculation.
- setPenaltyDiscount(double) - Method in class edu.cmu.tetrad.search.score.ConditionalGaussianScore
-
Sets the penalty discount for this score, which is a multiplier on the penalty discount of the BIC score.
- setPenaltyDiscount(double) - Method in class edu.cmu.tetrad.search.score.DegenerateGaussianScore
-
Sets the penalty discount.
- setPenaltyDiscount(double) - Method in class edu.cmu.tetrad.search.score.DiscreteBicScore
-
Sets the penalty discount, which is a multiplier on the penalty term of BIC.
- setPenaltyDiscount(double) - Method in class edu.cmu.tetrad.search.score.DiscreteBicScoreAdTree
-
Sets the penalty discount, which is a multiplier on the penalty term of BIC.
- setPenaltyDiscount(double) - Method in class edu.cmu.tetrad.search.score.GicScores
-
Sets the penalty discount.
- setPenaltyDiscount(double) - Method in class edu.cmu.tetrad.search.score.SemBicScore
-
Sets the multiplier on the penalty term for this score.
- setPenaltyDiscount(double) - Method in class edu.cmu.tetrad.search.utils.FgesOrienter
-
For BIC score, a multiplier on the penalty term.
- setPenaltyDiscount(double) - Method in interface edu.cmu.tetrad.search.utils.HasPenaltyDiscount
-
setPenaltyDiscount.
- setPenaltyDiscount(double) - Method in class edu.cmu.tetrad.search.work_in_progress.FasLofs
-
Setter for the field
penaltyDiscount
. - setPenaltyDiscount(double) - Method in class edu.cmu.tetrad.search.work_in_progress.ISBicScore
-
Sets the penalty discount.
- setPenaltyDiscount(double) - Method in class edu.cmu.tetrad.search.work_in_progress.MagCgBicScore
-
Seets the penalty discount.
- setPenaltyDiscount(double) - Method in class edu.cmu.tetrad.search.work_in_progress.MagDgBicScore
-
Seets the penalty discount.
- setPenaltyDiscount(double) - Method in class edu.cmu.tetrad.search.work_in_progress.MagSemBicScore
-
Seets the penalty discount.
- setPenaltyDiscount(double) - Method in class edu.cmu.tetrad.search.work_in_progress.SemBicScoreDeterministic
-
Setter for the field
penaltyDiscount
. - setPenaltyDiscount(double) - Method in class edu.cmu.tetrad.study.performance.ComparisonParameters
-
Setter for the field
penaltyDiscount
. - setPercent(double) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestFisherZPercentIndependent
-
Sets the percentage value.
- setPercentResample(double) - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Sets the percentage of all samples to use when resampling for each conditional independence test.
- setPercentUnregulated(double) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.LagGraphParams
-
Setter for the field
percentUnregulated
. - setPerms(int) - Method in class edu.cmu.tetrad.search.test.IndTestHsic
-
Set the number of bootstrap samples to use
- setPerms(int) - Method in class edu.cmu.tetrad.search.work_in_progress.Kpc
-
Set the number of bootstrap samples to use
- setPixelDigitalization(double) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.MeasurementSimulator
-
Sets the pixel digitalization error.
- setPixelDigitalization(double) - Method in class edu.cmu.tetrad.study.gene.tetradapp.model.MeasurementSimulatorParams
-
setPixelDigitalization.
- setPolyConst(double) - Method in class edu.cmu.tetrad.search.test.Kci
-
Sets the constant of the polynomial kernel, if used
- setPolyDegree(double) - Method in class edu.cmu.tetrad.search.test.Kci
-
Sets the degree of the polynomial kernel, if used
- setPolynomial(int, Polynomial) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.PolynomialFunction
-
Sets the polynomial for the given factor.
- setPopulationGraph(Graph) - Method in class edu.cmu.tetrad.search.work_in_progress.ISFges
-
Sets the population graph for the current instance.
- setPossibleDsepSearchDone(boolean) - Method in class edu.cmu.tetrad.search.Fci
-
Sets whether the (time-consuming) possible msep step should be done.
- setPossibleMsepSearchDone(boolean) - Method in class edu.cmu.tetrad.search.Cfci
-
Whether to do the discriminating path rule.
- setPossibleMsepSearchDone(boolean) - Method in class edu.cmu.tetrad.search.FciMax
-
Sets whether the (time-consuming) possible msep step should be done.
- setPower(double) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.AbstractNbComponent
-
Sets the power.
- setPrecomputeCovariances(boolean) - Method in class edu.cmu.tetrad.algcomparison.statistic.BicDiff
-
Returns the precompute covariances flag.
- setPrecomputeCovariances(boolean) - Method in class edu.cmu.tetrad.algcomparison.statistic.BicDiffPerRecord
-
Returns true if the covariances are precomputed.
- setPrecomputeCovariances(boolean) - Method in class edu.cmu.tetrad.algcomparison.statistic.BicEst
-
Returns the precompute covariances flag.
- setPrecomputeCovariances(boolean) - Method in class edu.cmu.tetrad.algcomparison.statistic.BicTrue
-
Returns whether to precompute covariances.
- setPrecomputeCovariances(boolean) - Method in class edu.cmu.tetrad.calibration.DataForCalibrationRfci
-
Setter for the field
precomputeCovariances
. - setPrecomputeCovariances(boolean) - Method in class edu.cmu.tetrad.search.utils.ShiftSearch
-
Setter for the field
precomputeCovariances
. - setPreferLinear(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestMixedMultipleTTest
-
Setter for the field
preferLinear
. - setPriorCount(double) - Method in class edu.cmu.tetrad.bayes.CptMapCounts
-
Sets the prior count for all cells in the CptMapCounts.
- setPriorEqivalentSampleSize(double) - Method in class edu.pitt.dbmi.algo.bayesian.constraint.inference.BCInference
-
Sets the prior equivalent sample size.
- setPriorEquivalentSampleSize(double) - Method in class edu.cmu.tetrad.search.test.IndTestProbabilistic
-
Sets the prior equivalent sample size for the independence test.
- setPriorEquivalentSampleSize(double) - Method in class edu.pitt.dbmi.algo.bayesian.constraint.search.PagSamplingRfci
-
Set the prior equivalent sample size.
- setProbability(double) - Method in class edu.cmu.tetrad.graph.Edge
-
Setter for the field
probability
. - setProbability(double) - Method in class edu.cmu.tetrad.graph.EdgeTypeProbability
-
Setter for the field
probability
. - setProbability(int, double) - Method in class edu.cmu.tetrad.bayes.MlBayesImObs
-
setProbability.
- setProbability(int, double[][]) - Method in interface edu.cmu.tetrad.bayes.BayesIm
-
Sets the probability for the given node.
- setProbability(int, double[][]) - Method in class edu.cmu.tetrad.bayes.DirichletBayesIm
-
Sets the probability for the given node.
- setProbability(int, double[][]) - Method in class edu.cmu.tetrad.bayes.MlBayesIm
-
Sets the probability for the given node.
- setProbability(int, double[][]) - Method in class edu.cmu.tetrad.bayes.MlBayesImObs
-
Sets the probability for the given node.
- setProbability(int, double[][]) - Method in class edu.cmu.tetrad.bayes.UpdatedBayesIm
-
setProbability.
- setProbability(int, int, int, double) - Method in interface edu.cmu.tetrad.bayes.BayesIm
-
Sets the probability for the given node at a given row and column in the table for that node.
- setProbability(int, int, int, double) - Method in class edu.cmu.tetrad.bayes.DirichletBayesIm
-
Sets the probability for the given node at a given row and column in the table for that node.
- setProbability(int, int, int, double) - Method in class edu.cmu.tetrad.bayes.MlBayesIm
-
Sets the probability value for a specific node, row, and column in the probability table.
- setProbability(int, int, int, double) - Method in class edu.cmu.tetrad.bayes.MlBayesImObs
-
Sets the probability for the given node at a given row and column in the table for that node.
- setProbability(int, int, int, double) - Method in class edu.cmu.tetrad.bayes.UpdatedBayesIm
-
Sets the probability for the given node at a given row and column in the table for that node.
- setPseudocount(int, int, int, double) - Method in class edu.cmu.tetrad.bayes.DirichletBayesIm
-
setPseudocount.
- setQuoteSensitive(boolean) - Method in class edu.cmu.tetrad.data.RegexTokenizer
-
True iff the parser should be aware of quotation marks and remove them from returned strings.
- setR2Orient2Cycles(boolean) - Method in class edu.cmu.tetrad.search.Lofs
-
Sets for R2 whether cycles should be oriented.
- setRandomlyInitialized(boolean) - Method in class edu.cmu.tetrad.graph.LayoutUtil.KamadaKawaiLayout
-
Sets whether the spring layout should start from a randomlyInitialized position or from the getModel positions of the nodes.
- setRawDataSaved(boolean) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.MeasurementSimulator
-
Sets whether the raw data that is generated should be saved beyond what's needed for the getModel cell being simulated.
- setRawDataSaved(boolean) - Method in class edu.cmu.tetrad.study.gene.tetradapp.model.MeasurementSimulatorParams
-
setRawDataSaved.
- setRecursionDepth(int) - Method in class edu.cmu.tetrad.search.LvLite
-
Sets the depth of the GRaSP if it is used.
- setRegularizer(double) - Method in class edu.cmu.tetrad.search.test.IndTestHsic
-
Sets the regularizer.
- setRequired(String, String) - Method in class edu.cmu.tetrad.data.Knowledge
-
Marks the edge var1 --> var2 as required.
- setResetAfterBM(boolean) - Method in class edu.cmu.tetrad.search.Boss
-
Sets whether the grow-shrink trees should be reset after each best-mutation step.
- setResetAfterRS(boolean) - Method in class edu.cmu.tetrad.search.Boss
-
Sets whether the grow-shrink trees should be reset after each restart.
- setResolveAlmostCyclicPaths(boolean) - Method in class edu.cmu.tetrad.search.SvarFci
-
Sets whether almost cyclic paths should be resolved during the search.
- setResolveAlmostCyclicPaths(boolean) - Method in class edu.cmu.tetrad.search.SvarGfci
-
Sets whether to resolve almost cyclic paths during the search.
- setResultGraph(Graph) - Method in class edu.cmu.tetrad.study.performance.ComparisonResult
-
Setter for the field
resultGraph
. - setResultType(ComparisonParameters.ResultType) - Method in class edu.cmu.tetrad.study.performance.ComparisonParameters
-
Setter for the field
resultType
. - setRevertToUnshieldedColliders(boolean) - Method in class edu.cmu.tetrad.search.utils.MeekRules
-
Sets whether orientations in the graph should be reverted to its unshielded colliders before performing any Meek rule orientations.
- setRhoAllEqual(double) - Method in class edu.cmu.tetrad.search.work_in_progress.Glasso
-
setRhoAllEqual.
- setRiskBound(double) - Method in class edu.cmu.tetrad.search.score.ZsbScore
-
Sets the risk bound for the Zhang Shen Bound score.
- setRowNorm(boolean) - Method in class edu.cmu.tetrad.search.FastIca
-
A logical value indicating whether rows of the data matrix 'X' should be standardized beforehand.
- setRows(int[]) - Method in class edu.cmu.tetrad.regression.LogisticRegression
-
Setter for the field
rows
. - setRows(int[]) - Method in class edu.cmu.tetrad.regression.RegressionDataset
-
Setter for the field
rows
. - setRows(List<Integer>) - Method in class edu.cmu.tetrad.search.score.ConditionalGaussianLikelihood
-
Sets the rows to be used in the table.
- setRows(List<Integer>) - Method in class edu.cmu.tetrad.search.test.ConditionalCorrelationIndependence
-
Sets the list of row indices
- setRows(List<Integer>) - Method in class edu.cmu.tetrad.search.test.IndTestChiSquare
-
Sets the rows to use for the test.
- setRows(List<Integer>) - Method in class edu.cmu.tetrad.search.test.IndTestConditionalCorrelation
-
Sets the rows to use for the test.
- setRows(List<Integer>) - Method in class edu.cmu.tetrad.search.test.IndTestConditionalGaussianLrt
-
Allows the user to set which rows are used in the test.
- setRows(List<Integer>) - Method in class edu.cmu.tetrad.search.test.IndTestDegenerateGaussianLrt
-
Allows the user to set which rows are used in the test.
- setRows(List<Integer>) - Method in class edu.cmu.tetrad.search.test.IndTestFisherZ
-
Allows the user to set which rows are used in the test.
- setRows(List<Integer>) - Method in class edu.cmu.tetrad.search.test.IndTestGSquare
-
Sets the list of rows to use for the test.
- setRows(List<Integer>) - Method in class edu.cmu.tetrad.search.test.Kci
-
Allows the user to set which rows are used in the test.
- setRows(List<Integer>) - Method in interface edu.cmu.tetrad.search.test.RowsSettable
-
Sets the rows to use for the test.
- setRule(Lofs.Rule) - Method in class edu.cmu.tetrad.search.Lofs
-
Sets the rule to use to do the orientation.
- setRuleType(GicScores.RuleType) - Method in class edu.cmu.tetrad.search.score.GicScores
-
Sets the rule type.
- setRuleType(SemBicScore.RuleType) - Method in class edu.cmu.tetrad.search.score.SemBicScore
-
Sets the rule type to use.
- setSamplePrior(double) - Method in class edu.cmu.tetrad.search.score.BdeScore
-
Sets the sample prior for the BDe score.
- setSamplePrior(double) - Method in class edu.cmu.tetrad.search.score.BdeuScore
-
Sets the sample prior for the BdeuScore object.
- setSamplePrior(double) - Method in class edu.cmu.tetrad.search.score.DiscreteBicScore
-
Sets the sample prior.
- setSamplePrior(double) - Method in class edu.cmu.tetrad.search.score.DiscreteBicScoreAdTree
-
Sets the sample prior.
- setSamplePrior(double) - Method in interface edu.cmu.tetrad.search.score.DiscreteScore
-
Sets the sample prior.
- setSamplePrior(double) - Method in class edu.cmu.tetrad.search.utils.FgesOrienter
-
For BDeu score for discrete search; see Chickering (2002).
- setSamplePrior(double) - Method in class edu.cmu.tetrad.search.work_in_progress.ISBDeuScore
-
Sets the value for the samplePrior field.
- setSamplePrior(double) - Method in class edu.cmu.tetrad.search.work_in_progress.ISBicScore
-
Sets the value of the sample prior.
- setSamplePrior(double) - Method in interface edu.cmu.tetrad.search.work_in_progress.ISScore
-
Sets the prior probability value assigned to the sample.
- setSamplePrior(double) - Method in class edu.cmu.tetrad.study.performance.ComparisonParameters
-
Setter for the field
samplePrior
. - setSampleSampleVariability(double) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.MeasurementSimulator
-
Sets the sample to sample variability.
- setSampleSampleVariability(double) - Method in class edu.cmu.tetrad.study.gene.tetradapp.model.MeasurementSimulatorParams
-
setSampleSampleVariability.
- setSampleSize(int) - Method in class edu.cmu.tetrad.data.CorrelationMatrixOnTheFly
-
Sets the sample size used in the covariance matrix.
- setSampleSize(int) - Method in class edu.cmu.tetrad.data.CovarianceMatrix
-
Sets the sample size used in the covariance matrix.
- setSampleSize(int) - Method in class edu.cmu.tetrad.data.CovarianceMatrixOnTheFly
-
Sets the sample size used in the covariance matrix.
- setSampleSize(int) - Method in interface edu.cmu.tetrad.data.ICovarianceMatrix
-
Sets the sample size used in the covariance matrix.
- setSampleSize(int) - Method in class edu.cmu.tetrad.study.performance.ComparisonParameters
-
Setter for the field
sampleSize
. - setSampleStyle(Cstar.SampleStyle) - Method in class edu.cmu.tetrad.search.Cstar
-
Sets the sample style.
- setSaveCPDAGs(boolean) - Method in class edu.cmu.tetrad.algcomparison.Comparison
-
Sets whether to save CPDAGs.
- setSaveCPDAGs(boolean) - Method in class edu.cmu.tetrad.algcomparison.TimeoutComparison
-
Setter for the field
saveCPDAGs
. - setSaveData(boolean) - Method in class edu.cmu.tetrad.algcomparison.Comparison
-
Sets the flag indicating whether to save data.
- setSaveGraphs(boolean) - Method in class edu.cmu.tetrad.algcomparison.Comparison
-
Sets whether to save graphs.
- setSaveGraphs(boolean) - Method in class edu.cmu.tetrad.algcomparison.TimeoutComparison
-
Setter for the field
saveGraphs
. - setSavePags(boolean) - Method in class edu.cmu.tetrad.algcomparison.Comparison
-
Sets the value of 'savePags' flag.
- setSavePags(boolean) - Method in class edu.cmu.tetrad.algcomparison.TimeoutComparison
-
Setter for the field
savePags
. - setScalingFactor(double) - Method in class edu.cmu.tetrad.search.test.ConditionalCorrelationIndependence
-
Sets the bandwidth adjustment value for the ConditionalCorrelationIndependence analysis.
- setScalingFactor(double) - Method in class edu.cmu.tetrad.search.test.Kci
-
Sets the width multiplier.
- setScore(Lofs.Score) - Method in class edu.cmu.tetrad.search.Lofs
-
Sets the (LoFS) score to use.
- setScore(ScoreType) - Method in class edu.cmu.tetrad.study.performance.ComparisonParameters
-
Setter for the field
score
. - setScoreType(ScoreType) - Method in class edu.cmu.tetrad.sem.SemEstimator
-
Setter for the field
scoreType
. - setScoreType(ScoreType) - Method in class edu.cmu.tetrad.sem.SemIm
-
Setter for the field
scoreType
. - setScoreWrapper(ScoreWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.DirectLingam
-
Sets the score wrapper for this DirectLingam instance.
- setScoreWrapper(ScoreWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.Fask
-
Sets the score wrapper for the object.
- setScoreWrapper(ScoreWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.continuous.dag.FaskOrig
-
Sets the score wrapper for the object.
- setScoreWrapper(ScoreWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FaskConcatenated
-
Sets a score wrapper if not null.
- setScoreWrapper(ScoreWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FaskLofsConcatenated
-
Sets a score wrapper if not null.
- setScoreWrapper(ScoreWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FaskVote
-
Sets a score wrapper if not null.
- setScoreWrapper(ScoreWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FciIod
-
Sets a score wrapper if not null.
- setScoreWrapper(ScoreWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.FgesConcatenated
-
Sets a score wrapper if not null.
- setScoreWrapper(ScoreWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.Images
-
Sets the score wrapper for the algorithm.
- setScoreWrapper(ScoreWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.multi.ImagesBoss
-
Sets a score wrapper if not null.
- setScoreWrapper(ScoreWrapper) - Method in interface edu.cmu.tetrad.algcomparison.algorithm.MultiDataSetAlgorithm
-
Sets a score wrapper if not null.
- setScoreWrapper(ScoreWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Boss
-
Sets the score wrapper.
- setScoreWrapper(ScoreWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.BossLingam
-
Sets the score wrapper.
- setScoreWrapper(ScoreWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Cstar
-
Sets the score wrapper.
- setScoreWrapper(ScoreWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Fges
-
Sets the score wrapper.
- setScoreWrapper(ScoreWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.FgesMb
-
Sets the score wrapper.
- setScoreWrapper(ScoreWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Grasp
-
Sets the score wrapper.
- setScoreWrapper(ScoreWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.RestrictedBoss
-
Sets the score wrapper.
- setScoreWrapper(ScoreWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Sp
-
Sets the score wrapper.
- setScoreWrapper(ScoreWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Bfci
-
Sets the score wrapper for this algorithm.
- setScoreWrapper(ScoreWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.BossDumb
-
Sets the score wrapper for the algorithm.
- setScoreWrapper(ScoreWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.BossPag
-
Sets the score wrapper for the algorithm.
- setScoreWrapper(ScoreWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.Gfci
-
Sets the score wrapper for the algorithm.
- setScoreWrapper(ScoreWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.GraspFci
-
Sets the score wrapper for the algorithm.
- setScoreWrapper(ScoreWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.LvLite
-
Sets the score wrapper for the algorithm.
- setScoreWrapper(ScoreWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.SpFci
-
Sets the ScoreWrapper object for the algorithm.
- setScoreWrapper(ScoreWrapper) - Method in class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.SvarGfci
-
Sets the score wrapper for the algorithm.
- setScoreWrapper(ScoreWrapper) - Method in interface edu.cmu.tetrad.algcomparison.utils.UsesScoreWrapper
-
Sets the score wrapper.
- setSd(double) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.AbstractNbComponent
-
Sets the standard deviation.
- setSeed(long) - Method in class edu.cmu.tetrad.search.BFci
-
Sets the seed for the random number generator.
- setSeed(long) - Method in class edu.cmu.tetrad.search.FaskOrig
-
Sets the seed for generating random numbers.
- setSeed(long) - Method in class edu.cmu.tetrad.search.Grasp
-
Sets the seed for random number generation.
- setSeed(long) - Method in class edu.cmu.tetrad.search.GraspFci
-
Setter for the field
seed
. - setSeed(long) - Method in class edu.cmu.tetrad.search.Mimbuild
-
Setter for the field
seed
. - setSeed(long) - Method in class edu.cmu.tetrad.search.PermutationSearch
-
Sets the seed value used for generating random numbers.
- setSeed(long) - Method in class edu.cmu.tetrad.util.RandomUtil
-
Sets the seed to the given value.
- setSelected(Node, boolean) - Method in class edu.cmu.tetrad.data.BoxDataSet
-
Marks the given column as selected if 'selected' is true or deselected if 'selected' is false.
- setSelected(Node, boolean) - Method in interface edu.cmu.tetrad.data.DataSet
-
Marks the given column as selected if 'selected' is true or deselected if 'selected' is false.
- setSelected(Node, boolean) - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
Marks the given column as selected if 'selected' is true or deselected if 'selected' is false.
- setSelectedModel(DataModel) - Method in class edu.cmu.tetrad.data.DataModelList
-
Setter for the field
selectedModel
. - setSelectionAlpha(double) - Method in class edu.cmu.tetrad.search.Cstar
-
Sets the selection alpha.
- setSelectionBias(boolean) - Method in class edu.cmu.tetrad.data.AbstractVariable
-
Sets the selection bias status for this node.
- setSelectionBias(boolean) - Method in class edu.cmu.tetrad.data.DiscreteVariable
- setSelectionBias(boolean) - Method in class edu.cmu.tetrad.graph.GraphNode
-
Sets whether the node is selected as a bias node.
- setSelectionBias(boolean) - Method in interface edu.cmu.tetrad.graph.Node
-
Returns the selection bias status for this node.
- setSelfLoopCoef(double) - Method in class edu.cmu.tetrad.sem.LargeScaleSimulation
-
Setter for the field
selfLoopCoef
. - setSelfLoopStrength(double) - Method in class edu.cmu.tetrad.search.Lofs
-
Sets the self-loop strength, if applicable.
- setSemIm(SemIm) - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpc
-
Setter for the field
semIm
. - setSemIm(SemIm) - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpcFast
-
Setter for the field
semIm
. - setSemOptimizer(SemOptimizer) - Method in class edu.cmu.tetrad.sem.SemEstimator
-
Setter for the field
semOptimizer
. - setSemPm(SemPm) - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpc
-
Setter for the field
semPm
. - setSemPm(SemPm) - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpcFast
-
Setter for the field
semPm
. - setSepsetFinderMethod(int) - Method in class edu.cmu.tetrad.search.BFci
-
Sets the method to be used for finding the sepset.
- setSepsetFinderMethod(int) - Method in class edu.cmu.tetrad.search.GFci
-
Sets the method used to find the sepset in the GFci algorithm.
- setSepsetFinderMethod(int) - Method in class edu.cmu.tetrad.search.GraspFci
-
Sets the method for finding sepsets in the GraspFci class.
- setSepsetFinderMethod(int) - Method in class edu.cmu.tetrad.search.SpFci
-
Sets the method to use for finding sepsets, 1 = greedy, 2 = min-p., 3 = max-p, default min-p.
- setSetAlgorithmKnowledge(boolean) - Method in class edu.cmu.tetrad.algcomparison.Comparison
-
Sets the algorithm knowledge flag.
- setSetType(ConditioningSetType) - Method in class edu.cmu.tetrad.search.MarkovCheck
-
Sets the type of conditioning sets to use in the Markov check.
- setShortDescription(String) - Method in class edu.cmu.tetrad.util.ParamDescription
-
Setter for the field
shortDescription
. - setShowErrorTerms(boolean) - Method in class edu.cmu.tetrad.graph.SemGraph
-
Setter for the field
showErrorTerms
. - setShowUtilities(boolean) - Method in class edu.cmu.tetrad.algcomparison.Comparison
-
Sets the value of the showUtilities property.
- setShowUtilities(boolean) - Method in class edu.cmu.tetrad.algcomparison.TimeoutComparison
-
Setter for the field
showUtilities
. - setSignificance(double) - Method in interface edu.cmu.tetrad.search.utils.TetradTest
-
setSignificance.
- setSignificance(double) - Method in class edu.cmu.tetrad.search.utils.TetradTestContinuous
-
setSignificance.
- setSignificance(double) - Method in class edu.cmu.tetrad.search.utils.TetradTestDiscrete
-
setSignificance.
- setSignificance(double) - Method in class edu.cmu.tetrad.search.utils.TetradTestPopulation
-
setSignificance.
- setSignificanceChecked(boolean) - Method in class edu.cmu.tetrad.search.Fofc
-
Sets whether the significance of the cluster should be checked for each cluster.
- setSimIndex(int) - Method in class edu.cmu.tetrad.algcomparison.algorithm.ExternalAlgorithm
-
Setter for the field
simIndex
. - setSimulation(Simulation) - Method in class edu.cmu.tetrad.algcomparison.algorithm.ExternalAlgorithm
-
Setter for the field
simulation
. - setSingularDepth(int) - Method in class edu.cmu.tetrad.search.GraspFci
-
Sets depth for singular tucks.
- setSkewEdgeThreshold(double) - Method in class edu.cmu.tetrad.search.FaskOrig
-
Sets the skew-edge threshold.
- setSortByUtility(boolean) - Method in class edu.cmu.tetrad.algcomparison.Comparison
-
Set the flag to determine if utility should do the sorting.
- setSortByUtility(boolean) - Method in class edu.cmu.tetrad.algcomparison.TimeoutComparison
-
Setter for the field
sortByUtility
. - setSpringConstant(double) - Method in class edu.cmu.tetrad.graph.LayoutUtil.KamadaKawaiLayout
-
Sets the spring constant; higher for more elasticity.
- setStable(boolean) - Method in class edu.cmu.tetrad.search.Cpc
-
Sets whether the stable adjacency search should be used.
- setStable(boolean) - Method in class edu.cmu.tetrad.search.Fas
-
Sets whether the stable adjacency search should be used.
- setStable(boolean) - Method in class edu.cmu.tetrad.search.Fci
-
Sets whether the stable options should be used in the initial adjacency search.
- setStable(boolean) - Method in class edu.cmu.tetrad.search.FciMax
-
Sets whether the stable option will be used for search.
- setStable(boolean) - Method in class edu.cmu.tetrad.search.Pc
-
Sets whether the stable adjacency search should be used.
- setStartIm(SemIm) - Method in class edu.cmu.tetrad.sem.SemEstimatorGibbsParams
-
Setter for the field
startIm
. - setStartingValue(double) - Method in class edu.cmu.tetrad.sem.Parameter
-
Sets the starting value in case this is a fixed parameter.
- setStartsWith(String, String, GeneralizedSemPm) - Static method in class edu.pitt.csb.mgm.MixedUtils
-
Set all existing parameters that begins with sta to template and also set template for any new parameters
- setStartsWithParametersEstimationInitializationTemplate(String, String) - Method in class edu.cmu.tetrad.sem.GeneralizedSemPm
-
Sets the parameter estimation initialization template for a given startsWith string.
- setStartsWithParametersTemplate(String, String) - Method in class edu.cmu.tetrad.sem.GeneralizedSemPm
-
Sets the parameter template for expressions that start with the specified string.
- setStartWith(LvLite.START_WITH) - Method in class edu.cmu.tetrad.search.LvLite
-
Sets the algorithm to use to obtain the initial CPDAG.
- setStdout(PrintStream) - Method in class edu.cmu.tetrad.data.simulation.LoadDataAndGraphs
-
Setter for the field
stdout
. - setStepsGenerated(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.MeasurementSimulator
-
Sets the number of time steps to generate.
- setStepsGenerated(int) - Method in class edu.cmu.tetrad.study.gene.tetradapp.model.MeasurementSimulatorParams
-
setStepsGenerated.
- setStopEnergy(double) - Method in class edu.cmu.tetrad.graph.LayoutUtil.KamadaKawaiLayout
-
Sets the max delta at which the algorithm will stop settling.
- setStretch(double) - Method in class edu.cmu.tetrad.sem.SemEstimatorGibbsParams
-
Setter for the field
stretch
. - setStructurePrior(double) - Method in class edu.cmu.tetrad.search.score.BdeScore
-
Sets the structure prior for the BDe score.
- setStructurePrior(double) - Method in class edu.cmu.tetrad.search.score.BdeuScore
-
Sets the structure prior for the BdeuScore object.
- setStructurePrior(double) - Method in class edu.cmu.tetrad.search.score.ConditionalGaussianScore
-
Setter for the field
structurePrior
. - setStructurePrior(double) - Method in class edu.cmu.tetrad.search.score.DiscreteBicScore
-
Sets the structure prior.
- setStructurePrior(double) - Method in class edu.cmu.tetrad.search.score.DiscreteBicScoreAdTree
-
Sets the structure prior.
- setStructurePrior(double) - Method in interface edu.cmu.tetrad.search.score.DiscreteScore
-
Sets the structure prior.
- setStructurePrior(double) - Method in class edu.cmu.tetrad.search.score.SemBicScore
-
Sets the structure prior for this score.
- setStructurePrior(double) - Method in class edu.cmu.tetrad.search.utils.FgesOrienter
-
For BDeu score for discrete search; see Chickering (2002).
- setStructurePrior(double) - Method in class edu.cmu.tetrad.search.work_in_progress.ISBDeuScore
-
Sets the structure prior for the model.
- setStructurePrior(double) - Method in class edu.cmu.tetrad.search.work_in_progress.ISBicScore
-
Sets the structure prior value for the current configuration.
- setStructurePrior(double) - Method in interface edu.cmu.tetrad.search.work_in_progress.ISScore
-
Sets the prior value assigned to the structure.
- setStructurePrior(double) - Method in class edu.cmu.tetrad.study.performance.ComparisonParameters
-
Setter for the field
structurePrior
. - setSubstitutions(Map<String, Double>) - Method in class edu.cmu.tetrad.sem.GeneralizedSemIm
-
setSubstitutions.
- setSymmetricFirstStep(boolean) - Method in class edu.cmu.tetrad.search.Fges
-
Sets whether the first step of the procedure will score both X->Y and Y->X and prefer the higher score (for adding X--Y to the graph).
- setSymmetricFirstStep(boolean) - Method in class edu.cmu.tetrad.search.FgesMb
-
Sets whether the first step of the procedure will score both X->Y and Y->X and prefer the higher score (for adding X--Y to the graph).
- setSymmetricFirstStep(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.ISFges
-
Sets whether the first step of the algorithm should be symmetric.
- setTabDelimitedTables(boolean) - Method in class edu.cmu.tetrad.algcomparison.Comparison
-
Sets the flag indicating whether tab-delimited tables should be used.
- setTabDelimitedTables(boolean) - Method in class edu.cmu.tetrad.algcomparison.TimeoutComparison
-
Setter for the field
tabDelimitedTables
. - setTarget(String) - Method in class edu.cmu.tetrad.classify.ClassifierBayesUpdaterDiscrete
-
Sets the target variable.
- setTestTimeout(long) - Method in class edu.cmu.tetrad.search.LvLite
-
Sets the timeout for the testing steps, for the extra edge removal steps and the discriminating path steps.
- setTestTimeout(long) - Method in class edu.cmu.tetrad.search.utils.FciOrient
-
Sets the timeout for running tests.
- setTestType(BpcTestType) - Method in class edu.cmu.tetrad.search.utils.TetradTestContinuous
-
setTestType.
- setTetradLoggerConfig(TetradLoggerConfig) - Method in class edu.cmu.tetrad.util.TetradLogger
-
Sets what configuration should be used to determine which events to log.
- setThr(double) - Method in class edu.cmu.tetrad.search.work_in_progress.Glasso
-
Setter for the field
thr
. - setThreshold(boolean) - Method in class edu.cmu.tetrad.search.test.IndTestProbabilistic
-
Sets whether the independence test should be thresholded (true) or randomized (false).
- setThreshold(boolean) - Method in class edu.pitt.dbmi.algo.bayesian.constraint.search.PagSamplingRfci
-
Set the threshold.
- setThreshold(double) - Method in class edu.cmu.tetrad.search.FactorAnalysis
-
Sets the threshold.
- setThreshold(double) - Method in class edu.cmu.tetrad.search.test.Kci
-
Sets the threshold.
- setThresholdNoRandomConstrainSearch(boolean) - Method in class edu.pitt.dbmi.algo.bayesian.constraint.search.RfciBsc
-
Setter for the field
thresholdNoRandomConstrainSearch
. - setThresholdNoRandomDataSearch(boolean) - Method in class edu.pitt.dbmi.algo.bayesian.constraint.search.RfciBsc
-
Setter for the field
thresholdNoRandomDataSearch
. - setTier(int, List<String>) - Method in class edu.cmu.tetrad.data.Knowledge
-
Sets the variable in a given tier to the specified list.
- setTierForbiddenWithin(int, boolean) - Method in class edu.cmu.tetrad.data.Knowledge
-
Forbids any variable from being parent of any other variable within the given tier, or cancels this forbidding.
- setTNeighbors(Set<Node>) - Method in class edu.cmu.tetrad.search.utils.Bes.Arrow
-
Sets the set of nodes that are in TNeighbors.
- setToken(int, int, String) - Method in class edu.cmu.tetrad.util.TextTable
-
Sets the token at the given row and column, each of which must be >= 0 and less than the number of rows or columns, respectively.
- setTolerance(double) - Method in class edu.cmu.tetrad.search.FastIca
-
Sets a positive scalar giving the tolerance at which the un-mixing matrix is considered to have converged.
- setToleranceDepth(int) - Method in class edu.cmu.tetrad.search.work_in_progress.GraspTol
-
Setter for the field
toleranceDepth
. - setToTautology() - Method in class edu.cmu.tetrad.bayes.Proposition
-
Specifies that all variables in the proposition are either completely allowed (true) or completely disallowed (false) for all of their categories.
- setTrial(int) - Method in class edu.cmu.tetrad.study.performance.ComparisonParameters
-
Setter for the field
trial
. - setTrimmingStyle(int) - Method in class edu.cmu.tetrad.search.FgesMb
-
Sets the trimming style for the algorithm.
- setTrueDag(Graph) - Method in class edu.cmu.tetrad.study.performance.ComparisonResult
-
Setter for the field
trueDag
. - setTrueGraph(Graph) - Method in class edu.cmu.tetrad.search.SvarFges
-
Sets the true graph, which will result in some edges in output graphs being marked with asterisks.
- setTrueGraph(Graph) - Method in class edu.cmu.tetrad.search.utils.FgesOrienter
-
If the true graph is set, askterisks will be printed in log output for the true edges.
- setTrueGraph(Graph) - Method in interface edu.cmu.tetrad.search.utils.IPurify
-
setTrueGraph.
- setTrueGraph(Graph) - Method in class edu.cmu.tetrad.search.utils.PurifyScoreBased
-
setTrueGraph.
- setTrueGraph(Graph) - Method in class edu.cmu.tetrad.search.utils.PurifyTetradBased
-
setTrueGraph.
- setTrueGraph(Graph) - Method in class edu.cmu.tetrad.search.work_in_progress.ISFges
-
Sets the true graph.
- setTrueInputs(int[]) - Method in class edu.cmu.tetrad.search.work_in_progress.DMSearch
-
Setter for the field
trueInputs
. - setTruePag(Graph) - Method in class edu.cmu.tetrad.search.utils.TsDagToPag
-
Setter for the field
truePag
. - setTwoCycleScreeningCutoff(double) - Method in class edu.cmu.tetrad.search.FaskOrig
-
Sets the cutoff for two-cycle screening.
- setType(ParamConstraintType) - Method in class edu.cmu.tetrad.sem.ParamConstraint
-
Setter for the field
type
. - setUncoveredDepth(int) - Method in class edu.cmu.tetrad.search.Grasp
-
Sets the maximum depth at which uncovered tucks can be performed within the depth-first search of GRaSP.
- setUncoveredDepth(int) - Method in class edu.cmu.tetrad.search.work_in_progress.GraspTol
-
Setter for the field
uncoveredDepth
. - setUnderLineTriples(Set<Triple>) - Method in class edu.cmu.tetrad.graph.Dag
-
Sets the underlined triples.
- setUnderLineTriples(Set<Triple>) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
setUnderLineTriples.
- setUnderLineTriples(Set<Triple>) - Method in interface edu.cmu.tetrad.graph.Graph
-
setUnderLineTriples.
- setUnderLineTriples(Set<Triple>) - Method in class edu.cmu.tetrad.graph.LagGraph
-
setUnderLineTriples.
- setUnderLineTriples(Set<Triple>) - Method in class edu.cmu.tetrad.graph.SemGraph
-
setUnderLineTriples.
- setUnderLineTriples(Set<Triple>) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Sets the underline triples.
- setUnderLineTriples(Set<Triple>) - Method in class edu.cmu.tetrad.graph.Underlines
-
Setter for the field
underLineTriples
. - setUp() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.TestSimpleRandomizer
-
Sets up a graph to randomize with 100 variables in it.
- setUp() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.TestMeasurementSimulator
-
Sets up a GeneHistory object in the format for Richard's diagnostic.
- setUpperBound(double) - Method in class edu.pitt.dbmi.algo.bayesian.constraint.search.RfciBsc
-
Sets the upper bound.
- setUpperBoundDouble(double) - Method in class edu.cmu.tetrad.util.ParamDescription
-
Setter for the field
upperBoundDouble
. - setUpperBoundInt(int) - Method in class edu.cmu.tetrad.util.ParamDescription
-
Setter for the field
upperBoundInt
. - setUpperBoundLong(long) - Method in class edu.cmu.tetrad.util.ParamDescription
-
Setter for the field
upperBoundLong
. - setUseBes(boolean) - Method in class edu.cmu.tetrad.search.Boss
-
Sets up BOSS to use the BES algorithm to render BOSS correct under the faithfulness assumption.
- setUseBes(boolean) - Method in class edu.cmu.tetrad.search.LvDumb
-
Sets whether to use the BES (Backward Elimination Search) algorithm during the search.
- setUseBes(boolean) - Method in class edu.cmu.tetrad.search.LvLite
-
Sets whether to use the BES (Backward Elimination Search) algorithm during the search.
- setUseDataOrder(boolean) - Method in class edu.cmu.tetrad.search.Boss
-
True if the order of the variables in the data should be used for an initial best-order search, false if a random permutation should be used.
- setUseDataOrder(boolean) - Method in class edu.cmu.tetrad.search.Grasp
-
True if the order of the variables in the data should be used for an initial best-order search, false if a random permutation should be used.
- setUseDataOrder(boolean) - Method in class edu.cmu.tetrad.search.GraspFci
-
Sets whether to use data order for GRaSP (as opposed to random order) for the first step of GRaSP
- setUseDataOrder(boolean) - Method in class edu.cmu.tetrad.search.LvDumb
-
Sets whether the search algorithm should use the order of the data set during the search.
- setUseDataOrder(boolean) - Method in class edu.cmu.tetrad.search.LvLite
-
Sets the flag indicating whether to use data order.
- setUseDataOrder(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.GraspTol
-
Setter for the field
useDataOrder
. - setUseDisplayNames(boolean) - Method in class edu.cmu.tetrad.search.utils.BayesImParser
-
Sets whether to use display names.
- setUseFasAdjacencies(boolean) - Method in class edu.cmu.tetrad.search.Fask
-
Sets the flag indicating whether to use Fast Adjacencies (FAS) for the search algorithm.
- setUseFgES(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.DMSearch
-
setUseFgES.
- setUseHeuristic(boolean) - Method in class edu.cmu.tetrad.search.utils.MaxP
-
Sets whether the max P heuristic should be used.
- setUseMaxPHeuristic(boolean) - Method in class edu.cmu.tetrad.search.Pc
-
Sets whether the max-p heuristic should be used for collider discovery.
- setUsePseudoinverse(boolean) - Method in class edu.cmu.tetrad.search.test.IndTestFisherZ
-
Sets whether or not to use the pseudoinverse method for determining independence.
- setUsePseudoInverse(boolean) - Method in class edu.cmu.tetrad.search.score.DegenerateGaussianScore
-
Sets the flag to indicate whether to use pseudo inverse in the score calculations.
- setUsePseudoInverse(boolean) - Method in class edu.cmu.tetrad.search.score.EbicScore
-
Returns the gamma parameter for EBIC.
- setUsePseudoInverse(boolean) - Method in class edu.cmu.tetrad.search.score.GicScores
-
Sets whether to use the pseudo-inverse when calculating the score.
- setUsePseudoInverse(boolean) - Method in class edu.cmu.tetrad.search.score.PoissonPriorScore
-
Sets whether the pseudo-inverse should be used.
- setUsePseudoInverse(boolean) - Method in class edu.cmu.tetrad.search.score.SemBicScore
-
Returns the covariance matrix of the regression of the ith variable on its parents and the regression coefficients.
- setUsePseudoInverse(boolean) - Method in class edu.cmu.tetrad.search.score.ZsbScore
-
Sets whether to use the pseudo-inverse in place of the inverse in the score.
- setUseRaskuttiUhler(boolean) - Method in class edu.cmu.tetrad.search.Grasp
-
True if the Raskutti-Uhler method should be used, false if the Verma-Pearl method should be used.
- setUseRaskuttiUhler(boolean) - Method in class edu.cmu.tetrad.search.GraspFci
-
Sets whether to use Raskutti and Uhler's modification of GRaSP.
- setUseRaskuttiUhler(boolean) - Method in class edu.cmu.tetrad.search.utils.TeyssierScorer
-
Setter for the field
useRaskuttiUhler
. - setUseRaskuttiUhler(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.GraspTol
-
setUseRaskuttiUhler.
- setUseScore(boolean) - Method in class edu.cmu.tetrad.search.Grasp
-
True if the score should be used (if both a score and a test are provided), false if not.
- setUseScore(boolean) - Method in class edu.cmu.tetrad.search.GraspFci
-
Sets whether to use score for GRaSP (as opposed to independence test) for GRaSP.
- setUseScore(boolean) - Method in class edu.cmu.tetrad.search.utils.TeyssierScorer
-
Setter for the field
useScore
. - setUseScore(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.GraspTol
-
Setter for the field
useScore
. - setUseSkewAdjacencies(boolean) - Method in class edu.cmu.tetrad.search.Fask
-
Sets the flag indicating whether to use skew adjacencies in the FaskOrig class.
- setValue(double) - Method in class edu.cmu.tetrad.sem.Mapping
-
Sets the value of the array element at the stored coordinates (i, j).
- setValue(double) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.AbstractNbComponent
-
Sets the parents of this component.
- setValue(double) - Method in interface edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.NbComponent
-
Sets the parents of this component.
- setValue(int, boolean) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BooleanFunction
-
Sets the boolean value in a given row of the table.
- setValue(int, double) - Method in class edu.cmu.tetrad.sem.SemProposition
-
Sets the value at the specified index in the array of values.
- setValue(int, int, double) - Method in class edu.cmu.tetrad.data.CorrelationMatrixOnTheFly
-
Sets the value of the covariance matrix at the specified indices.
- setValue(int, int, double) - Method in class edu.cmu.tetrad.data.CovarianceMatrix
-
Sets the value of the covariance matrix at the specified indices.
- setValue(int, int, double) - Method in class edu.cmu.tetrad.data.CovarianceMatrixOnTheFly
-
Sets the value of the covariance matrix at the specified indices.
- setValue(int, int, double) - Method in interface edu.cmu.tetrad.data.ICovarianceMatrix
-
Sets the value of the covariance matrix at the specified indices.
- setValue(int, int, double) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.LTMatrixF
-
Assigns double x to matrix element (r, c).
- setValue(int, int, double) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.MatrixF
-
Assigns double x to matrix element at (r, c).
- setValue(int, int, double) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.SymMatrixF
-
Sets the value of element (
row
,col
) tox
- setValue(int, int, float) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.LTMatrixF
-
Assigns float x to matrix element (r, c)
- setValue(int, int, float) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.MatrixF
-
Assigns float x to matrix element at (r, c)
- setValue(int, int, float) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.SymMatrixF
-
Assigns float x to matrix element (r, c)
- setValue(int, int, int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.LTMatrix
-
Assigns integer x to matrix element (r, c).
- setValue(int, int, int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.Matrix
-
Assigns integer x to matrix element at (r, c).
- setValue(int, int, int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.SymMatrix
-
Sets the value of element (
row
,col
) tox
- setValue(int, int, short) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.LTMatrix
-
Assigns short x to matrix element (r, c)
- setValue(int, int, short) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.Matrix
-
Assigns short x to matrix element at (r, c)
- setValue(int, int, short) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.SymMatrix
-
Assigns short x to matrix element (r, c)
- setValue(Node, double) - Method in class edu.cmu.tetrad.sem.SemProposition
-
Sets the value for a given node in the SemProposition object.
- setVarHigh(double) - Method in class edu.cmu.tetrad.algcomparison.simulation.ConditionalGaussianSimulation
-
Setter for the field
varHigh
. - setVarHigh(double) - Method in class edu.cmu.tetrad.algcomparison.simulation.LinearSineSimulation
-
Setter for the field
varHigh
. - setVariable(int, boolean) - Method in class edu.cmu.tetrad.bayes.Proposition
-
Specifies that all categories for the given variable are either all allowed (true) or all disallowed (false).
- setVariables(List<Node>) - Method in class edu.cmu.tetrad.data.CorrelationMatrixOnTheFly
-
Sets the list of Node variables for the covariance matrix.
- setVariables(List<Node>) - Method in class edu.cmu.tetrad.data.CovarianceMatrix
-
Sets the list of Node variables for the covariance matrix.
- setVariables(List<Node>) - Method in class edu.cmu.tetrad.data.CovarianceMatrixOnTheFly
-
Sets the list of Node variables for the covariance matrix.
- setVariables(List<Node>) - Method in interface edu.cmu.tetrad.data.ICovarianceMatrix
-
Sets the list of Node variables for the covariance matrix.
- setVariables(List<Node>) - Method in class edu.cmu.tetrad.search.PcMb
-
Setter for the field
variables
. - setVariables(List<Node>) - Method in class edu.cmu.tetrad.search.score.DiscreteBicScore
-
Sets the variables to a new list of the same size.
- setVariables(List<Node>) - Method in class edu.cmu.tetrad.search.score.DiscreteBicScoreAdTree
-
Sets the variables to a new list of the same size.
- setVariables(List<Node>) - Method in class edu.cmu.tetrad.search.score.GicScores
-
Sets the variables of the dataset.
- setVariables(List<Node>) - Method in class edu.cmu.tetrad.search.score.SemBicScore
-
Sets the variables of the covariance matrix.
- setVariables(List<Node>) - Method in class edu.cmu.tetrad.search.test.IndTestFisherZ
-
Sets the variables to a new list of the same size.
- setVariables(List<Node>) - Method in class edu.cmu.tetrad.search.test.IndTestTrekSep
-
Sets the varialbe to this list (of the same length).
- setVariables(List<Node>) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestFisherZRecursive
-
Setter for the field
variables
. - setVariables(List<Node>) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestPositiveCorr
-
Sets the variables used in the independence test.
- setVariables(List<Node>) - Method in class edu.cmu.tetrad.search.work_in_progress.ISBDeuScore
-
Sets the list of variables after validating that each variable in the provided list has the same name as the corresponding variable in the existing list.
- setVariables(List<Node>) - Method in class edu.cmu.tetrad.search.work_in_progress.ISBicScore
-
Sets the list of variables for the instance.
- setVariables(List<Node>) - Method in class edu.cmu.tetrad.search.work_in_progress.SemBicScoreDeterministic
-
Setter for the field
variables
. - setVariablesCopied(boolean) - Method in class edu.cmu.tetrad.data.Discretizer
-
Setter for the field
variablesCopied
. - setVariablesTemplate(String) - Method in class edu.cmu.tetrad.sem.GeneralizedSemPm
-
Sets the variable template.
- setVarLow(double) - Method in class edu.cmu.tetrad.algcomparison.simulation.ConditionalGaussianSimulation
-
Setter for the field
varLow
. - setVarLow(double) - Method in class edu.cmu.tetrad.algcomparison.simulation.LinearSineSimulation
-
Setter for the field
varLow
. - setVarRange(double, double) - Method in class edu.cmu.tetrad.sem.LargeScaleSimulation
-
setVarRange.
- setVarsPerInd(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.LagGraphParams
-
Setter for the field
varsPerInd
. - setVarsPerInd(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ManualLagGraphParams
-
Sets the number of variables per individual.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.algcomparison.independence.Kci
-
Sets the verbosity level of the KCI test.
- setVerbose(boolean) - Method in interface edu.cmu.tetrad.cluster.ClusteringAlgorithm
-
True iff verbose output should be printed.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.cluster.KMeans
-
True iff verbose output should be printed.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.data.CorrelationMatrixOnTheFly
-
Setter for the field
verbose
. - setVerbose(boolean) - Method in class edu.cmu.tetrad.data.CovarianceMatrixOnTheFly
-
Setter for the field
verbose
. - setVerbose(boolean) - Method in class edu.cmu.tetrad.search.BFci
-
Sets whether verbose output should be printed.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.Boss
-
Sets whether verbose output should be printed.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.Cfci
-
Whether verbose output (about independencies) is output.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.CompositeIndependenceTest
-
Sets whether this test will print verbose output.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.Cpc
-
Sets whether verbose output should be printed.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.Cstar
-
Sets whether verbose output will be printed.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.Fas
-
Sets the verbose mode.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.Fasd
-
Sets the verbose flag to control verbose output.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.FaskOrig
-
Sets the verbose mode.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.FastIca
-
Sets whether verbose output should be printed.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.Fci
-
Sets whether verbose output should be printed.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.FciMax
-
Sets whether verbose output should be printed.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.Fges
-
Sets whether verbose output should be produced.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.FgesMb
-
Sets whether verbose output should be produced.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.Fofc
-
Setter for the field
verbose
. - setVerbose(boolean) - Method in class edu.cmu.tetrad.search.Ftfc
-
Sets whether verbose output should be printed.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.GFci
-
Sets whether verbose output should be printed.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.Grasp
-
Sets whether verbose output is printed.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.GraspFci
-
Sets whether verbose output should be printed.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.IcaLingam
-
A boolean indicating whether to print verbose output.
- setVerbose(boolean) - Method in interface edu.cmu.tetrad.search.IFas
-
Sets whether verbose output should be printed.
- setVerbose(boolean) - Method in interface edu.cmu.tetrad.search.IndependenceTest
-
Sets whether this test will print verbose output.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.IndTestIod
-
Sets whether this test will print verbose output.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.LvDumb
-
Sets the verbosity level of the search algorithm.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.LvLite
-
Sets the verbosity level of the search algorithm.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.Pc
-
Sets whether verbose output should be given.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.Pcd
-
Sets whether this test will print verbose output.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.PcMb
-
Sets the verbosity level of the search.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.Rfci
-
Sets whether verbose output is printed.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.score.GicScores
-
Sets whether verbose output should be sent to out.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.score.IndTestScore
-
Sets whether verbose output should be sent to out.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.score.SemBicScore
-
Sets whether verbose output should be sent to out.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.SpFci
-
Sets whether verbose output is printed.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.SvarFas
-
Sets the verbosity of the program.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.SvarFci
-
Sets whether verbose output is to be printed.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.SvarFges
-
Sets whether verbose output should be produced.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.SvarGfci
-
Sets whether verbose output is printed.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.test.IndTestChiSquare
-
Sets whether verbose output should be printed.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.test.IndTestConditionalCorrelation
-
Sets whether verbose output should be printed.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.test.IndTestConditionalGaussianLrt
-
Sets whether verbose output should be printed.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.test.IndTestDegenerateGaussianLrt
-
Sets whether verbose output should be printed.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.test.IndTestFisherZ
-
Sets whether verbose output should be printed.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.test.IndTestFisherZConcatenateResiduals
-
Sets the verbose output flag.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.test.IndTestFisherZFisherPValue
-
Sets whether verbose output should be printed.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.test.IndTestGSquare
-
Sets the verbose flag to enable or disable verbose output.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.test.IndTestHsic
-
Sets the verbose mode for the IndTestHsic class.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.test.IndTestIndependenceFacts
-
Sets whether verbose output is to be printed.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.test.IndTestMulti
-
Sets whether verbose output should be printed during the test.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.test.IndTestMvpLrt
-
Sets whether this test will print verbose output.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.test.IndTestProbabilistic
-
Sets the verbose flag indicating whether verbose output should be printed.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.test.IndTestRegression
-
Sets whether this test will print verbose output.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.test.IndTestTrekSep
-
Sets the verbose output flag.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.test.Kci
-
Sets the verbosity of the method.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.test.MsepTest
-
Sets the verbosity level for the program.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.test.ScoreIndTest
-
Sets whether verbose output is enabled or not.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.utils.Bes
-
Sets whether verbose output should be printed.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.utils.BesPermutation
-
Sets whether verbose output should be printed.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.utils.DagSepsets
-
Sets the verbose mode of the SepsetProducer.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.utils.DagToPag
-
Setws whether verbose output should be printed.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.utils.FciOrient
-
Sets whether verbose output is printed.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.utils.FgesOrienter
-
Sets whether verbose output should be produced.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.utils.MaxP
-
Sets the verbose flag.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.utils.MeekRules
-
Sets whether verbose output should be printed.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.utils.PcCommon
-
Sets whether verbose output should be printed.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.utils.R0R4StrategyScoreBased
-
Sets the verbose mode for this FciOrientDataExaminationStrategyScoreBased object.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.utils.R0R4StrategyTestBased
-
Sets the verbose mode for the FciOrientDataExaminationStrategy object.
- setVerbose(boolean) - Method in interface edu.cmu.tetrad.search.utils.SepsetProducer
-
Sets the verbose mode of the SepsetProducer.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.utils.SepsetsGreedy
-
Sets the verbosity level for this object.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.utils.SepsetsMaxP
-
Sets the verbosity level for this object.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.utils.SepsetsMinP
-
Sets the verbosity level for this object.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.utils.SepsetsPossibleMsep
-
Sets the verbose mode of the SepsetProducer.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.utils.SepsetsSet
-
Sets the verbose mode of the SepsetProducer.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.utils.TsDagToPag
-
Setter for the field
verbose
. - setVerbose(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.FasFdr
-
Sets whether verbose output should be printed.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.GraspTol
-
Setter for the field
verbose
. - setVerbose(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.IGFci
-
Sets whether verbose output should be printed.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestCramerT
-
Sets the verbose flag to determine if verbose output should be enabled or disabled.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestFisherZPercentIndependent
-
Sets the verbose flag.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestFisherZRecursive
-
Sets whether this test will print verbose output.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestMixedMultipleTTest
-
Sets whether this test will print verbose output.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestMnlrLr
-
Sets whether this test will print verbose output.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestMultinomialLogisticRegression
-
Sets whether this test will print verbose output.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestPositiveCorr
-
Sets the verbose mode to either enabled or disabled.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestSepsetDci
-
Sets the verbose flag.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.ISFges
-
Sets the verbosity level for the application.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.Kpc
-
Sets whether verbose output should be printed.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.ProbabilisticMapIndependence
-
Sets whether this test will print verbose output.
- setVerbose(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpc
-
Setter for the field
verbose
. - setVerbose(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.SampleVcpcFast
-
Setter for the field
verbose
. - setVerbose(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.SemBicScoreDeterministic
-
Setter for the field
verbose
. - setVerbose(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.VcFas
-
Setter for the field
verbose
. - setVerbose(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.VcPc
-
Setter for the field
verbose
. - setVerbose(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.VcPcAlt
-
Setter for the field
verbose
. - setVerbose(boolean) - Method in class edu.cmu.tetrad.search.work_in_progress.VcPcFast
-
Setter for the field
verbose
. - setVerbose(boolean) - Method in class edu.cmu.tetrad.sem.LargeScaleSimulation
-
Setter for the field
verbose
. - setVerbose(boolean) - Method in class edu.cmu.tetrad.simulation.GdistanceRandom
-
Setter for the field
verbose
. - setVerbose(boolean) - Method in class edu.cmu.tetrad.simulation.HsimAutoC
-
Setter for the field
verbose
. - setVerbose(boolean) - Method in class edu.cmu.tetrad.simulation.HsimAutoRun
-
Setter for the field
verbose
. - setVerbose(boolean) - Method in class edu.cmu.tetrad.simulation.HsimRepeatAC
-
Setter for the field
verbose
. - setVerbose(boolean) - Method in class edu.cmu.tetrad.simulation.HsimRepeatAutoRun
-
Setter for the field
verbose
. - setVerbose(boolean) - Method in class edu.pitt.csb.mgm.IndTestMultinomialLogisticRegressionWald
-
Sets the verbose mode of the program.
- setVerbose(boolean) - Method in class edu.pitt.dbmi.algo.bayesian.constraint.search.PagSamplingRfci
-
Set the verbose flag.
- setVerbose(boolean) - Method in class edu.pitt.dbmi.algo.bayesian.constraint.search.RfciBsc
-
Sets whether verbose output should be produced.
- setWeight(int) - Method in class edu.cmu.tetrad.search.FciOrientDijkstra.DijkstraEdge
-
Sets the weight of the edge.
- setWeight(String, double) - Method in class edu.cmu.tetrad.algcomparison.statistic.Statistics
-
Sets the utility weight of the statistic by the given name.
- setWInit(Matrix) - Method in class edu.cmu.tetrad.search.FastIca
-
Sets the initial un-mixing matrix of dimension (n.comp, n.comp).
- setWithoutReplacements(boolean) - Method in class edu.cmu.tetrad.data.BootstrapSampler
-
This method takes a dataset and a sample size and creates a new dataset containing that number of samples by drawing with replacement from the original dataset.
- setWrite(boolean) - Method in class edu.cmu.tetrad.simulation.HsimAutoC
-
Setter for the field
write
. - setWrite(boolean) - Method in class edu.cmu.tetrad.simulation.HsimAutoRun
-
Setter for the field
write
. - setWrite(boolean) - Method in class edu.cmu.tetrad.simulation.HsimRepeatAC
-
Setter for the field
write
. - setWrite(boolean) - Method in class edu.cmu.tetrad.simulation.HsimRepeatAutoRun
-
Setter for the field
write
. - setWThreshold(double) - Method in class edu.cmu.tetrad.search.Dagma
-
Sets the value of the wThreshold field.
- setWThreshold(double) - Method in class edu.cmu.tetrad.search.IcaLingD
-
Sets the threshold value for the W matrix.
- severe(String) - Method in class edu.cmu.tetrad.util.LogUtils
-
severe.
- Sextad - Class in edu.cmu.tetrad.search.utils
-
Represents an ordered sextad of nodes.
- Sextad - Class in edu.cmu.tetrad.search.work_in_progress
-
Represents an ordered sextad of variables.
- Sextad(int, int, int, int, int, int) - Constructor for class edu.cmu.tetrad.search.utils.Sextad
-
Constructor.
- Sextad(Node[]) - Constructor for class edu.cmu.tetrad.search.work_in_progress.Sextad
-
Constructor for Sextad.
- Sextad(Node, Node, Node, Node, Node, Node) - Constructor for class edu.cmu.tetrad.search.work_in_progress.Sextad
-
Constructor for Sextad.
- SHD - Enum constant in enum class edu.cmu.tetrad.study.performance.Comparison.TableColumn
-
The structural Hamming distance.
- SHD - Enum constant in enum class edu.cmu.tetrad.study.performance.Comparison2.TableColumn
-
Constant
SHD
- ShiftSearch - Class in edu.cmu.tetrad.search.utils
-
Tries to find a good shifting of variables to minimize average BIC for time-series data.
- ShiftSearch(List<DataModel>) - Constructor for class edu.cmu.tetrad.search.utils.ShiftSearch
-
Constructor for ShiftSearch.
- ShortDataBox - Class in edu.cmu.tetrad.data
-
Stores a 2D array of short data.
- ShortDataBox(int, int) - Constructor for class edu.cmu.tetrad.data.ShortDataBox
-
Constructs an 2D short array consisting entirely of missing values (-99).
- ShortDataBox(short[][]) - Constructor for class edu.cmu.tetrad.data.ShortDataBox
-
Constructs a new data box using the given 2D short data array as data.
- shuffle(List<?>) - Static method in class edu.cmu.tetrad.util.RandomUtil
-
This is just the RandomUtil.shuffle method (thanks!) but using the Tetrad RandomUtil to get random numbers.
- shuffleColumns(DataSet) - Static method in class edu.cmu.tetrad.data.DataTransforms
-
shuffleColumns.
- shuffleColumns2(List<DataSet>) - Static method in class edu.cmu.tetrad.data.DataTransforms
-
shuffleColumns2.
- Significance - Enum constant in enum class edu.cmu.tetrad.search.utils.ClusterSignificance.CheckType
-
Check the significance using a regression model.
- SIGNIFICANCE_CHECKED - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
SIGNIFICANCE_CHECKED="significanceChecked"
- significant(List<Integer>, double) - Method in class edu.cmu.tetrad.search.utils.ClusterSignificance
-
Returns the p-value for the given cluster.
- SimpleDataLoader - Class in edu.cmu.tetrad.data
-
SimpleDataLoader class.
- SimpleRandomizer - Class in edu.cmu.tetrad.study.gene.tetrad.gene.history
-
Randomizes a graph using existing factors by first removing all edges and then adding for each factor (a) an edge from the same factor at time lag 1 and (b) a given number of factors chosen uniformly from all lagged factors with lag > 0.
- SimpleRandomizer(int, int, int, double) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.history.SimpleRandomizer
-
Constructor for SimpleRandomizer.
- SIMPLIFIED_BPC - Enum constant in enum class edu.cmu.tetrad.search.utils.BpcAlgorithmType
-
Even slower.
- SIMPLIFIED_BPC_DEPTH_0 - Enum constant in enum class edu.cmu.tetrad.search.utils.BpcAlgorithmType
-
This will work and does a good job for small models, no more than 4 latents.
- SIMPLIFIED_BPC_DEPTH_1 - Enum constant in enum class edu.cmu.tetrad.search.utils.BpcAlgorithmType
-
This is very slow.
- simulate(GeneHistory) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.MeasurementSimulator
-
Simulates (optionally) neither, either, or both of two three-dimensionaly data sets, rawData and measuredData.
- simulate(GeneHistory) - Method in class edu.cmu.tetrad.study.gene.tetradapp.model.MeasurementSimulatorParams
-
simulate.
- simulateData(int, boolean) - Method in interface edu.cmu.tetrad.bayes.BayesIm
-
Simulates a data set with the specified number of rows.
- simulateData(int, boolean) - Method in class edu.cmu.tetrad.bayes.DirichletBayesIm
-
Simulates a data set with the specified number of rows.
- simulateData(int, boolean) - Method in class edu.cmu.tetrad.bayes.MlBayesIm
-
Simulates a data set.
- simulateData(int, boolean) - Method in class edu.cmu.tetrad.bayes.MlBayesImObs
-
Simulates a data set with the specified number of rows.
- simulateData(int, boolean) - Method in class edu.cmu.tetrad.bayes.UpdatedBayesIm
-
Simulates a data set with the specified number of rows.
- simulateData(int, boolean) - Method in interface edu.cmu.tetrad.data.Simulator
-
Simulates data from the model associated with this object.
- simulateData(int, boolean) - Method in class edu.cmu.tetrad.sem.GeneralizedSemIm
-
Simulates data based on the given parameters.
- simulateData(int, boolean) - Method in class edu.cmu.tetrad.sem.SemIm
-
Simulates data from the model associated with this object.
- simulateData(int, boolean) - Method in class edu.cmu.tetrad.sem.StandardizedSemIm
-
Simulates data from the model associated with this object.
- simulateData(int, boolean, int[]) - Method in class edu.cmu.tetrad.bayes.MlBayesIm
-
Simulates a sample with the given sample size.
- simulateData(DataSet, boolean) - Method in interface edu.cmu.tetrad.bayes.BayesIm
-
Simulates data based on the provided data set and saves the latent data if specified.
- simulateData(DataSet, boolean) - Method in class edu.cmu.tetrad.bayes.DirichletBayesIm
-
Simulates data based on the provided data set and saves the latent data if specified.
- simulateData(DataSet, boolean) - Method in class edu.cmu.tetrad.bayes.MlBayesIm
-
Simulates data for the given data set.
- simulateData(DataSet, boolean) - Method in class edu.cmu.tetrad.bayes.MlBayesImObs
-
Simulates data based on the provided data set and saves the latent data if specified.
- simulateData(DataSet, boolean) - Method in class edu.cmu.tetrad.bayes.UpdatedBayesIm
-
Simulates data based on the provided data set and saves the latent data if specified.
- simulateData(DataSet, boolean, int[]) - Method in class edu.cmu.tetrad.bayes.MlBayesIm
-
simulateData.
- simulateDataAvoidInfinity(int, boolean) - Method in class edu.cmu.tetrad.sem.GeneralizedSemIm
-
Simulates data avoiding infinity values.
- simulateDataCholesky(int, boolean) - Method in class edu.cmu.tetrad.sem.SemIm
-
Simulates data from this Sem using a Cholesky decomposition of the implied covariance matrix.
- simulateDataFisher(double[][], int, double) - Method in class edu.cmu.tetrad.sem.LargeScaleSimulation
-
Simulates data using the model of R.
- simulateDataFisher(int) - Method in class edu.cmu.tetrad.sem.GeneralizedSemIm
-
Simulates data using the model of R.
- simulateDataFisher(int) - Method in class edu.cmu.tetrad.sem.LargeScaleSimulation
-
Simulates data using the model of R.
- simulateDataFisher(int, int, double) - Method in class edu.cmu.tetrad.sem.GeneralizedSemIm
-
Simulates data using the model of R.
- simulateDataFisher(int, int, int, double, boolean) - Method in class edu.cmu.tetrad.sem.LargeScaleSimulation
-
simulateDataFisher.
- simulateDataMinimizeSurface(int, boolean) - Method in class edu.cmu.tetrad.sem.GeneralizedSemIm
-
Simulates data by minimizing the surface defined by the given sample size and whether latent data is saved.
- simulateDataNSteps(int, boolean) - Method in class edu.cmu.tetrad.sem.GeneralizedSemIm
-
Simulates data for a given number of steps.
- simulateDataRecursive(int) - Method in class edu.cmu.tetrad.sem.LargeScaleSimulation
-
This simulates data by picking random values for the exogenous terms and percolating this information down through the SEM, assuming it is acyclic.
- simulateDataRecursive(int, boolean) - Method in class edu.cmu.tetrad.sem.GeneralizedSemIm
-
This simulates data by picking random values for the exogenous terms and percolating this information down through the SEM, assuming it is acyclic.
- simulateDataRecursive(int, boolean) - Method in class edu.cmu.tetrad.sem.SemIm
-
simulateDataRecursive.
- simulateDataReducedForm(int) - Method in class edu.cmu.tetrad.sem.LargeScaleSimulation
-
Simulates data using the model X = (I - B)Y^-1 * e.
- simulateDataReducedForm(int, boolean) - Method in class edu.cmu.tetrad.sem.SemIm
-
simulateDataReducedForm.
- simulateDataReducedForm(int, boolean) - Method in class edu.cmu.tetrad.sem.StandardizedSemIm
-
simulateDataReducedForm.
- SimulateNetwork - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin
-
SimulateNetwork class.
- SimulateNetworkMain - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin
-
SimulateNetworkMain class.
- SimulateNetworkMain() - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.SimulateNetworkMain
-
Constructor for SimulateNetworkMain.
- simulateOneRecord(Vector) - Method in class edu.cmu.tetrad.sem.GeneralizedSemIm
-
simulateOneRecord.
- simulateOneRecord(Vector) - Method in class edu.cmu.tetrad.sem.SemIm
-
simulateOneRecord.
- Simulation - Interface in edu.cmu.tetrad.algcomparison.simulation
-
The interface that simulations must implement.
- SIMULATION_ERROR_TYPE - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
SIMULATION_ERROR_TYPE="simulationErrorType"
- SIMULATION_PARAM1 - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
SIMULATION_PARAM1="simulationParam1"
- SIMULATION_PARAM2 - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
SIMULATION_PARAM2="simulationParam2"
- SimulationPath - Interface in edu.cmu.tetrad.algcomparison.statistic.utils
-
Some simulations may wish to implement this interface to specify a simulation path, which will be printed in the output.
- Simulations - Class in edu.cmu.tetrad.algcomparison.simulation
-
A list of simulations to be compared.
- Simulations() - Constructor for class edu.cmu.tetrad.algcomparison.simulation.Simulations
-
Constructor for Simulations.
- SimulationTypes - Class in edu.cmu.tetrad.algcomparison.simulation
-
Jun 4, 2019 3:10:49 PM
- SimulationUtils - Class in edu.cmu.tetrad.algcomparison.simulation
-
Jun 4, 2019 5:21:45 PM
- Simulator - Interface in edu.cmu.tetrad.data
-
Created by jdramsey on 12/22/15.
- SingleDatasetSimulation - Class in edu.cmu.tetrad.algcomparison.simulation
-
A
Simulation
implementation that returns a single supplied data set. - SingleDatasetSimulation(DataSet) - Constructor for class edu.cmu.tetrad.algcomparison.simulation.SingleDatasetSimulation
-
A
Simulation
implementation that returns a single supplied data set. - SingleGraph - Class in edu.cmu.tetrad.algcomparison.graph
-
Stores a single graph for use in simulations, etc.
- SingleGraph(Graph) - Constructor for class edu.cmu.tetrad.algcomparison.graph.SingleGraph
-
Constructor for SingleGraph.
- SingleGraphAlg - Class in edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag
-
PC.
- SingleGraphAlg(Graph) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.SingleGraphAlg
-
Constructor for SingleGraphAlg.
- SingleValue - Class in edu.cmu.tetrad.util.dist
-
A pretend distribution that always returns the given value when nextRandom() is called.
- SingleValue(double) - Constructor for class edu.cmu.tetrad.util.dist.SingleValue
-
Constructs single value "distribution" using the given value.
- size() - Method in class edu.cmu.tetrad.algcomparison.statistic.Statistics
-
The number of statistics.
- size() - Method in interface edu.cmu.tetrad.data.Covariances
-
Returns the dimensiom of the matrix.
- size() - Method in class edu.cmu.tetrad.data.CovariancesDoubleForkJoin
-
size.
- size() - Method in class edu.cmu.tetrad.data.DataModelList
- size() - Method in class edu.cmu.tetrad.data.IndependenceFacts
-
size.
- size() - Method in class edu.cmu.tetrad.search.utils.SepsetMap
-
Returns the number of {x, y} in the key set of the map.
- size() - Method in class edu.cmu.tetrad.search.utils.TeyssierScorer
-
size.
- size() - Method in class edu.cmu.tetrad.search.work_in_progress.SepsetMapDci
-
size.
- size() - Method in class edu.cmu.tetrad.util.Vector
-
size.
- skeletonToMatrix(Graph) - Static method in class edu.pitt.csb.mgm.MixedUtils
-
skeletonToMatrix.
- skew - Enum constant in enum class edu.cmu.tetrad.search.Lofs.Score
-
The skew.
- skew(double[], double[], boolean) - Static method in class edu.cmu.tetrad.search.FaskOrig
-
Calculates a left-right judgument using the skewness of two arrays of double values.
- Skew - Class in edu.cmu.tetrad.algcomparison.algorithm.pairwise
-
Skew.
- Skew - Enum constant in enum class edu.cmu.tetrad.search.Lofs.Rule
-
The Skew rule.
- Skew() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.pairwise.Skew
-
Constructor for Skew.
- Skew(Algorithm) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.pairwise.Skew
-
Constructor for Skew.
- SKEW - Enum constant in enum class edu.cmu.tetrad.search.Fask.LeftRight
-
The skew rule from the Hyvarinen and Smith paper.
- SKEW - Enum constant in enum class edu.cmu.tetrad.search.FaskOrig.LeftRight
-
The skew rule from the Hyvarinen and Smith paper.
- SKEW_EDGE_THRESHOLD - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
SKEW_EDGE_THRESHOLD="skewEdgeThreshold"
- SkewE - Class in edu.cmu.tetrad.algcomparison.algorithm.pairwise
-
SkewE.
- SkewE - Enum constant in enum class edu.cmu.tetrad.search.Lofs.Rule
-
The SkewE rule.
- SkewE() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.pairwise.SkewE
-
Constructor for SkewE.
- SkewE(Algorithm) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.pairwise.SkewE
-
Constructor for SkewE.
- skewness(double[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
skewness.
- skewness(double[], int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
skewness.
- skewness(long[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
skewness.
- skewness(long[], int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
skewness.
- SKIP_NUM_RECORDS - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
SKIP_NUM_RECORDS="skipNumRecords"
- smooth(DoubleMatrix1D, DoubleMatrix1D) - Method in class edu.pitt.csb.mgm.ConvexProximal
-
Calculate value of g(X) and gradient of g(X) at the same time for efficiency reasons.
- smooth(DoubleMatrix1D, DoubleMatrix1D) - Method in class edu.pitt.csb.mgm.Mgm
-
Smooth method calculates the smooth loss and gradient given input parameters.
- smoothGradient(DoubleMatrix1D) - Method in class edu.pitt.csb.mgm.Mgm
-
Calculates the smooth gradient for a given input vector.
- smoothValue(DoubleMatrix1D) - Method in class edu.pitt.csb.mgm.Mgm
-
Calculate the smooth value of the given input vector.
- solve(Matrix, Matrix) - Static method in class edu.cmu.tetrad.util.TetradAlgebra
-
solve.
- sortEdges(List<Edge>) - Static method in class edu.cmu.tetrad.graph.Edges
-
sortEdges.
- Sp - Class in edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag
-
SP (Sparsest Permutation)
- Sp - Class in edu.cmu.tetrad.search
-
Implements the SP (Sparsest Permutation) algorithm.
- Sp() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Sp
-
Constructor for Sp.
- Sp(ScoreWrapper) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag.Sp
-
Constructor for Sp.
- Sp(Score) - Constructor for class edu.cmu.tetrad.search.Sp
-
This algorithm will work with an arbitrary score.
- SP - Enum constant in enum class edu.cmu.tetrad.search.LvLite.START_WITH
-
Start with SP.
- SPACE - Enum constant in enum class edu.cmu.tetrad.util.TextTable.Delimiter
-
Constant
SPACE
- sparseMatrix(int, int) - Static method in class edu.cmu.tetrad.util.Matrix
-
sparseMatrix.
- specialConfiguration(IndependenceTest, Knowledge, boolean) - Static method in class edu.cmu.tetrad.search.utils.R0R4StrategyTestBased
-
Provides a special configuration for creating an instance of FciOrientDataExaminationStrategy.
- specialConfiguration(TeyssierScorer, Knowledge, boolean, int) - Static method in class edu.cmu.tetrad.search.utils.R0R4StrategyScoreBased
-
Returns a special configuration of FciOrientDataExaminationStrategy.
- SpFci - Class in edu.cmu.tetrad.algcomparison.algorithm.oracle.pag
-
Adjusts GFCI to use a permutation algorithm (in this case SP) to do the initial steps of finding adjacencies and unshielded colliders.
- SpFci - Class in edu.cmu.tetrad.search
-
Uses SP in place of FGES for the initial step in the GFCI algorithm.
- SpFci() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.SpFci
-
The SpFci class represents a specific algorithm for structural learning called "Conditional Independence Test-based Fast Causal Inference" (SpFci).
- SpFci(IndependenceWrapper, ScoreWrapper) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.SpFci
-
Constructor for the SpFci class.
- SpFci(IndependenceTest, Score) - Constructor for class edu.cmu.tetrad.search.SpFci
-
Constructor; requires by ta test and a score, over the same variables.
- split(DataSet, double) - Static method in class edu.cmu.tetrad.data.DataTransforms
-
split.
- Split - Class in edu.cmu.tetrad.util.dist
-
Wraps a chi square distribution for purposes of drawing random samples.
- Split(double, double) - Constructor for class edu.cmu.tetrad.util.dist.Split
-
Creates a new split distribution, drawing uniformly from [-b, -a] U [a, b], where a and b are positive real numbers.
- SplitCasesSpec - Class in edu.cmu.tetrad.data
-
Specifies how a column (continuous or discrete) should be discretized.
- SplitCasesSpec(int, int[], List<String>) - Constructor for class edu.cmu.tetrad.data.SplitCasesSpec
-
Constructor for SplitCasesSpec.
- sqrt() - Method in class edu.cmu.tetrad.util.Matrix
-
sqrt.
- SQUARED - Enum constant in enum class edu.cmu.tetrad.search.CpdagParentDistancesFromTrue.DistanceType
-
Calculate the squared distance between the true edge strength and the range of estimated coefficients.
- SquaredErrorLoss - Class in edu.cmu.tetrad.cluster.metrics
-
Euclidean dissimilarity metric--i.e., the sum of the differences in corresponding variable values.
- SquaredErrorLoss() - Constructor for class edu.cmu.tetrad.cluster.metrics.SquaredErrorLoss
-
Calculates the squared error dissimilarity between two vectors using the Euclidean dissimilarity metric.
- squareLayout(Graph) - Static method in class edu.cmu.tetrad.graph.LayoutUtil
-
squareLayout.
- sSquare(double[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
sSquare.
- sSquare(double[], int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
sSquare.
- sSquare(long[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
sSquare.
- sSquare(long[], int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
sSquare.
- ssx(double[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
ssx.
- ssx(double[], int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
ssx.
- ssx(long[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
ssx.
- ssx(long[], int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
ssx.
- StabilitySearch(DataSet, DataGraphSearch, int, int) - Static method in class edu.pitt.csb.stability.StabilityUtils
-
StabilitySearch.
- StabilitySearchPar(DataSet, DataGraphSearch, int, int) - Static method in class edu.pitt.csb.stability.StabilityUtils
-
StabilitySearchPar.
- StabilitySelection - Class in edu.cmu.tetrad.algcomparison.algorithm
-
Stability selection.
- StabilitySelection(Algorithm) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.StabilitySelection
-
Constructor for StabilitySelection.
- StabilityUtils - Class in edu.pitt.csb.stability
-
Runs a search algorithm over a N subsamples of size b to asses stability as in "Stability Selection" and "Stability Approach to Regularization Selection"
- STABLE - Enum constant in enum class edu.cmu.tetrad.search.utils.PcCommon.FasType
-
Stable FAS.
- STABLE_FAS - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
STABLE_FAS="stableFAS"
- stampWithBic(Graph, DataModel) - Static method in class edu.cmu.tetrad.search.utils.LogUtilsSearch
-
stampWithBic.
- stampWithScore(Graph, Score) - Static method in class edu.cmu.tetrad.search.utils.LogUtilsSearch
-
stampWithScore.
- STANDARDIZE - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
STANDARDIZE="standardize"
- STANDARDIZED_STRUCTURAL_EQUATION_MODEL - Static variable in class edu.cmu.tetrad.algcomparison.simulation.SimulationTypes
-
Constant
STANDARDIZED_STRUCTURAL_EQUATION_MODEL="Standardized Structural Equation Model"
- standardizeData(double[]) - Static method in class edu.cmu.tetrad.data.DataTransforms
-
standardizeData.
- standardizeData(double[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
standardizeData.
- standardizeData(DoubleArrayList) - Static method in class edu.cmu.tetrad.data.DataTransforms
-
standardizeData.
- standardizeData(DataSet) - Static method in class edu.cmu.tetrad.data.DataTransforms
-
standardizeData.
- standardizeData(Matrix) - Static method in class edu.cmu.tetrad.data.DataTransforms
-
standardizeData.
- standardizeData(Matrix, List<Node>) - Static method in class edu.cmu.tetrad.data.DataTransforms
- standardizeData(List<DataSet>) - Static method in class edu.cmu.tetrad.data.DataTransforms
-
standardizeData.
- standardizeData(SimpleMatrix) - Static method in class edu.cmu.tetrad.search.test.Kci
- standardizedFifthMoment(double[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
standardizedFifthMoment.
- standardizedFifthMoment(double[], int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
standardizedFifthMoment.
- StandardizedSemIm - Class in edu.cmu.tetrad.sem
-
A special SEM model in which variances of variables are always 1 and means of variables are always 0.
- StandardizedSemIm(SemIm, StandardizedSemIm.Initialization, Parameters) - Constructor for class edu.cmu.tetrad.sem.StandardizedSemIm
-
Constructs a new standardized SEM IM from the freeParameters in the given SEM IM.
- StandardizedSemIm(SemIm, Parameters) - Constructor for class edu.cmu.tetrad.sem.StandardizedSemIm
-
Constructs a new standardized SEM IM, initializing from the freeParameters in the given SEM IM.
- StandardizedSemIm.Initialization - Enum Class in edu.cmu.tetrad.sem
-
The initialization method for the model.
- StandardizedSemIm.ParameterRange - Class in edu.cmu.tetrad.sem
-
Stores a coefficient range--i.e.
- StandardizedSemSimulation - Class in edu.cmu.tetrad.algcomparison.simulation
-
Standardized SEM simulation.
- StandardizedSemSimulation(RandomGraph) - Constructor for class edu.cmu.tetrad.algcomparison.simulation.StandardizedSemSimulation
-
Constructor for StandardizedSemSimulation.
- StandardizedSemSimulation(SemPm) - Constructor for class edu.cmu.tetrad.algcomparison.simulation.StandardizedSemSimulation
-
Constructor for StandardizedSemSimulation.
- StandardizedSemSimulation(StandardizedSemIm) - Constructor for class edu.cmu.tetrad.algcomparison.simulation.StandardizedSemSimulation
-
Constructor for StandardizedSemSimulation.
- standardizedSixthMoment(double[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
standardizedSixthMoment.
- standardizedSixthMoment(double[], int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
standardizedSixthMoment.
- STAR - Enum constant in enum class edu.cmu.tetrad.graph.Endpoint
-
Star endpoint.
- StARS - Class in edu.cmu.tetrad.algcomparison.algorithm
-
StARS
- StARS(Algorithm, String, double, double) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.StARS
-
Constructor for StARS.
- startsWithPrefixes() - Method in class edu.cmu.tetrad.sem.GeneralizedSemPm
-
startsWithPrefixes.
- Statistic - Interface in edu.cmu.tetrad.algcomparison.statistic
-
The interface that each statistic needs to implement.
- Statistics - Class in edu.cmu.tetrad.algcomparison.statistic
-
A list of statistics and their utility weights.
- Statistics() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.Statistics
-
Constructor for Statistics.
- StatUtils - Class in edu.cmu.tetrad.util
-
Contains a number of basic statistical functions.
- stop() - Method in class edu.cmu.tetrad.search.utils.ShiftSearch
-
stop.
- StoredCellProbs - Class in edu.cmu.tetrad.bayes
-
Creates a table of stored cell probabilities for the given list of variables.
- StoredCellProbsObs - Class in edu.cmu.tetrad.bayes
-
Creates a table of stored cell probabilities for the given list of variables.
- StoredCellProbsObs(List<Node>) - Constructor for class edu.cmu.tetrad.bayes.StoredCellProbsObs
-
Constructor for StoredCellProbsObs.
- StoredLagGraphParams - Class in edu.cmu.tetrad.study.gene.tetrad.gene.graph
-
Stores a file for reading in a lag graph from a file.
- StoredLagGraphParams() - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.graph.StoredLagGraphParams
-
Constructs a new parameters object.
- stouffer - Enum constant in enum class edu.cmu.tetrad.search.utils.ResolveSepsets.Method
-
Stouffer et al.'s method
- stouffer - Enum constant in enum class edu.cmu.tetrad.search.work_in_progress.ResolveSepsetsDci.Method
-
The stouffer method.
- STRING - Enum constant in enum class edu.cmu.tetrad.calculator.parser.Token
-
String.
- stringFrom2dArray(int[][]) - Static method in class edu.pitt.csb.mgm.MixedUtils
-
stringFrom2dArray.
- strOfParents(int) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.biolingua.BiolinguaDigraph
-
Returns a string with the indexes of all parents of node i separated by spaces (useful for printouts)
- STRUCTURAL_EQUATION_MODEL - Static variable in class edu.cmu.tetrad.algcomparison.simulation.SimulationTypes
-
Constant
STRUCTURAL_EQUATION_MODEL="Linear Structural Equation Model"
- structuralHammingDistance(Graph, Graph) - Static method in class edu.cmu.tetrad.search.utils.GraphSearchUtils
-
Tsamardinos, I., Brown, L.
- StructuralHammingDistance - Class in edu.cmu.tetrad.algcomparison.statistic
-
Calculates the structural Hamming distance (SHD) between the estimated graph and the true graph.
- StructuralHammingDistance() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.StructuralHammingDistance
-
Constructs the statistic.
- structuralVar(DataSet, int) - Static method in class edu.cmu.tetrad.search.utils.TsUtils
-
structuralVar.
- STRUCTURE_PRIOR - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
STRUCTURE_PRIOR="structurePrior"
- subgraph(List<Node>) - Method in class edu.cmu.tetrad.graph.Dag
-
Returns a subgraph of the current graph consisting only of the specified nodes.
- subgraph(List<Node>) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
Constructs and returns a subgraph consisting of a given subset of the nodes of this graph together with the edges between them.
- subgraph(List<Node>) - Method in interface edu.cmu.tetrad.graph.Graph
-
Constructs and returns a subgraph consisting of a given subset of the nodes of this graph together with the edges between them.
- subgraph(List<Node>) - Method in class edu.cmu.tetrad.graph.LagGraph
-
Constructs and returns a subgraph consisting of a given subset of the nodes of this graph together with the edges between them.
- subgraph(List<Node>) - Method in class edu.cmu.tetrad.graph.SemGraph
-
Constructs and returns a subgraph consisting of a given subset of the nodes of this graph together with the edges between them.
- subgraph(List<Node>) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Returns a subgraph of the current graph based on the provided nodes.
- SublistGenerator - Class in edu.cmu.tetrad.util
-
Generates (nonrecursively) all of the sublists of size b from a list of size a, where a, b are nonnegative integers and a >= b.
- SublistGenerator(int, int) - Constructor for class edu.cmu.tetrad.util.SublistGenerator
-
Constructs a new generator for sublists for a list of size b taken a at a time.
- submatrix(double[][], int) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
A copy of the original (square) matrix with the stated index row/column removed
- subMatrix(ICovarianceMatrix, Node, Node, List<Node>) - Static method in class edu.cmu.tetrad.data.DataUtils
-
subMatrix.
- subMatrix(ICovarianceMatrix, Map<Node, Integer>, Node, Node, List<Node>) - Static method in class edu.cmu.tetrad.data.DataUtils
-
subMatrix.
- subMatrix(Matrix, List<Node>, Node, Node, List<Node>) - Static method in class edu.cmu.tetrad.data.DataUtils
-
subMatrix.
- subMatrix(Matrix, Map<Node, Integer>, Node, Node, List<Node>) - Static method in class edu.cmu.tetrad.data.DataUtils
-
subMatrix.
- SuborderSearch - Interface in edu.cmu.tetrad.search
-
An interface for suborder searches for various types of permutation algorithms.
- SUBSAMPLE - Enum constant in enum class edu.cmu.tetrad.search.Cstar.SampleStyle
-
Use subsample.
- subSampleNoReplacement(int, int, int) - Static method in class edu.pitt.csb.stability.StabilityUtils
-
subSampleNoReplacement.
- subset(List<Node>) - Method in class edu.cmu.tetrad.search.score.SemBicScore
-
Returns a SEM BIC score for the given subset of variables.
- subsetColumns(int[]) - Method in class edu.cmu.tetrad.data.BoxDataSet
-
Creates a new DataSet object containing only the specified columns.
- subsetColumns(int[]) - Method in interface edu.cmu.tetrad.data.DataSet
-
subsetColumns.
- subsetColumns(int[]) - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
subsetColumns.
- subsetColumns(List<Node>) - Method in class edu.cmu.tetrad.data.BoxDataSet
-
Creates and returns a dataset consisting of those variables in the list vars.
- subsetColumns(List<Node>) - Method in interface edu.cmu.tetrad.data.DataSet
-
Creates and returns a dataset consisting of those variables in the list vars.
- subsetColumns(List<Node>) - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
Creates and returns a dataset consisting of those variables in the list vars.
- subsetRows(int[]) - Method in class edu.cmu.tetrad.data.BoxDataSet
-
Creates a subset of rows from the existing DataSet.
- subsetRows(int[]) - Method in interface edu.cmu.tetrad.data.DataSet
-
subsetRows.
- subsetRows(int[]) - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
subsetRows.
- subsetRowsColumns(int[], int[]) - Method in class edu.cmu.tetrad.data.BoxDataSet
-
Generates a subset of the current DataSet by selecting specified rows and columns.
- subsetRowsColumns(int[], int[]) - Method in interface edu.cmu.tetrad.data.DataSet
-
Generates a subset of the current DataSet by selecting specified rows and columns.
- subsetRowsColumns(int[], int[]) - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
Generates a subset of the current DataSet by selecting specified rows and columns.
- subtract(double[][], double[][]) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
subtract.
- subtract(double[], double[]) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
subtract.
- successiveFactorVarimax(Matrix) - Method in class edu.cmu.tetrad.search.FactorAnalysis
-
Returns the matrix result for the varimax algorithm.
- successiveResidual() - Method in class edu.cmu.tetrad.search.FactorAnalysis
-
Successive method with residual matrix.
- suite() - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.reveal.TestRevealEvaluator
-
This method uses reflection to collect up all of the test methods from this class and return them to the test runner.
- suite() - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.TestBooleanFunction
-
This method uses reflection to collect up all of the test methods from this class and return them to the test runner.
- suite() - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.TestIndexedConnectivity
-
This method uses reflection to collect up all of the test methods from this class and return them to the test runner.
- suite() - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.TestIndexedLagGraph
-
This method uses reflection to collect up all of the test methods from this class and return them to the test runner.
- suite() - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.TestPolynomial
-
This method uses reflection to collect up all of the test methods from this class and return them to the test runner.
- suite() - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.TestPolynomialTerm
-
This method uses reflection to collect up all of the test methods from this class and return them to the test runner.
- suite() - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.TestSimpleRandomizer
-
This method uses reflection to collect up all of the test methods from this class and return them to the test runner.
- suite() - Static method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.TestMeasurementSimulator
-
This method uses reflection to collect up all of the test methods from this class and return them to the test runner.
- sum(double[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
sum.
- sum(double[][], double[][]) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
sum.
- sum(double[], double[]) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
sum.
- sum(int) - Method in class edu.cmu.tetrad.util.Matrix
-
sum.
- sum0ToN(int) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
sum0ToN.
- sumBits(byte[]) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.akutsu.BoolSearch
-
Returns the sum of the bits in the byte array b.
- sumBits(byte[]) - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.BoolSearch
-
sumBits.
- summarize(List<ComparisonResult>, List<Comparison.TableColumn>) - Static method in class edu.cmu.tetrad.study.performance.Comparison
-
summarize.
- summarize(List<ComparisonResult>, List<Comparison2.TableColumn>) - Static method in class edu.cmu.tetrad.study.performance.Comparison2
-
summarize.
- sumOfArCoefficients(DataSet, int) - Static method in class edu.cmu.tetrad.search.utils.TsUtils
-
sumOfArCoefficients.
- SvarFas - Class in edu.cmu.tetrad.search
-
Adapts FAS for the time series setting, assuming the data is generated by a SVAR (structural vector autoregression).
- SvarFas(IndependenceTest) - Constructor for class edu.cmu.tetrad.search.SvarFas
-
Constructs a new FastAdjacencySearch.
- SvarFci - Class in edu.cmu.tetrad.algcomparison.algorithm.oracle.pag
-
The SvarFci class is an implementation of the SVAR Fast Causal Inference algorithm.
- SvarFci - Class in edu.cmu.tetrad.search
-
Adapts FCI for the time series setting, assuming the data is generated by a SVAR (structural vector autoregression).
- SvarFci() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.SvarFci
-
Represents a constructor for the SvarFci class.
- SvarFci(IndependenceWrapper) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.SvarFci
-
Represents a constructor for the SvarFci class.
- SvarFci(IndependenceTest) - Constructor for class edu.cmu.tetrad.search.SvarFci
-
Constructs a new FCI search for the given independence test and background knowledge.
- SVARFCI - Enum constant in enum class edu.cmu.tetrad.study.performance.ComparisonParameters.Algorithm
-
Constant for the SVARFCI algorithm.
- SvarFges - Class in edu.cmu.tetrad.search
-
Adapts FGES for the time series setting, assuming the data is generated by a SVAR (structural vector autoregression).
- SvarFges(Score) - Constructor for class edu.cmu.tetrad.search.SvarFges
-
Construct a Score and pass it in here.
- SvarGfci - Class in edu.cmu.tetrad.algcomparison.algorithm.oracle.pag
-
SvarGfci class is an implementation of the SVAR GFCI algorithm.
- SvarGfci - Class in edu.cmu.tetrad.search
-
Represents a GFCI search algorithm for structure learning in causal discovery.
- SvarGfci() - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.SvarGfci
-
Constructor for SvarGfci.
- SvarGfci(IndependenceWrapper, ScoreWrapper) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.oracle.pag.SvarGfci
-
Constructor for SvarGfci.
- SvarGfci(IndependenceTest, Score) - Constructor for class edu.cmu.tetrad.search.SvarGfci
-
Constructs a new GFCI search for the given independence test and background knowledge.
- SvarSetEndpointStrategy - Class in edu.cmu.tetrad.search.utils
-
The SvarSetEndpointStrategy class implements the SetEndpointStrategy interface and provides a strategy for setting the endpoint of an edge in a graph.
- SvarSetEndpointStrategy(IndependenceTest, Knowledge) - Constructor for class edu.cmu.tetrad.search.utils.SvarSetEndpointStrategy
-
Creates a new instance of SvarSetEndpointStrategy with the given IndependenceTest and Knowledge.
- swap(Node, Node) - Method in class edu.cmu.tetrad.search.utils.TeyssierScorer
-
Swaps m and n in the permutation.
- SWAP - Enum constant in enum class edu.cmu.tetrad.search.work_in_progress.HbsmsBeam.Move.Type
-
Swap two edges.
- sxy(double[], double[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
sxy.
- sxy(double[], double[], int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
sxy.
- sxy(long[], long[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
sxy.
- sxy(long[], long[], int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
sxy.
- sxy(Vector, Vector, int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
sxy.
- SymMatrix - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util
-
Implements a space-efficient symmetric matrix (of elements of type
short
), storing only the lower triangular portion of it - SymMatrix(String) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.SymMatrix
-
Creates a symmetric matrix reading it from file
fname
. - SymMatrix(String, int) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.SymMatrix
-
Creates a symmetric matrix with
nrows
rows. - SymMatrixF - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util
-
Implements a space-efficient symmetric matrix (of elements of type
short
), storing only the lower triangular portion of it - SymMatrixF(String) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.SymMatrixF
-
Creates a symmetric matrix reading it from file
fname
. - SymMatrixF(String, int) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.SymMatrixF
-
Creates a symmetric matrix with
nrows
rows. - SYMMETRIC_FIRST_STEP - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
SYMMETRIC_FIRST_STEP="symmetricFirstStep"
- symmetricDirichletIm(BayesPm, double) - Static method in class edu.cmu.tetrad.bayes.DirichletBayesIm
-
symmetricDirichletIm.
- symmetry() - Method in class edu.cmu.tetrad.search.utils.GraphoidAxioms
-
Checks is symmetry holds--i.e., X ⊥⊥ Y | Z ==> Y ⊥⊥ X | Z
T
- ta - Enum constant in enum class edu.cmu.tetrad.graph.EdgeTypeProbability.EdgeType
-
Tail-to-arrow
- TAB - Enum constant in enum class edu.cmu.tetrad.util.TextTable.Delimiter
-
Constant
TAB
- TAB - Static variable in class edu.cmu.tetrad.data.DelimiterType
-
Constant
TAB
- TAIL - Enum constant in enum class edu.cmu.tetrad.graph.Endpoint
-
Tail endpoint.
- TailConfusion - Class in edu.cmu.tetrad.algcomparison.statistic.utils
-
A confusion matrix for tails--i.e.
- TailConfusion(Graph, Graph) - Constructor for class edu.cmu.tetrad.algcomparison.statistic.utils.TailConfusion
-
Constructor for TailConfusion.
- TailPrecision - Class in edu.cmu.tetrad.algcomparison.statistic
-
TailPrecision is a class that implements the Statistic interface.
- TailPrecision() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.TailPrecision
-
Constructs the statistic.
- TailRecall - Class in edu.cmu.tetrad.algcomparison.statistic
-
Implements the TailRecall statistic, which calculates the tail recall value for a given true graph, estimated graph, and data model.
- TailRecall() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.TailRecall
-
Constructs the statistic.
- TakesCovarianceMatrix - Interface in edu.cmu.tetrad.algcomparison.algorithm
-
Tags algorithm comparison wrappers that can take a covariance matrix as input.
- TakesData - Interface in edu.cmu.tetrad.algcomparison.utils
-
Tags a gadget that takes a data model list as argument to its constructor.
- takesExternalGraph(Class) - Method in class edu.cmu.tetrad.annotation.AlgorithmAnnotations
-
Checks if the algorithm takes an external graph.
- TakesExternalGraph - Interface in edu.cmu.tetrad.algcomparison.utils
-
Tags an algorithm that can take an external graph as input.
- TakesGraph - Interface in edu.cmu.tetrad.algcomparison.independence
-
TakesGraph interface.
- TakesIndependenceWrapper - Interface in edu.cmu.tetrad.algcomparison.utils
-
Tags an algorithm as using an independence wrapper.
- takesKnowledge(Class) - Method in class edu.cmu.tetrad.annotation.AlgorithmAnnotations
-
Checks if the algorithm takes knowledge.
- takesMultipleDataset(Class) - Method in class edu.cmu.tetrad.annotation.AlgorithmAnnotations
-
Checks if the algorithm takes multiple data sets.
- Tanh - Class in edu.cmu.tetrad.algcomparison.algorithm.pairwise
-
Tanh.
- Tanh - Enum constant in enum class edu.cmu.tetrad.search.Lofs.Rule
-
The Tahn rule.
- Tanh(Algorithm) - Constructor for class edu.cmu.tetrad.algcomparison.algorithm.pairwise.Tanh
-
Constructor for Tanh.
- TANH - Enum constant in enum class edu.cmu.tetrad.search.Fask.LeftRight
-
The tanh rule from the Hyvarinen and Smith paper.
- TANH - Enum constant in enum class edu.cmu.tetrad.search.FaskOrig.LeftRight
-
The tanh rule from the Hyvarinen and Smith paper.
- TARGET_NAME - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
TARGET_NAME="targetName"
- TARGETS - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
TARGETS="targets"
- TaskManager - Class in edu.cmu.tetrad.util
-
This cancels all processes that check the TaskManager.getInstance().isCanceled() method.
- TaskRunner<T> - Class in edu.cmu.tetrad.util
-
This class is for running a list of tasks that implement Callable.
- TaskRunner() - Constructor for class edu.cmu.tetrad.util.TaskRunner
-
This class is responsible for running a list of tasks that implement the Callable interface in parallel using multiple threads.
- TaskRunner(int) - Constructor for class edu.cmu.tetrad.util.TaskRunner
-
Initializes a TaskRunner with the specified number of threads.
- tautology(VariableSource) - Static method in class edu.cmu.tetrad.bayes.Evidence
-
tautology.
- tautology(VariableSource) - Static method in class edu.cmu.tetrad.bayes.Proposition
-
tautology.
- tautology(SemIm) - Static method in class edu.cmu.tetrad.sem.SemProposition
-
Creates a tautology by wrapping the given SemIm object.
- tCdf(double, double) - Static method in class edu.cmu.tetrad.util.ProbUtils
-
CACM Algorithm 395, by G.
- tearDown() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.TestSimpleRandomizer
-
tearDown.
- TemplateExpander - Class in edu.cmu.tetrad.sem
-
Expands templates for the generalized SEM PM.
- TEST_TIMEOUT - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
TEST_TIMEOUT="testTimeout"
- TestBooleanFunction - Class in edu.cmu.tetrad.study.gene.tetrad.gene.history
-
Tests the BooleanFunction class.
- TestBooleanFunction(String) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.history.TestBooleanFunction
-
Standard constructor for JUnit test cases.
- TestBoss - Class in edu.cmu.tetrad.algcomparison.examples
-
Test the degenerate Gaussian score.
- TestBoss() - Constructor for class edu.cmu.tetrad.algcomparison.examples.TestBoss
-
Initializes a new instance of the TestBoss class.
- testChipToChipError() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.TestMeasurementSimulator
-
Turn on chip to chip error, turn off all other sources of error, simulate 1 dish of data with 1000 samples per dish and look to see whether in the aggregated data the standard deviations for Gene2:t1, Gene3:t1, and Gene1:t2 are 0.3.
- testCompareDagToCPDAG(int) - Method in class edu.cmu.tetrad.study.performance.PerformanceTests
-
testCompareDagToCPDAG.
- testComparePcVersions(int, double, int) - Method in class edu.cmu.tetrad.study.performance.PerformanceTests
-
testComparePcVersions.
- testConstantIndegree() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.TestSimpleRandomizer
-
Tests whether the randomizer can randomly make a graph where all of the factors have the same indegree.
- testConstruction() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.TestIndexedConnectivity
-
testConstruction.
- testConstruction() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.TestIndexedLagGraph
-
testConstruction.
- testConstruction() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.TestPolynomial
-
Tests to make sure that null parent throw an exception.
- testConstruction() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.TestPolynomialTerm
-
Tests to make sure that null parent throw an exception.
- testCpc(int, double, int) - Method in class edu.cmu.tetrad.study.performance.PerformanceTests
-
testCpc.
- testCpcStable(int, double, int, double) - Method in class edu.cmu.tetrad.study.performance.PerformanceTests
-
testCpcStable.
- testDefaultParameterSettings() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.TestMeasurementSimulator
-
Test to make sure the accessor methods are working correctly.
- TestDegenerateGaussian - Class in edu.cmu.tetrad.algcomparison.examples
-
Test the degenerate Gaussian score.
- TestDegenerateGaussian() - Constructor for class edu.cmu.tetrad.algcomparison.examples.TestDegenerateGaussian
-
Initializes a new instance of the TestDegenerateGaussian class.
- testDishToDishVariability() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.TestMeasurementSimulator
-
Turn on dish-to-dish variability error, turn off all other sources of error, simulate 100 dishes of data with 1 sample per dish, and look to see whether in the aggregated data Gene2:t1 and Gene3:t1 have standard deviations that are 10% of their respective means.
- testEvaluation() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.TestPolynomial
-
Test the evaluation of terms.
- testEvaluation() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.TestPolynomialTerm
-
Test the evaluation of terms.
- testFci(int, double, int) - Method in class edu.cmu.tetrad.study.performance.PerformanceTests
-
testFci.
- testFges(int, double, int, double) - Method in class edu.cmu.tetrad.study.performance.PerformanceTests
-
testFges.
- testFgesComparisonContinuous(int, double, int, int) - Method in class edu.cmu.tetrad.study.performance.PerformanceTests
-
testFgesComparisonContinuous.
- testFgesComparisonDiscrete(int, double, int, int) - Method in class edu.cmu.tetrad.study.performance.PerformanceTests
-
testFgesComparisonDiscrete.
- testFgesMbComparisonContinuous(int, double, int, int) - Method in class edu.cmu.tetrad.study.performance.PerformanceTests
-
testFgesMbComparisonContinuous.
- testFgesMbComparisonDiscrete(int, double, int, int) - Method in class edu.cmu.tetrad.study.performance.PerformanceTests
-
testFgesMbComparisonDiscrete.
- testGfci(int, double) - Method in class edu.cmu.tetrad.study.performance.PerformanceTests
-
testGfci.
- testGFciComparison() - Method in class edu.cmu.tetrad.study.performance.PerformanceTests
-
testGFciComparison.
- testGigaflops() - Static method in class edu.cmu.tetrad.algcomparison.examples.TestBoss
-
testGigaflops.
- TestIndexedConnectivity - Class in edu.cmu.tetrad.study.gene.tetrad.gene.history
-
Tests the IndexedConnectivity class by constructing graphs with randomly chosen parameters and seeing if they have the required properties.
- TestIndexedConnectivity(String) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.history.TestIndexedConnectivity
-
Change the name of this constructor to match the name of the test class.
- TestIndexedLagGraph - Class in edu.cmu.tetrad.study.gene.tetrad.gene.history
-
Tests the IndexedLagGraph class by constructing graphs with randomly chosen parameters and seeing if they have the required properties.
- TestIndexedLagGraph(String) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.history.TestIndexedLagGraph
-
Change the name of this constructor to match the name of the test class.
- testIsCanalyzing() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.TestBooleanFunction
-
Tests to see whether some known canalyzing functions (AND, OR, ...) pass the isCanalyzing() test.
- testIsEffective() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.TestBooleanFunction
-
Tests to see whether some known effective functions pass the isEffective() test.
- testLiangFigure6() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.reveal.TestRevealEvaluator
-
Tests whether the calculations in Liang, Figure 6 come out to the correct values.
- testMain() - Method in class edu.pitt.dbmi.algo.bayesian.constraint.inference.BayesianConstraintInferenceTest
-
Test of main method, of class BayesianConstraintInference.
- testMaxIndegree() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.TestSimpleRandomizer
-
Tests whether the randomizer can randomly make a graph where the maximum indegree across factors is the given factor.
- testMeanIndegree() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.TestSimpleRandomizer
-
Tests whether the randomizer can randomly make a graph where the mean ofindegree across factors is the given number.
- TestMeasurementSimulator - Class in edu.cmu.tetrad.study.gene.tetrad.gene.simulation
-
Tests the MeasurementSimulator class using diagnostics devised by Richard Scheines.
- TestMeasurementSimulator(String) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.TestMeasurementSimulator
-
Standard constructor for JUnit test cases.
- testNullConstruction() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.TestBooleanFunction
-
Tests to make sure that null parent throw an exception.
- TestOfIndependence - Annotation Interface in edu.cmu.tetrad.annotation
-
Aug 31, 2017 4:42:08 PM
- TestOfIndependenceAnnotations - Class in edu.cmu.tetrad.annotation
-
Sep 26, 2017 1:18:28 AM
- testPc(int, double, int, double) - Method in class edu.cmu.tetrad.study.performance.PerformanceTests
-
testPc.
- testPcStable(int, double, int, double) - Method in class edu.cmu.tetrad.study.performance.PerformanceTests
-
testPcStable.
- testPixelError() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.TestMeasurementSimulator
-
Turn on pixel digitalization error, turn off all other sources of error, simulate 1 dish of data with 1000 samples per dish and look to see whether in the aggregated data the standard deviations for Gene2:t1, Gene3:t1 and Gene1:t2 are 0.3.
- TestPolynomial - Class in edu.cmu.tetrad.study.gene.tetrad.gene.history
-
Tests the Polynomial class.
- TestPolynomial(String) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.history.TestPolynomial
-
Standard constructor for JUnit test cases.
- TestPolynomialTerm - Class in edu.cmu.tetrad.study.gene.tetrad.gene.history
-
Tests the PolynomialTerm class.
- TestPolynomialTerm(String) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.history.TestPolynomialTerm
-
Standard constructor for JUnit test cases.
- testPrint(int) - Static method in class edu.cmu.tetrad.util.PermutationGenerator
-
This static method will print the series of combinations for numObjects choose b to System.out.
- testPrint(int) - Static method in class edu.cmu.tetrad.util.SelectionGenerator
-
This static method will print the series of combinations for a choose b to System.out.
- testPrint(int[]) - Static method in class edu.cmu.tetrad.util.CombinationGenerator
-
This static method will print the series of combinations for a choose b to System.out.
- testPrint(int, int) - Static method in class edu.cmu.tetrad.util.ChoiceGenerator
-
This static method will print the series of combinations for a choose b to System.out.
- testPrint(int, int) - Static method in class edu.cmu.tetrad.util.SublistGenerator
-
This static method will print the series of combinations for a choose depth to System.out.
- TestRevealEvaluator - Class in edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.reveal
-
Test the Reveal evaluator.
- TestRevealEvaluator(String) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.reveal.TestRevealEvaluator
-
Standard constructor for JUnit test cases.
- testRowOrder() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.TestBooleanFunction
-
Tests whether rows are stored in the correct order.
- testSampleToSampleError() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.TestMeasurementSimulator
-
Turn on sample-to-sample error, turn off all other sources of error, simulate 1 dish of data with 1000 samples per dish, and look to see whether in the aggregated data the standard deviations of Gene2:t1 and Gene3:t1 are 0.2.
- TestSimpleRandomizer - Class in edu.cmu.tetrad.study.gene.tetrad.gene.history
-
Tests the SimpleRandomizer class by constructing graphs with randomly chosen parameters and seeing if they have the required properties.
- TestSimpleRandomizer(String) - Constructor for class edu.cmu.tetrad.study.gene.tetrad.gene.history.TestSimpleRandomizer
-
Change the name of this constructor to match the name of the test class.
- testTableSize() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.TestBooleanFunction
-
Tests to make sure the table is the correct size.
- testTranscriptionError() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.simulation.TestMeasurementSimulator
-
Save out the raw data using default parameters and make sure that Gene1:t2 has the specified standard deviation.
- Tetrad - Class in edu.cmu.tetrad.search.utils
-
Represents a ordered tetrad of variables, (i, j, k, l).
- Tetrad(Node, Node, Node, Node) - Constructor for class edu.cmu.tetrad.search.utils.Tetrad
-
Constructor for Tetrad.
- Tetrad(Node, Node, Node, Node, double) - Constructor for class edu.cmu.tetrad.search.utils.Tetrad
-
Constructor for Tetrad.
- TETRAD_BASED - Enum constant in enum class edu.cmu.tetrad.search.utils.BpcTestType
-
Tetrad-based test.
- TETRAD_BOLLEN - Enum constant in enum class edu.cmu.tetrad.search.utils.BpcTestType
-
Bollen Tetrad test.
- TETRAD_DELTA - Enum constant in enum class edu.cmu.tetrad.search.utils.BpcTestType
-
Delta Tetrad test.
- TETRAD_PURIFY_WASHDOWN - Enum constant in enum class edu.cmu.tetrad.search.utils.BpcAlgorithmType
-
This option doesn't do any purify.
- TETRAD_WISHART - Enum constant in enum class edu.cmu.tetrad.search.utils.BpcTestType
-
Wishart Tetrad test.
- TetradAlgebra - Class in edu.cmu.tetrad.util
-
Some algebra methods.
- TetradAlgebra() - Constructor for class edu.cmu.tetrad.util.TetradAlgebra
-
Initializes a new instance of the TetradAlgebra class.
- tetradHolds(int, int, int, int) - Method in interface edu.cmu.tetrad.search.utils.TetradTest
-
tetradHolds.
- tetradHolds(int, int, int, int) - Method in class edu.cmu.tetrad.search.utils.TetradTestContinuous
-
tetradHolds.
- tetradHolds(int, int, int, int) - Method in class edu.cmu.tetrad.search.utils.TetradTestDiscrete
-
tetradHolds.
- tetradHolds(int, int, int, int) - Method in class edu.cmu.tetrad.search.utils.TetradTestPopulation
-
tetradHolds.
- TetradLogger - Class in edu.cmu.tetrad.util
-
Represents a logging utility used throughout tetrad.
- TetradLogger.EmptyConfig - Class in edu.cmu.tetrad.util
-
Represents an empty configuration for the logger.
- TetradLogger.LogDisplayOutputStream - Interface in edu.cmu.tetrad.util
-
Represents an output stream that can get its own length.
- TetradLoggerConfig - Interface in edu.cmu.tetrad.util
-
Represents the configuration for the logger.
- TetradLoggerConfig.Event - Interface in edu.cmu.tetrad.util
-
Represents an event which is just an id and a description.
- TetradLoggerEvent - Class in edu.cmu.tetrad.util
-
An event associated with the
TetradLoggerListener
. - TetradLoggerEvent(Object, TetradLoggerConfig) - Constructor for class edu.cmu.tetrad.util.TetradLoggerEvent
-
Constructs the event given the source and the
TetradLoggerConfig
associated with the event if there is one - TetradLoggerListener - Interface in edu.cmu.tetrad.util
-
A listener for tetrad's logger.
- TetradProperties - Class in edu.cmu.tetrad.util
-
Nov 10, 2017 4:14:31 PM
- tetradPValue(int, int, int, int) - Method in interface edu.cmu.tetrad.search.utils.TetradTest
-
tetradPValue.
- tetradPValue(int, int, int, int) - Method in class edu.cmu.tetrad.search.utils.TetradTestContinuous
-
tetradPValue.
- tetradPValue(int, int, int, int) - Method in class edu.cmu.tetrad.search.utils.TetradTestDiscrete
-
tetradPValue.
- tetradPValue(int, int, int, int) - Method in class edu.cmu.tetrad.search.utils.TetradTestPopulation
-
tetradPValue.
- tetradScore(int, int, int, int) - Method in interface edu.cmu.tetrad.search.utils.TetradTest
-
tetradScore.
- tetradScore(int, int, int, int) - Method in class edu.cmu.tetrad.search.utils.TetradTestContinuous
-
tetradScore.
- tetradScore(int, int, int, int) - Method in class edu.cmu.tetrad.search.utils.TetradTestDiscrete
-
tetradScore.
- tetradScore(int, int, int, int) - Method in class edu.cmu.tetrad.search.utils.TetradTestPopulation
-
tetradScore.
- tetradScore1(int, int, int, int) - Method in interface edu.cmu.tetrad.search.utils.TetradTest
-
tetradScore1.
- tetradScore1(int, int, int, int) - Method in class edu.cmu.tetrad.search.utils.TetradTestContinuous
-
tetradScore1.
- tetradScore1(int, int, int, int) - Method in class edu.cmu.tetrad.search.utils.TetradTestDiscrete
-
tetradScore1.
- tetradScore1(int, int, int, int) - Method in class edu.cmu.tetrad.search.utils.TetradTestPopulation
-
tetradScore1.
- tetradScore3(int, int, int, int) - Method in interface edu.cmu.tetrad.search.utils.TetradTest
-
tetradScore3.
- tetradScore3(int, int, int, int) - Method in class edu.cmu.tetrad.search.utils.TetradTestContinuous
-
tetradScore3.
- tetradScore3(int, int, int, int) - Method in class edu.cmu.tetrad.search.utils.TetradTestDiscrete
-
tetradScore3.
- tetradScore3(int, int, int, int) - Method in class edu.cmu.tetrad.search.utils.TetradTestPopulation
-
tetradScore3.
- TetradSerializable - Interface in edu.cmu.tetrad.util
-
Interface to tag a class that is part of the set of serializable classes in the Tetrad API.
- TetradSerializableExcluded - Interface in edu.cmu.tetrad.util
-
Interface to tag a class that should be exluded from the set of TetradSerializable classes, even if it implements the TetradSerializable interface.
- TetradSerializableUtils - Class in edu.cmu.tetrad.util
-
Contains methods used by TestSerialization to ensure that previous "stable" versions of Tetrad will by loadable by later "stable" versions of Tetrad.
- TetradSerializableUtils(String, String, String) - Constructor for class edu.cmu.tetrad.util.TetradSerializableUtils
-
Blank constructor.
- TetradTest - Interface in edu.cmu.tetrad.search.utils
-
Provides an interface for classes that test tetrad constraints.
- TetradTestContinuous - Class in edu.cmu.tetrad.search.utils
-
Implements different tests of tetrad constraints: using Wishart's test (CPS, Wishart 1928); Bollen's test (Bollen, 1990) or a more computationally intensive test that fits one/two factor Gaussian models.
- TetradTestContinuous(CorrelationMatrix, BpcTestType, double) - Constructor for class edu.cmu.tetrad.search.utils.TetradTestContinuous
-
Constructor for TetradTestContinuous.
- TetradTestContinuous(DataSet, BpcTestType, double) - Constructor for class edu.cmu.tetrad.search.utils.TetradTestContinuous
-
Constructor for TetradTestContinuous.
- TetradTestContinuous(ICovarianceMatrix, BpcTestType, double) - Constructor for class edu.cmu.tetrad.search.utils.TetradTestContinuous
-
Constructor for TetradTestContinuous.
- TetradTestDiscrete - Class in edu.cmu.tetrad.search.utils
-
Implements a test of tetrad constraints with discrete variables.
- TetradTestDiscrete(DataSet, double) - Constructor for class edu.cmu.tetrad.search.utils.TetradTestDiscrete
-
Constructor for TetradTestDiscrete.
- TetradTestPopulation - Class in edu.cmu.tetrad.search.utils
-
Implements a test of tetrad constraints in a known correlation matrix.
- TetradTestPopulation(CorrelationMatrix) - Constructor for class edu.cmu.tetrad.search.utils.TetradTestPopulation
-
Constructor for TetradTestPopulation.
- TextTable - Class in edu.cmu.tetrad.util
-
Stores a 2D array of Strings for printing out tables.
- TextTable(int, int) - Constructor for class edu.cmu.tetrad.util.TextTable
-
Construct the text table; the table has a fixed number of rows and columns, each greater than zero.
- TextTable.Delimiter - Enum Class in edu.cmu.tetrad.util
-
An enum of delimiters.
- TeyssierScorer - Class in edu.cmu.tetrad.search.utils
-
Implements and extends a scorer extending Teyssier, M., and Koller, D.
- TeyssierScorer(IndependenceTest, Score) - Constructor for class edu.cmu.tetrad.search.utils.TeyssierScorer
-
Constructor that takes both a test or a score.
- THR - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
THR="thr"
- threshold(Matrix, double) - Static method in class edu.cmu.tetrad.search.IcaLingD
-
Thresholds the given matrix, sending any small entries in absolute value to zero.
- Threshold - Enum constant in enum class edu.pitt.dbmi.algo.resampling.ResamplingEdgeEnsemble
-
Choose an edge iff its prob.
- THRESHOLD_B - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
THRESHOLD_B="thresholdBHat"
- THRESHOLD_FOR_NUM_EIGENVALUES - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
THRESHOLD_FOR_NUM_EIGENVALUES="thresholdForNumEigenvalues"
- THRESHOLD_NO_RANDOM_CONSTRAIN_SEARCH - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
THRESHOLD_NO_RANDOM_CONSTRAIN_SEARCH="thresholdNoRandomConstrainSearch"
- THRESHOLD_NO_RANDOM_DATA_SEARCH - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
THRESHOLD_NO_RANDOM_DATA_SEARCH="thresholdNoRandomDataSearch"
- THRESHOLD_W - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
THRESHOLD_SPINE="thresholdSpine"
- TIME_LAG - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
TIME_LAG="timeLag"
- TIME_SERIES - Static variable in class edu.cmu.tetrad.algcomparison.simulation.SimulationTypes
-
Constant
TIME_SERIES="Time Series"
- TimeLagGraph - Class in edu.cmu.tetrad.graph
-
Represents a time series graph--that is, a graph with a fixed number S of lags, with edges into initial lags only--that is, into nodes in the first R lags, for some R.
- TimeLagGraph() - Constructor for class edu.cmu.tetrad.graph.TimeLagGraph
-
Constructor for TimeLagGraph.
- TimeLagGraph(TimeLagGraph) - Constructor for class edu.cmu.tetrad.graph.TimeLagGraph
-
Constructor for TimeLagGraph.
- TimeLagGraph.NodeId - Class in edu.cmu.tetrad.graph
-
Represents a NodeId with a name and a lag value.
- timeMillis() - Static method in class edu.cmu.tetrad.util.MillisecondTimes
-
timeMillis.
- TIMEOUT - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
TIMEOUT="timeout"
- TimeoutComparison - Class in edu.cmu.tetrad.algcomparison
-
Nov 14, 2017 12:00:31 PM
- TimeoutComparison() - Constructor for class edu.cmu.tetrad.algcomparison.TimeoutComparison
-
Represents a comparison of two time values for timeout purposes.
- TimeoutComparison.ComparisonGraph - Enum Class in edu.cmu.tetrad.algcomparison
-
An enum of graph types to compare.
- times(Matrix) - Method in class edu.cmu.tetrad.util.Matrix
-
times.
- times(Vector) - Method in class edu.cmu.tetrad.util.Matrix
-
times.
- TimeSeries - Annotation Interface in edu.cmu.tetrad.annotation
-
Aug 7, 2019 6:17:29 PM
- TimeSeriesData - Class in edu.cmu.tetrad.data
-
Stores time series data as a list of continuous columns.
- TimeSeriesData(Matrix, List<String>) - Constructor for class edu.cmu.tetrad.data.TimeSeriesData
-
Constructs a new time series data contains for the given row-major data array and the given list of variables.
- TimeSeriesSemSimulation - Class in edu.cmu.tetrad.algcomparison.simulation
-
Time series SEM simulation.
- TimeSeriesSemSimulation(RandomGraph) - Constructor for class edu.cmu.tetrad.algcomparison.simulation.TimeSeriesSemSimulation
-
Constructor for TimeSeriesSemSimulation.
- tippett - Enum constant in enum class edu.cmu.tetrad.search.utils.ResolveSepsets.Method
-
Tippett's method
- tippett - Enum constant in enum class edu.cmu.tetrad.search.work_in_progress.ResolveSepsetsDci.Method
-
The tippett method.
- tKeys() - Method in class edu.cmu.tetrad.search.utils.AlmostCycleRemover
-
Returns the set of nodes that are keys in the map of triples.
- toArray() - Method in class edu.cmu.tetrad.simulation.PRAOerrors
-
toArray.
- toArray() - Method in class edu.cmu.tetrad.util.Matrix
-
toArray.
- toArray() - Method in class edu.cmu.tetrad.util.Vector
-
toArray.
- toContinuousDataModel(ContinuousData) - Static method in class edu.cmu.tetrad.util.DataConvertUtils
-
toContinuousDataModel.
- toCovarianceMatrix(CovarianceData) - Static method in class edu.cmu.tetrad.util.DataConvertUtils
-
toCovarianceMatrix.
- toDataModel(Data) - Static method in class edu.cmu.tetrad.util.DataConvertUtils
-
toDataModel.
- toDataModel(Data, Metadata) - Static method in class edu.cmu.tetrad.util.DataConvertUtils
-
toDataModel.
- toDelimiter(char) - Static method in class edu.cmu.tetrad.util.DelimiterUtils
-
Get the enum delimiter corresponding to char delimiter: tab, space, comma, colon, semicolon, pipe.
- Token - Enum Class in edu.cmu.tetrad.calculator.parser
-
Allowable tokens.
- toMatrix1D() - Method in class edu.pitt.csb.mgm.Mgm.MGMParams
-
Copy all params into a single vector
- toMixedDataBox(MixedTabularData) - Static method in class edu.cmu.tetrad.util.DataConvertUtils
-
toMixedDataBox.
- toMixedDataBox(MixedTabularData, Metadata) - Static method in class edu.cmu.tetrad.util.DataConvertUtils
-
Converting using metadata
- toNodes(DataColumn[]) - Static method in class edu.cmu.tetrad.util.DataConvertUtils
-
toNodes.
- toNodes(DiscreteDataColumn[]) - Static method in class edu.cmu.tetrad.util.DataConvertUtils
-
toNodes.
- toNodes(List<String>) - Static method in class edu.cmu.tetrad.util.DataConvertUtils
-
toNodes.
- TOP_BRACKET - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
TOP_BRACKET="topBracket"
- topEigenvalues() - Method in record class edu.cmu.tetrad.search.test.Kci.EigenReturn
-
Returns the value of the
topEigenvalues
record component. - TopEigenvalues - Class in edu.cmu.tetrad.search.test
-
The class is used to find the top eigenvalues and eigenvectors of a given matrix.
- TopEigenvalues(SimpleMatrix) - Constructor for class edu.cmu.tetrad.search.test.TopEigenvalues
-
Construct a new object with the given matrix.
- topToBottomLayout(TimeLagGraph) - Static method in class edu.cmu.tetrad.algcomparison.simulation.TimeSeriesSemSimulation
-
topToBottomLayout.
- toString() - Method in class edu.cmu.tetrad.annotation.AnnotatedClass
- toString() - Method in class edu.cmu.tetrad.bayes.ApproximateUpdater
-
Prints out the most recent marginal.
- toString() - Method in interface edu.cmu.tetrad.bayes.BayesIm
-
Returns a string representation for this Bayes net.
- toString() - Method in class edu.cmu.tetrad.bayes.BayesPm
-
Prints out the list of values for each node.
- toString() - Method in class edu.cmu.tetrad.bayes.CptInvariantUpdater
-
Prints out the most recent marginal.
- toString() - Method in class edu.cmu.tetrad.bayes.DirichletBayesIm
-
Prints out the probability table for each variable.
- toString() - Method in class edu.cmu.tetrad.bayes.Evidence
-
toString.
- toString() - Method in class edu.cmu.tetrad.bayes.Identifiability
-
toString.
- toString() - Method in class edu.cmu.tetrad.bayes.JunctionTreeAlgorithm
- toString() - Method in class edu.cmu.tetrad.bayes.JunctionTreeUpdater
- toString() - Method in class edu.cmu.tetrad.bayes.Manipulation
-
toString.
- toString() - Method in class edu.cmu.tetrad.bayes.MlBayesIm
-
Prints out the probability table for each variable.
- toString() - Method in class edu.cmu.tetrad.bayes.MlBayesImObs
-
Prints out the probability table for each variable.
- toString() - Method in class edu.cmu.tetrad.bayes.Proposition
-
toString.
- toString() - Method in class edu.cmu.tetrad.bayes.RowSummingExactUpdater
-
Prints out the most recent marginal.
- toString() - Method in class edu.cmu.tetrad.bayes.StoredCellProbs
-
toString.
- toString() - Method in class edu.cmu.tetrad.bayes.StoredCellProbsObs
-
toString.
- toString() - Method in class edu.cmu.tetrad.bayes.UpdatedBayesIm
-
Prints out the probability table for each variable.
- toString() - Method in class edu.cmu.tetrad.calculator.expression.ConstantExpression
-
toString.
- toString() - Method in class edu.cmu.tetrad.calculator.expression.VariableExpression
-
toString.
- toString() - Method in class edu.cmu.tetrad.cluster.KMeans
-
toString.
- toString() - Method in class edu.cmu.tetrad.data.AbstractVariable
-
toString.
- toString() - Method in class edu.cmu.tetrad.data.BoxDataSet
-
toString.
- toString() - Method in class edu.cmu.tetrad.data.Clusters
-
toString.
- toString() - Method in class edu.cmu.tetrad.data.CorrelationMatrixOnTheFly
-
Prints out the matrix
- toString() - Method in class edu.cmu.tetrad.data.CovarianceMatrix
-
Prints out the matrix
- toString() - Method in class edu.cmu.tetrad.data.CovarianceMatrixOnTheFly
-
Prints out the matrix
- toString() - Method in interface edu.cmu.tetrad.data.DataModel
-
Renders the data model as as String.
- toString() - Method in class edu.cmu.tetrad.data.DataModelList
-
toString.
- toString() - Method in interface edu.cmu.tetrad.data.DataSet
-
toString.
- toString() - Method in class edu.cmu.tetrad.data.DelimiterType
-
Prints out the name of the type.
- toString() - Method in class edu.cmu.tetrad.data.DiscreteVariable
-
toString.
- toString() - Method in class edu.cmu.tetrad.data.DiscreteVariableType
-
Prints out the name of the type.
- toString() - Method in class edu.cmu.tetrad.data.Discretizer.Discretization
-
Returns a string representation of the Discretization object.
- toString() - Method in interface edu.cmu.tetrad.data.ICovarianceMatrix
-
Renders the covariance matrix as a string representation.
- toString() - Method in class edu.cmu.tetrad.data.IndependenceFacts
-
toString.
- toString() - Method in class edu.cmu.tetrad.data.Knowledge
-
toString.
- toString() - Method in class edu.cmu.tetrad.data.KnowledgeEdge
-
toString.
- toString() - Method in class edu.cmu.tetrad.data.NumberObjectDataSet
-
toString.
- toString() - Method in class edu.cmu.tetrad.graph.Dag
-
toString.
- toString() - Method in class edu.cmu.tetrad.graph.Edge
-
Produces a string representation of the edge.
- toString() - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
toString.
- toString() - Method in interface edu.cmu.tetrad.graph.Graph
-
toString.
- toString() - Method in class edu.cmu.tetrad.graph.GraphNode
-
toString.
- toString() - Method in class edu.cmu.tetrad.graph.GraphUtils.TwoCycleErrors
-
Returns a string representation of this object.
- toString() - Method in class edu.cmu.tetrad.graph.IndependenceFact
-
toString.
- toString() - Method in interface edu.cmu.tetrad.graph.Node
-
Returns the intervention type for this node.
- toString() - Method in class edu.cmu.tetrad.graph.NodePair
-
toString.
- toString() - Method in class edu.cmu.tetrad.graph.OrderedPair
-
toString.
- toString() - Method in class edu.cmu.tetrad.graph.RandomGraph.UniformGraphGenerator
-
A string representation of the structural information for the generated graph.
- toString() - Method in class edu.cmu.tetrad.graph.SemGraph
-
toString.
- toString() - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
toString.
- toString() - Method in class edu.cmu.tetrad.graph.Triple
-
toString.
- toString() - Method in class edu.cmu.tetrad.regression.LogisticRegression.Result
-
Returns a string representation of the regression results.
- toString() - Method in class edu.cmu.tetrad.regression.RegressionResult
-
toString.
- toString() - Method in class edu.cmu.tetrad.search.FastIca.IcaResult
-
Returns a string representation of this IcaResult object.
- toString() - Method in class edu.cmu.tetrad.search.FciOrientDijkstra.DijkstraEdge
-
Returns a string representation of the DijkstraEdge.
- toString() - Method in class edu.cmu.tetrad.search.Ida.NodeEffects
-
Returns a string representation of this object.
- toString() - Method in interface edu.cmu.tetrad.search.IndependenceTest
-
Returns a string representation of this test.
- toString() - Method in class edu.cmu.tetrad.search.IndTestIod
-
Returns a string representation of this test.
- toString() - Method in record class edu.cmu.tetrad.search.MarkovCheck.MarkovCheckRecord
-
Returns a string representation of this record class.
- toString() - Method in class edu.cmu.tetrad.search.score.BasisFunctionBicScore
-
Returns a string representation of the BasisFunctionBicScore object.
- toString() - Method in class edu.cmu.tetrad.search.score.BdeScore
-
Returns a string representation of the object.
- toString() - Method in class edu.cmu.tetrad.search.score.BdeuScore
-
Returns a string representation of this BDeu Score object.
- toString() - Method in class edu.cmu.tetrad.search.score.ConditionalGaussianLikelihood.Ret
-
Returns a string representation of this object.
- toString() - Method in class edu.cmu.tetrad.search.score.ConditionalGaussianScore
-
A string representation of the score.
- toString() - Method in class edu.cmu.tetrad.search.score.DegenerateGaussianScore
-
A string representation of the score.
- toString() - Method in class edu.cmu.tetrad.search.score.DiscreteBicScore
-
A string representation of the score.
- toString() - Method in class edu.cmu.tetrad.search.score.DiscreteBicScoreAdTree
-
A string representation of the score.
- toString() - Method in class edu.cmu.tetrad.search.score.GicScores
-
Returns a string for this object.
- toString() - Method in interface edu.cmu.tetrad.search.score.Score
-
A string representation of the score.
- toString() - Method in record class edu.cmu.tetrad.search.score.SemBicScore.CovAndCoefs
-
Returns a string representation of this record class.
- toString() - Method in class edu.cmu.tetrad.search.score.SemBicScore
-
Returns a string representation of this score.
- toString() - Method in class edu.cmu.tetrad.search.test.IndependenceResult
-
Returns a string representation of this independence fact.
- toString() - Method in class edu.cmu.tetrad.search.test.IndTestChiSquare
-
Returns a string representation of this test.
- toString() - Method in class edu.cmu.tetrad.search.test.IndTestConditionalCorrelation
-
Returns a string representation of this test.
- toString() - Method in class edu.cmu.tetrad.search.test.IndTestConditionalGaussianLrt
-
Returns a string representation of this test.
- toString() - Method in class edu.cmu.tetrad.search.test.IndTestDegenerateGaussianLrt.Ret
-
Returns a string representation of this object.
- toString() - Method in class edu.cmu.tetrad.search.test.IndTestDegenerateGaussianLrt
-
Returns a string representation of this test.
- toString() - Method in class edu.cmu.tetrad.search.test.IndTestFisherZ
-
Returns a string representation of the Fisher Z independence test.
- toString() - Method in class edu.cmu.tetrad.search.test.IndTestFisherZConcatenateResiduals
-
Returns a string representation of the object.
- toString() - Method in class edu.cmu.tetrad.search.test.IndTestFisherZFisherPValue
-
Returns a string representation of this test.
- toString() - Method in class edu.cmu.tetrad.search.test.IndTestGSquare
-
Returns a String representation of this test.
- toString() - Method in class edu.cmu.tetrad.search.test.IndTestHsic
-
Returns a string representation of this test.
- toString() - Method in class edu.cmu.tetrad.search.test.IndTestMulti
-
Returns a string representation of this object, which includes the alpha value of the independence test.
- toString() - Method in class edu.cmu.tetrad.search.test.IndTestRegression
-
Returns a string representation of the Linear Regression Test object.
- toString() - Method in class edu.cmu.tetrad.search.test.IndTestTrekSep
-
Returns a string representation of this test.
- toString() - Method in record class edu.cmu.tetrad.search.test.Kci.EigenReturn
-
Returns a string representation of this record class.
- toString() - Method in class edu.cmu.tetrad.search.test.Kci
-
Returns a string representation of this test.
- toString() - Method in class edu.cmu.tetrad.search.test.MsepTest
-
Returns a string representation of this test.
- toString() - Method in class edu.cmu.tetrad.search.test.ScoreIndTest
-
Returns a string representation of the object.
- toString() - Method in class edu.cmu.tetrad.search.utils.Bes.Arrow
-
Returns the index of the arrow.
- toString() - Method in class edu.cmu.tetrad.search.utils.DiscriminatingPath
- toString() - Method in class edu.cmu.tetrad.search.utils.GraphoidAxioms.GraphoidIndFact
-
Returns a string representation of this object.
- toString() - Method in class edu.cmu.tetrad.search.utils.PermutationMatrixPair
-
Prints a string representation of this.
- toString() - Method in class edu.cmu.tetrad.search.utils.PossibleMConnectingPath
-
toString.
- toString() - Method in class edu.cmu.tetrad.search.utils.R5R9Dijkstra.DijkstraEdge
-
Returns a string representation of the DijkstraEdge object.
- toString() - Method in class edu.cmu.tetrad.search.utils.SepsetMap
-
Returns a string representation of this sepset map.
- toString() - Method in class edu.cmu.tetrad.search.utils.Sextad
-
toString.
- toString() - Method in class edu.cmu.tetrad.search.utils.Tetrad
-
toString.
- toString() - Method in class edu.cmu.tetrad.search.work_in_progress.DMSearch.LatentStructure
-
toString.
- toString() - Method in class edu.cmu.tetrad.search.work_in_progress.GraphChange
-
Anly outputs ops which have elements, not empty structures.
- toString() - Method in class edu.cmu.tetrad.search.work_in_progress.HbsmsBeam.Move
-
Returns a string representation of this move.
- toString() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestCramerT
-
Returns a string representation of the object.
- toString() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestFisherZPercentIndependent
-
Returns a string representation of this object.
- toString() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestFisherZRecursive
-
toString.
- toString() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestMixedMultipleTTest
-
Returns a string representation of the object.
- toString() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestMnlrLr
-
Returns a string representation of this object.
- toString() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestMultinomialLogisticRegression
-
Returns a string representation of the object.
- toString() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestPositiveCorr
-
Returns a string representation of the Fisher Z object.
- toString() - Method in class edu.cmu.tetrad.search.work_in_progress.IndTestSepsetDci
-
toString.
- toString() - Method in class edu.cmu.tetrad.search.work_in_progress.MagCgBicScore
-
toString.
- toString() - Method in class edu.cmu.tetrad.search.work_in_progress.MagDgBicScore
-
toString.
- toString() - Method in class edu.cmu.tetrad.search.work_in_progress.MagSemBicScore
-
toString.
- toString() - Method in class edu.cmu.tetrad.search.work_in_progress.SepsetMapDci
-
toString.
- toString() - Method in class edu.cmu.tetrad.search.work_in_progress.Sextad
-
toString.
- toString() - Method in class edu.cmu.tetrad.sem.DagScorer
-
toString.
- toString() - Method in class edu.cmu.tetrad.sem.GeneralizedSemIm
-
Returns a string representation of the object.
- toString() - Method in class edu.cmu.tetrad.sem.GeneralizedSemPm
-
Returns a relatively brief String representation of this SEM PM--the equations and distributions of the model.
- toString() - Method in class edu.cmu.tetrad.sem.Mapping
-
toString.
- toString() - Method in enum class edu.cmu.tetrad.sem.ParamComparison
- toString() - Method in enum class edu.cmu.tetrad.sem.ParamConstraintType
- toString() - Method in class edu.cmu.tetrad.sem.Parameter
-
toString.
- toString() - Method in enum class edu.cmu.tetrad.sem.ParamType
- toString() - Method in class edu.cmu.tetrad.sem.Ricf.FitConGraphResult
-
Returns a string representation of the FitConGraphResult object.
- toString() - Method in class edu.cmu.tetrad.sem.Ricf.RicfResult
-
Returns a string representation of the RicfResult object.
- toString() - Method in interface edu.cmu.tetrad.sem.Scorer
-
toString.
- toString() - Method in class edu.cmu.tetrad.sem.SemEstimator
-
toString.
- toString() - Method in class edu.cmu.tetrad.sem.SemEstimatorGibbs
-
toString.
- toString() - Method in class edu.cmu.tetrad.sem.SemEvidence
-
toString.
- toString() - Method in class edu.cmu.tetrad.sem.SemIm
-
toString.
- toString() - Method in class edu.cmu.tetrad.sem.SemManipulation
-
toString.
- toString() - Method in class edu.cmu.tetrad.sem.SemOptimizerEm
-
toString.
- toString() - Method in class edu.cmu.tetrad.sem.SemOptimizerPowell
-
toString.
- toString() - Method in class edu.cmu.tetrad.sem.SemOptimizerRegression
-
toString.
- toString() - Method in class edu.cmu.tetrad.sem.SemOptimizerRicf
-
toString.
- toString() - Method in class edu.cmu.tetrad.sem.SemOptimizerScattershot
-
toString.
- toString() - Method in class edu.cmu.tetrad.sem.SemPm
-
toString.
- toString() - Method in class edu.cmu.tetrad.sem.SemProposition
-
Returns a string representation of the object.
- toString() - Method in class edu.cmu.tetrad.sem.StandardizedSemIm.ParameterRange
-
toString.
- toString() - Method in class edu.cmu.tetrad.sem.StandardizedSemIm
-
toString.
- toString() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.biolingua.BiolinguaDigraph
-
Returns a specially formatted string with all the contents of this Graph.
- toString() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.BasicGraph
-
Returns a specially formatted string with all the contents of this Graph.
- toString() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.BasicLTMatrix
-
Returns a specially formatted string with all the contents of this matrix
- toString() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.BasicMatrix
-
Returns a specially formatted string with all the contents of this matrix
- toString() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.LTMatrix
-
Returns a specially formatted string with all the contents of this matrix
- toString() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.Matrix
-
Returns a specially formatted string with all the contents of this matrix
- toString() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.SymMatrix
-
Returns a specially formatted string with all the contents of this matrix
- toString() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.util.SymMatrixF
-
Returns a specially formatted string with all the contents of this matrix
- toString() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.graph.ManualLagGraph
-
toString.
- toString() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BasicLagGraph
-
Returns a string representation of the graph, indicating for each factor which lagged factors map into it.
- toString() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.BooleanFunction
-
Returns a string representation of the boolean function.
- toString() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.IndexedConnectivity
-
Returns a string representation of the graph, indicating for each factor which lagged factors map into it.
- toString() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.IndexedLagGraph
-
Returns a string representation of the graph, indicating for each factor which lagged factors map into it.
- toString() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.IndexedParent
-
Prints out the factor index and lag.
- toString() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.LaggedFactor
-
Returns a string representing this lagged factor.
- toString() - Method in interface edu.cmu.tetrad.study.gene.tetrad.gene.history.LagGraph
-
Returns a string representation of the graph, indicating for each factor which lagged factors map into it.
- toString() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.LinearFunction
-
Prints out the linear function of each factor of its parents.
- toString() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.Polynomial
-
Prints out a representation of the term.
- toString() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.PolynomialTerm
-
Prints out a representation of the term.
- toString() - Method in class edu.cmu.tetrad.study.performance.ComparisonParameters
-
toString.
- toString() - Method in class edu.cmu.tetrad.study.performance.ComparisonResult
-
toString.
- toString() - Method in class edu.cmu.tetrad.util.DefaultTetradLoggerConfig.DefaultEvent
-
toString.
- toString() - Method in class edu.cmu.tetrad.util.DefaultTetradLoggerConfig
-
toString.
- toString() - Method in class edu.cmu.tetrad.util.dist.Beta
-
A string representation of the distribution.
- toString() - Method in class edu.cmu.tetrad.util.dist.ChiSquare
-
toString.
- toString() - Method in class edu.cmu.tetrad.util.dist.Discrete
-
toString.
- toString() - Method in class edu.cmu.tetrad.util.dist.Exponential
-
toString.
- toString() - Method in class edu.cmu.tetrad.util.dist.Gamma
-
toString.
- toString() - Method in class edu.cmu.tetrad.util.dist.Indicator
-
toString.
- toString() - Method in class edu.cmu.tetrad.util.dist.LogNormal
-
toString.
- toString() - Method in class edu.cmu.tetrad.util.dist.MixtureOfGaussians
-
toString.
- toString() - Method in class edu.cmu.tetrad.util.dist.Normal
-
toString.
- toString() - Method in class edu.cmu.tetrad.util.dist.Poisson
-
toString.
- toString() - Method in class edu.cmu.tetrad.util.dist.SingleValue
-
Returns a string representation of the object.
- toString() - Method in class edu.cmu.tetrad.util.dist.Split
-
toString.
- toString() - Method in class edu.cmu.tetrad.util.dist.TruncatedNormal
-
toString.
- toString() - Method in class edu.cmu.tetrad.util.dist.Uniform
-
toString.
- toString() - Method in interface edu.cmu.tetrad.util.Function
-
toString.
- toString() - Method in class edu.cmu.tetrad.util.Matrix
-
toString.
- toString() - Method in class edu.cmu.tetrad.util.Parameters
- toString() - Method in class edu.cmu.tetrad.util.PartialCorrelationPdf
-
toString.
- toString() - Method in class edu.cmu.tetrad.util.Point
-
toString.
- toString() - Method in class edu.cmu.tetrad.util.PointXy
-
toString.
- toString() - Method in class edu.cmu.tetrad.util.SublistGenerator
-
toString.
- toString() - Method in interface edu.cmu.tetrad.util.TetradLoggerConfig
-
Returns a string representation of the object.
- toString() - Method in class edu.cmu.tetrad.util.TextTable
-
toString.
- toString() - Method in class edu.cmu.tetrad.util.Vector
-
toString.
- toString() - Method in class edu.cmu.tetrad.util.Version
-
toString.
- toString() - Method in class edu.pitt.csb.mgm.IndTestMultinomialLogisticRegressionWald
-
Returns a string representation of the object.
- toString() - Method in class edu.pitt.csb.mgm.Mgm.MGMParams
-
Returns a string representation of the object
- toString(boolean[][]) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
Copies the given array, starting each line with a tab character..
- toString(double[]) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
toString.
- toString(double[][]) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
Copies the given array, using a standard scientific notation number formatter and beginning each line with a tab character.
- toString(double[][], List<String>) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
toString.
- toString(double[], NumberFormat) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
toString.
- toString(int[]) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
toString.
- toString(int[][]) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
toString.
- toString(int[][], List<String>) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
toString.
- toStringDep() - Method in class edu.cmu.tetrad.search.MarkovCheck.AllSubsetsIndependenceFacts
-
Returns a string representation of the m-connection facts.
- toStringIndep() - Method in class edu.cmu.tetrad.search.MarkovCheck.AllSubsetsIndependenceFacts
-
Returns a string representation of the m-separation facts.
- toStringSquare(double[][], NumberFormat, List<String>) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
toStringSquare.
- toStringSquare(double[][], List<String>) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
toStringSquare.
- toStringSquare(int[][], List<String>) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
toStringSquare.
- totalInstabilityDir(DoubleMatrix2D, List<Node>) - Static method in class edu.pitt.csb.stability.StabilityUtils
-
totalInstabilityDir.
- totalInstabilityUndir(DoubleMatrix2D, List<Node>) - Static method in class edu.pitt.csb.stability.StabilityUtils
-
totalInstabilityUndir.
- toVerticalDiscreteDataModel(VerticalDiscreteTabularData) - Static method in class edu.cmu.tetrad.util.DataConvertUtils
-
toVerticalDiscreteDataModel.
- toVerticalDiscreteDataModel(VerticalDiscreteTabularData, Metadata) - Static method in class edu.cmu.tetrad.util.DataConvertUtils
-
Converting using metadata
- toXML() - Method in class edu.pitt.isp.sverchkov.data.AdTree
-
Converts to XML.
- toXML(DocumentBuilder) - Method in class edu.pitt.isp.sverchkov.data.AdTree
-
Converts to XML.
- tPdf(double, double) - Static method in class edu.cmu.tetrad.util.ProbUtils
-
tPdf.
- tQuantile(double, double) - Static method in class edu.cmu.tetrad.util.ProbUtils
-
CACM Algorithm 396, by G.
- trace() - Method in class edu.cmu.tetrad.util.Matrix
-
trace.
- trace(double[][]) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
trace.
- trace(Set<Node>, Set<Node>) - Method in class edu.cmu.tetrad.search.utils.GrowShrinkTree
-
trace.
- trace(Set<Node>, Set<Node>, Set<Node>) - Method in class edu.cmu.tetrad.search.utils.GrowShrinkTree
-
trace.
- tRand(double) - Static method in class edu.cmu.tetrad.util.ProbUtils
-
T distribution random generator.
- transferAttributes(Graph) - Method in class edu.cmu.tetrad.graph.Dag
-
Transfers attributes from the given graph to the current graph.
- transferAttributes(Graph) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
transferAttributes.
- transferAttributes(Graph) - Method in interface edu.cmu.tetrad.graph.Graph
-
transferAttributes.
- transferAttributes(Graph) - Method in class edu.cmu.tetrad.graph.LagGraph
-
transferAttributes.
- transferAttributes(Graph) - Method in class edu.cmu.tetrad.graph.SemGraph
-
transferAttributes.
- transferAttributes(Graph) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Transfers attributes from the given graph to the current graph.
- transferNodesAndEdges(Graph) - Method in class edu.cmu.tetrad.graph.Dag
-
Transfers nodes and edges from the given graph to the current graph.
- transferNodesAndEdges(Graph) - Method in class edu.cmu.tetrad.graph.EdgeListGraph
-
Transfers nodes and edges from one graph to another.
- transferNodesAndEdges(Graph) - Method in interface edu.cmu.tetrad.graph.Graph
-
Transfers nodes and edges from one graph to another.
- transferNodesAndEdges(Graph) - Method in class edu.cmu.tetrad.graph.LagGraph
-
Transfers nodes and edges from one graph to another.
- transferNodesAndEdges(Graph) - Method in class edu.cmu.tetrad.graph.SemGraph
-
Transfers nodes and edges from one graph to another.
- transferNodesAndEdges(Graph) - Method in class edu.cmu.tetrad.graph.TimeLagGraph
-
Transfers nodes and edges from the given graph to the current graph.
- transform(DataSet, String...) - Static method in class edu.cmu.tetrad.calculator.Transformation
-
Transforms the given data using the given representations of transforming equations.
- Transformation - Class in edu.cmu.tetrad.calculator
-
Represents a transformation on some dataset.
- transformCpdagIntoRandomDag(Graph, Knowledge, boolean, boolean) - Static method in class edu.cmu.tetrad.graph.GraphTransforms
-
Transforms a completed partially directed acyclic graph (CPDAG) into a random directed acyclic graph (DAG) by randomly orienting the undirected edges in the CPDAG in shuffled order.
- translate(String, List<Node>) - Static method in class edu.cmu.tetrad.search.utils.GraphSearchUtils
-
translate.
- transormPagIntoRandomMag(Graph) - Static method in class edu.cmu.tetrad.graph.GraphTransforms
-
Transforms a partially ancestral graph (PAG) into a maximally ancestral graph (MAG) by randomly orienting the circle endpoints as either tail or arrow and then applying the final FCI orient algorithm after each change.
- transpose() - Method in class edu.cmu.tetrad.util.Matrix
-
transpose.
- transpose(double[][]) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
transpose.
- transposeWithoutCopy(RealMatrix) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
transposeWithoutCopy.
- traverse(Node, Edge) - Static method in class edu.cmu.tetrad.graph.Edges
-
If node is one endpoint of edge, returns the other endpoint.
- traverseDirected(Node, Edge) - Static method in class edu.cmu.tetrad.graph.Edges
-
For A -> B, given A, returns B; otherwise returns null.
- traverseNondirected(Node, Edge) - Static method in class edu.cmu.tetrad.graph.Edges
-
For A o-o B, given A, returns B; otherwise returns null.
- traverseReverseDirected(Node, Edge) - Static method in class edu.cmu.tetrad.graph.Edges
-
For A -> B, given B, returns A; otherwise returns null.
- traverseSemiDirected(Node, Edge) - Static method in class edu.cmu.tetrad.graph.Edges
-
For A --* B or A o-* B, given A, returns B.
- traverseSemiDirected(Node, Edge) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Traverses a semi-directed edge to identify the next node in the traversal.
- treks(Graph, Node, Node) - Static method in class edu.cmu.tetrad.search.work_in_progress.Ion
-
treks.
- treks(Node, Node, int) - Method in class edu.cmu.tetrad.graph.Paths
-
Finds all treks from node1 to node2 with a maximum length.
- treksIncludingBidirected(Node, Node) - Method in class edu.cmu.tetrad.graph.Paths
-
Finds all possible treks between two nodes, including bidirectional treks.
- triangle(Node, Node, Node) - Method in class edu.cmu.tetrad.search.utils.TeyssierScorer
-
Returns true iff [a, b, c] is a triangle.
- trimEdgesAmongParents(Graph, Node) - Static method in class edu.cmu.tetrad.search.utils.MbUtils
-
Removes edges among the parents of the target.
- trimEdgesAmongParentsOfChildren(Graph, Node) - Static method in class edu.cmu.tetrad.search.utils.MbUtils
-
Removes edges among the parents of children of the target.
- trimGraph(List<Node>, Graph, int) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Trims the given graph based on the specified trimming style.
- TRIMMING_STYLE - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
TRIMMING_STYLE="trimmingStyle"
- trimToAdjacents(Graph, Node) - Static method in class edu.cmu.tetrad.search.utils.MbUtils
-
Trims the graph to just the adjacents of the target.
- trimToMbNodes(Graph, Node, boolean) - Static method in class edu.cmu.tetrad.search.utils.MbUtils
-
Trims the graph to the target, the parents and children of the target, and the parents of the children of the target.
- triple(Graph, Node, Node, Node) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Checks if three nodes are connected in a graph.
- Triple - Class in edu.cmu.tetrad.graph
-
Stores a triple (x, y, z) of nodes.
- Triple(Node, Node, Node) - Constructor for class edu.cmu.tetrad.graph.Triple
-
Constructs a triple of nodes.
- tripleAllowed(Node, Node, Node) - Method in class edu.cmu.tetrad.search.utils.AlmostCycleRemover
-
Determines whether a triple consisting of three given nodes is allowed.
- TripleClassifier - Interface in edu.cmu.tetrad.graph
-
Marks a search algorithm as a triad classifier and returns the triad classifications if makes.
- triplesToText(Set<Triple>, String) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Converts a set of triples into a formatted string.
- true_DAG - Enum constant in enum class edu.cmu.tetrad.algcomparison.Comparison.ComparisonGraph
-
Constant for the true DAG.
- true_DAG - Enum constant in enum class edu.cmu.tetrad.algcomparison.TimeoutComparison.ComparisonGraph
-
The true dag.
- TrueDagFalseNegativesArrows - Class in edu.cmu.tetrad.algcomparison.statistic
-
Represents the statistic of False Negatives for Arrows compared to the true DAG.
- TrueDagFalseNegativesArrows() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.TrueDagFalseNegativesArrows
-
Constructs the statistic.
- TrueDagFalseNegativesTails - Class in edu.cmu.tetrad.algcomparison.statistic
-
The class TrueDagFalseNegativesTails implements the Statistic interface to calculate the number of false negatives for tails compared to the true Directed Acyclic Graph (DAG).
- TrueDagFalseNegativesTails() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.TrueDagFalseNegativesTails
-
Constructs the statistic.
- TrueDagFalsePositiveArrow - Class in edu.cmu.tetrad.algcomparison.statistic
-
Represents a statistic that calculates the false positives for arrows compared to the true directed acyclic graph (DAG).
- TrueDagFalsePositiveArrow() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.TrueDagFalsePositiveArrow
-
This class represents a statistic that calculates the false positives for arrows compared to the true DAG.
- TrueDagFalsePositiveTails - Class in edu.cmu.tetrad.algcomparison.statistic
-
TrueDagFalsePositiveTails is a class that implements the Statistic interface.
- TrueDagFalsePositiveTails() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.TrueDagFalsePositiveTails
-
Constructs a new TrueDagFalsePositiveTails object.
- TrueDagPrecisionArrow - Class in edu.cmu.tetrad.algcomparison.statistic
-
The proportion of X*->Y in the estimated graph for which there is no path Y~~>X in the true graph.
- TrueDagPrecisionArrow() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.TrueDagPrecisionArrow
-
This class represents a statistic that calculates the precision for arrows compared to the true DAG.
- TrueDagPrecisionTails - Class in edu.cmu.tetrad.algcomparison.statistic
-
A class that implements the Statistic interface to calculate the proportion of X-->Y edges in the estimated graph for which there is a path X~~>Y in the true graph.
- TrueDagPrecisionTails() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.TrueDagPrecisionTails
-
This class represents a statistic that calculates the precision for tails compared to the true DAG.
- TrueDagRecallArrows - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- TrueDagRecallArrows() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.TrueDagRecallArrows
-
This class represents a statistic that calculates the recall for arrows compared to the true DAG.
- TrueDagRecallTails - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- TrueDagRecallTails() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.TrueDagRecallTails
-
This class represents a statistic that calculates the true positives for tails compared to the true DAG.
- TrueDagTruePositiveArrow - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- TrueDagTruePositiveArrow() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.TrueDagTruePositiveArrow
-
This class represents a statistic that calculates the true positives for arrows compared to the true DAG.
- TrueDagTruePositiveDirectedPathNonancestor - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- TrueDagTruePositiveDirectedPathNonancestor() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.TrueDagTruePositiveDirectedPathNonancestor
-
This class represents a statistic that calculates the true positives for arrows compared to the true DAG.
- TrueDagTruePositiveTails - Class in edu.cmu.tetrad.algcomparison.statistic
-
The bidirected true positives.
- TrueDagTruePositiveTails() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.TrueDagTruePositiveTails
-
This class represents a statistic that calculates the true positives for tails compared to the true DAG.
- TruncatedNormal - Class in edu.cmu.tetrad.util.dist
-
A normal distribution that allows its parameters to be set and allows random sampling.
- TRUNCATION_LIMIT - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
TRUNCATION_LIMIT="truncationLimit"
- TsDagToPag - Class in edu.cmu.tetrad.search.utils
-
Finds the PAG to which a DAG belongs, for a time series model.
- TsDagToPag(Graph) - Constructor for class edu.cmu.tetrad.search.utils.TsDagToPag
-
Constructs a new FCI search for the given independence test and background knowledge.
- TsUtils - Class in edu.cmu.tetrad.search.utils
-
Contains some utilities for doing autoregression.
- TsUtils.VarResult - Class in edu.cmu.tetrad.search.utils
-
Gives a result consisting of the residuals and collapsed var graphs.
- tt - Enum constant in enum class edu.cmu.tetrad.graph.EdgeTypeProbability.EdgeType
-
Tail-to-tail
- tuck(Node, Node) - Method in class edu.cmu.tetrad.search.utils.TeyssierScorer
-
Moves j to before k and moves all the ancestors of j betwween k and j to before k.
- tuck(Node, Node...) - Method in class edu.cmu.tetrad.search.utils.TeyssierScorer
-
Moves all j's to before k and moves all the ancestors of all ji's betwween k and ji to before k.
- TWO_CYCLE_ALPHA - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
TWO_CYCLE_ALPHA="twoCycleAlpha"
- TWO_CYCLE_SCREENING_THRESHOLD - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
TWO_CYCLE_SCREENING_THRESHOLD="twoCycleScreeningThreshold"
- twoCycCor - Variable in class edu.cmu.tetrad.graph.GraphUtils.TwoCycleErrors
-
The number of correct edges.
- twoCycFn - Variable in class edu.cmu.tetrad.graph.GraphUtils.TwoCycleErrors
-
The number of false negatives.
- twoCycFp - Variable in class edu.cmu.tetrad.graph.GraphUtils.TwoCycleErrors
-
The number of false positives.
- TwoCycleErrors(int, int, int) - Constructor for class edu.cmu.tetrad.graph.GraphUtils.TwoCycleErrors
-
Constructs a new TwoCycleErrors.
- TwoCycleFalseNegative - Class in edu.cmu.tetrad.algcomparison.statistic
-
The 2-cycle precision.
- TwoCycleFalseNegative() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.TwoCycleFalseNegative
-
This class represents a statistic that calculates the 2-cycle false negative.
- TwoCycleFalsePositive - Class in edu.cmu.tetrad.algcomparison.statistic
-
The 2-cycle precision.
- TwoCycleFalsePositive() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.TwoCycleFalsePositive
-
This class represents a statistic that calculates the 2-cycle precision.
- TwoCyclePrecision - Class in edu.cmu.tetrad.algcomparison.statistic
-
The 2-cycle precision.
- TwoCyclePrecision() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.TwoCyclePrecision
-
This class represents a statistic that calculates the 2-cycle precision.
- TwoCycleRecall - Class in edu.cmu.tetrad.algcomparison.statistic
-
The 2-cycle recall.
- TwoCycleRecall() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.TwoCycleRecall
-
This class represents a statistic that calculates the 2-cycle recall.
- TwoCycleTruePositive - Class in edu.cmu.tetrad.algcomparison.statistic
-
The 2-cycle precision.
- TwoCycleTruePositive() - Constructor for class edu.cmu.tetrad.algcomparison.statistic.TwoCycleTruePositive
-
The TwoCycleTruePositive class represents a statistic that calculates the number of true positives for 2-cycles in both the true and estimated graphs.
- twoFactorTest(int, int, int, int) - Method in interface edu.cmu.tetrad.search.utils.TetradTest
-
twoFactorTest.
- twoFactorTest(int, int, int, int) - Method in class edu.cmu.tetrad.search.utils.TetradTestContinuous
-
twoFactorTest.
- twoFactorTest(int, int, int, int) - Method in class edu.cmu.tetrad.search.utils.TetradTestDiscrete
-
twoFactorTest.
- twoFactorTest(int, int, int, int) - Method in class edu.cmu.tetrad.search.utils.TetradTestPopulation
-
twoFactorTest.
- twoFactorTest(int, int, int, int, int) - Method in interface edu.cmu.tetrad.search.utils.TetradTest
-
twoFactorTest.
- twoFactorTest(int, int, int, int, int) - Method in class edu.cmu.tetrad.search.utils.TetradTestContinuous
-
twoFactorTest.
- twoFactorTest(int, int, int, int, int) - Method in class edu.cmu.tetrad.search.utils.TetradTestDiscrete
-
twoFactorTest.
- twoFactorTest(int, int, int, int, int) - Method in class edu.cmu.tetrad.search.utils.TetradTestPopulation
-
twoFactorTest.
- twoFactorTest(int, int, int, int, int, int) - Method in interface edu.cmu.tetrad.search.utils.TetradTest
-
twoFactorTest.
- twoFactorTest(int, int, int, int, int, int) - Method in class edu.cmu.tetrad.search.utils.TetradTestContinuous
-
twoFactorTest.
- twoFactorTest(int, int, int, int, int, int) - Method in class edu.cmu.tetrad.search.utils.TetradTestDiscrete
-
twoFactorTest.
- twoFactorTest(int, int, int, int, int, int) - Method in class edu.cmu.tetrad.search.utils.TetradTestPopulation
-
twoFactorTest.
- type - Static variable in class edu.cmu.tetrad.util.MillisecondTimes
-
Constant
type
U
- Underlines - Class in edu.cmu.tetrad.graph
-
Underlines class.
- Underlines(Graph) - Constructor for class edu.cmu.tetrad.graph.Underlines
-
Constructor for Underlines.
- Underlines(Underlines) - Constructor for class edu.cmu.tetrad.graph.Underlines
-
Constructor for Underlines.
- undirectedEdge(Node, Node) - Static method in class edu.cmu.tetrad.graph.Edges
-
Constructs a new undirected edge from nodeA to nodeB (--).
- undirectedGraph(Graph) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
undirectedGraph.
- undirectedToBidirected(Graph) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Converts an undirected graph to a bidirected graph.
- Uniform - Class in edu.cmu.tetrad.util.dist
-
For given a, b (a < b), returns a point chosen uniformly from [a, b].
- Uniform(double, double) - Constructor for class edu.cmu.tetrad.util.dist.Uniform
-
Constructor for Uniform.
- UniformGraphGenerator(int) - Constructor for class edu.cmu.tetrad.graph.RandomGraph.UniformGraphGenerator
-
Constructs a random graph generator for the given structure.
- UniformityTest - Class in edu.cmu.tetrad.util
-
The UniformityTest class provides methods to calculate the p-value of a list of points using the Kolmogorov-Smirnov test and determine if the distribution is uniform.
- UniformityTest() - Constructor for class edu.cmu.tetrad.util.UniformityTest
-
The UniformityTest class is used to calculate the p-value of a list of points using the Kolmogorov-Smirnov test and determine if the distribution is uniform.
- uniformRand() - Static method in class edu.cmu.tetrad.util.ProbUtils
-
uniformRand.
- uniformSeeds(long, long) - Static method in class edu.cmu.tetrad.util.ProbUtils
-
uniformSeeds.
- union(GraphChange) - Method in class edu.cmu.tetrad.search.work_in_progress.GraphChange
-
Absorbs all changes from the GraphChange other into the calling GraphChange.
- UNKNOWN - Enum constant in enum class edu.cmu.tetrad.calculator.parser.Token
-
Unknown.
- Unmarshallable - Interface in edu.cmu.tetrad.util
-
Interface to tag classes that should not be cloned by marshalling.> 0
- UnmeasuredConfounder - Annotation Interface in edu.cmu.tetrad.annotation
-
Sep 19, 2017 1:56:20 PM
- unshieldedCollider(Graph, Node, Node, Node) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Checks if the given nodes are unshielded colliders when considering the given graph.
- unshieldedCollider(Node, Node, Node) - Method in class edu.cmu.tetrad.search.utils.TeyssierScorer
-
Returns true iff [a, b, c] is an unshielded collider.
- unshieldedTriple(Node, Node, Node) - Method in class edu.cmu.tetrad.search.utils.TeyssierScorer
-
Returns true iff [a, b, c] is an unshielded triple.
- update() - Method in interface edu.cmu.tetrad.search.ModelObserver
-
This method is called when the model changes.
- update() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.AbstractNbComponent
-
Updates.
- update() - Method in interface edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.NbComponent
-
Updates.
- update() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.NbFunction
-
update.
- update() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.NbFunctionAnd
-
update.
- update() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.NbFunctionOr
-
update.
- update() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.NbFunctionSum
-
update.
- update() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.NbFunctionSV
-
update.
- update() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.NbGene
-
update.
- update() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.NbGeneAnd
-
update.
- update() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.algorithm.urchin.NbGeneOr
-
update.
- update() - Method in class edu.cmu.tetrad.study.gene.tetrad.gene.history.GeneHistory
-
Updates the history to the next time slice using some formula.
- UpdatedBayesIm - Class in edu.cmu.tetrad.bayes
-
Represents a Bayes IM in which all of the conditional probability tables have been updated to take into account evidence.
- UpdatedBayesIm(BayesIm) - Constructor for class edu.cmu.tetrad.bayes.UpdatedBayesIm
-
Constructs Bayes net in which CPT's updated for the given evidence are calculated on the fly.
- UpdatedBayesIm(BayesIm, Evidence) - Constructor for class edu.cmu.tetrad.bayes.UpdatedBayesIm
-
Constructs Bayes net in which CPT's updated for the given evidence are calculated on the fly.
- updatedIm(Matrix, Vector) - Method in class edu.cmu.tetrad.sem.SemIm
-
updatedIm.
- UpdateFunction - Interface in edu.cmu.tetrad.study.gene.tetrad.gene.history
-
Implements a function from the previous time steps of a history array to the getModel time step.
- UPPER_BOUND - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
UPPER_BOUND="upperBound"
- upperTri(DoubleMatrix2D, int) - Static method in class edu.pitt.csb.mgm.Mgm
-
upperTri.
- USE_BES - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
USE_BES="useBes"
- USE_CORR_DIFF_ADJACENCIES - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
USE_CORR_DIFF_ADJACENCIES="useCorrDiffAdjacencies"
- USE_DATA_ORDER - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
USE_DATA_ORDER="useDataOrder"
- USE_FAS_ADJACENCIES - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
USE_FAS_ADJACENCIES="useFasAdjacencies"
- USE_GAP - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
USE_GAP="useGap"
- USE_MAX_P_HEURISTIC - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
USE_MAX_P_HEURISTIC="useMaxPHeuristic"
- USE_MAX_P_ORIENTATION_HEURISTIC - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
USE_MAX_P_ORIENTATION_HEURISTIC="useMaxPOrientationHeuristic"
- USE_PSEUDOINVERSE - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
USE_PSEUDOINVERSE="usePseudoinverse"
- USE_SKEW_ADJACENCIES - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
USE_SKEW_ADJACENCIES="useSkewAdjacencies"
- USE_WISHART - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
USE_WISHART="useWishart"
- User - Enum constant in enum class edu.cmu.tetrad.util.MillisecondTimes.Type
-
User time.
- userTimeMillis() - Static method in class edu.cmu.tetrad.util.MillisecondTimes
-
userTimeMillis.
- UsesScoreWrapper - Interface in edu.cmu.tetrad.algcomparison.utils
-
Tags an algorithm as using a score wrapper.
V
- V() - Method in record class edu.cmu.tetrad.search.test.Kci.EigenReturn
-
Returns the value of the
V
record component. - valSet(DoubleMatrix1D) - Static method in class edu.pitt.csb.mgm.MixedUtils
-
valSet.
- valueAt(double) - Method in interface edu.cmu.tetrad.util.Function
-
valueAt.
- valueAt(double) - Method in class edu.cmu.tetrad.util.PartialCorrelationPdf
-
valueAt.
- valueAt(double...) - Method in interface edu.cmu.tetrad.sem.ConnectionFunction
-
valueAt.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.algcomparison.Comparison.ComparisonGraph
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.algcomparison.TimeoutComparison.ComparisonGraph
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.annotation.AlgType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.bayes.MlBayesIm.CptMapType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.bayes.MlBayesIm.InitializationMethod
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.calculator.expression.ExpressionDescriptor.Position
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.calculator.parser.ExpressionParser.RestrictionType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.calculator.parser.Token
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.data.DataType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.graph.Edge.Property
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.graph.EdgeTypeProbability.EdgeType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.graph.Endpoint
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.graph.GraphUtils.GraphType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.graph.NodeType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.graph.NodeVariableType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.search.ConditioningSetType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.search.CpdagParentDistancesFromTrue.DistanceType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.search.Cstar.CpdagAlgorithm
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.search.Cstar.SampleStyle
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.search.Fask.LeftRight
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.search.FaskOrig.AdjacencyMethod
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.search.FaskOrig.LeftRight
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.search.Fofc.Algorithm
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.search.Ftfc.Algorithm
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.search.Lofs.Rule
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.search.Lofs.Score
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.search.LvLite.ExtraEdgeRemovalStyle
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.search.LvLite.START_WITH
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.search.score.GicScores.RuleType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.search.score.SemBicScore.RuleType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.search.test.ChiSquareTest.CellTableType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.search.test.ChiSquareTest.TestType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.search.test.Kci.KernelType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.search.utils.BpcAlgorithmType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.search.utils.BpcTestType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.search.utils.ClusterSignificance.CheckType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.search.utils.GraphSearchUtils.CpcTripleType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.search.utils.PcCommon.ColliderDiscovery
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.search.utils.PcCommon.ConflictRule
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.search.utils.PcCommon.FasType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.search.utils.PcCommon.PcHeuristicType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.search.utils.R0R4StrategyTestBased.BlockingType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.search.utils.R5R9Dijkstra.Rule
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.search.utils.ResolveSepsets.Method
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.search.work_in_progress.HbsmsBeam.Move.Type
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.search.work_in_progress.ResolveSepsetsDci.Method
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.search.work_in_progress.VcPc.CpcTripleType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.search.work_in_progress.VcPcFast.CpcTripleType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.sem.ParamComparison
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.sem.ParamConstraintType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.sem.ParamType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.sem.ScoreType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.sem.StandardizedSemIm.Initialization
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.study.performance.Comparison.TableColumn
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.study.performance.Comparison2.TableColumn
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.study.performance.ComparisonParameters.Algorithm
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.study.performance.ComparisonParameters.DataType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.study.performance.ComparisonParameters.IndependenceTestType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.study.performance.ComparisonParameters.ResultType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.util.MillisecondTimes.Type
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.cmu.tetrad.util.TextTable.Delimiter
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.pitt.dbmi.algo.bayesian.constraint.inference.BCCausalInference.OP
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.pitt.dbmi.algo.bayesian.constraint.inference.BCInference.OP
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class edu.pitt.dbmi.algo.resampling.ResamplingEdgeEnsemble
-
Returns the enum constant of this class with the specified name.
- values() - Static method in enum class edu.cmu.tetrad.algcomparison.Comparison.ComparisonGraph
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.algcomparison.TimeoutComparison.ComparisonGraph
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.annotation.AlgType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.bayes.MlBayesIm.CptMapType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.bayes.MlBayesIm.InitializationMethod
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.calculator.expression.ExpressionDescriptor.Position
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.calculator.parser.ExpressionParser.RestrictionType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.calculator.parser.Token
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.data.DataType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.graph.Edge.Property
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.graph.EdgeTypeProbability.EdgeType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.graph.Endpoint
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.graph.GraphUtils.GraphType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.graph.NodeType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.graph.NodeVariableType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.search.ConditioningSetType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.search.CpdagParentDistancesFromTrue.DistanceType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.search.Cstar.CpdagAlgorithm
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.search.Cstar.SampleStyle
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.search.Fask.LeftRight
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.search.FaskOrig.AdjacencyMethod
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.search.FaskOrig.LeftRight
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.search.Fofc.Algorithm
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.search.Ftfc.Algorithm
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.search.Lofs.Rule
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.search.Lofs.Score
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.search.LvLite.ExtraEdgeRemovalStyle
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.search.LvLite.START_WITH
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.search.score.GicScores.RuleType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.search.score.SemBicScore.RuleType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.search.test.ChiSquareTest.CellTableType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.search.test.ChiSquareTest.TestType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.search.test.Kci.KernelType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.search.utils.BpcAlgorithmType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.search.utils.BpcTestType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.search.utils.ClusterSignificance.CheckType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.search.utils.GraphSearchUtils.CpcTripleType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.search.utils.PcCommon.ColliderDiscovery
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.search.utils.PcCommon.ConflictRule
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.search.utils.PcCommon.FasType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.search.utils.PcCommon.PcHeuristicType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.search.utils.R0R4StrategyTestBased.BlockingType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.search.utils.R5R9Dijkstra.Rule
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.search.utils.ResolveSepsets.Method
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.search.work_in_progress.HbsmsBeam.Move.Type
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.search.work_in_progress.ResolveSepsetsDci.Method
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.search.work_in_progress.VcPc.CpcTripleType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.search.work_in_progress.VcPcFast.CpcTripleType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.sem.ParamComparison
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.sem.ParamConstraintType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.sem.ParamType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.sem.ScoreType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.sem.StandardizedSemIm.Initialization
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.study.performance.Comparison.TableColumn
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.study.performance.Comparison2.TableColumn
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.study.performance.ComparisonParameters.Algorithm
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.study.performance.ComparisonParameters.DataType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.study.performance.ComparisonParameters.IndependenceTestType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.study.performance.ComparisonParameters.ResultType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.util.MillisecondTimes.Type
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.cmu.tetrad.util.TextTable.Delimiter
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.pitt.dbmi.algo.bayesian.constraint.inference.BCCausalInference.OP
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.pitt.dbmi.algo.bayesian.constraint.inference.BCInference.OP
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class edu.pitt.dbmi.algo.resampling.ResamplingEdgeEnsemble
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values(A) - Method in class edu.pitt.isp.sverchkov.data.AdTree
-
Returns the number of rows in the data set.
- valuesToString() - Method in class edu.cmu.tetrad.simulation.PRAOerrors
-
valuesToString.
- VAR - Enum constant in enum class edu.cmu.tetrad.sem.ParamType
-
Represents the error variance parameter in a structural equation modeling (SEM) model.
- VAR_HIGH - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
VAR_HIGH="varHigh"
- VAR_LOW - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
VAR_LOW="varLow"
- varHat(double[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
varHat.
- varHat(double[], int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
varHat.
- varHat(long[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
varHat.
- varHat(long[], int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
varHat.
- Variable - Interface in edu.cmu.tetrad.data
-
Interface implemented by classes, instantiations of which are capable of serving as variables for columns in a DataSet.
- VariableExpression - Class in edu.cmu.tetrad.calculator.expression
-
An Expression for a variable.
- VariableExpression(String) - Constructor for class edu.cmu.tetrad.calculator.expression.VariableExpression
-
Constructor for VariableExpression.
- variables() - Method in interface edu.pitt.isp.sverchkov.data.DataTable
-
variables.
- variables() - Method in class edu.pitt.isp.sverchkov.data.DataTableImpl
-
variables.
- variablesForIndices(List<Integer>, List<Node>) - Static method in class edu.cmu.tetrad.search.utils.ClusterSignificance
-
Converts a list of indices into a list of Nodes representing a cluster.
- variablesForIndices2(Set<List<Integer>>, List<Node>) - Static method in class edu.cmu.tetrad.search.utils.ClusterSignificance
-
Converts a list of indices into a list of Nodes representing a cluster.
- VariableSource - Interface in edu.cmu.tetrad.data
-
Inteface implemented by classes, instantiations of which are associated with lists of variables.
- variance(double[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
variance.
- variance(double[], int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
variance.
- variance(long[]) - Static method in class edu.cmu.tetrad.util.StatUtils
-
variance.
- variance(long[], int) - Static method in class edu.cmu.tetrad.util.StatUtils
-
variance.
- Variance - Interface in edu.cmu.tetrad.stat
-
Feb 9, 2016 3:18:03 PM
- VarianceVector - Class in edu.cmu.tetrad.stat
-
Feb 9, 2016 3:18:44 PM
- VarianceVector(float[][]) - Constructor for class edu.cmu.tetrad.stat.VarianceVector
-
Constructor for VarianceVector.
- VarianceVectorForkJoin - Class in edu.cmu.tetrad.stat
-
Feb 9, 2016 3:19:52 PM
- VarianceVectorForkJoin(float[][], int) - Constructor for class edu.cmu.tetrad.stat.VarianceVectorForkJoin
-
Constructor for VarianceVectorForkJoin.
- VarResult(DataSet, Graph) - Constructor for class edu.cmu.tetrad.search.utils.TsUtils.VarResult
-
Constructs a new result.
- VcFas - Class in edu.cmu.tetrad.search.work_in_progress
-
Implements the "fast adjacency search" used in several causal algorithm in this package.
- VcFas(IndependenceTest) - Constructor for class edu.cmu.tetrad.search.work_in_progress.VcFas
-
Constructor for VcFas.
- VcPc - Class in edu.cmu.tetrad.search.work_in_progress
-
Implements a convervative version of PC, in which the Markov condition is assumed but faithfulness is tested locally.
- VcPc(IndependenceTest) - Constructor for class edu.cmu.tetrad.search.work_in_progress.VcPc
-
Constructs a CPC algorithm that uses the given independence test as oracle.
- VcPc.CpcTripleType - Enum Class in edu.cmu.tetrad.search.work_in_progress
-
An enum of triple types.
- VcPcAlt - Class in edu.cmu.tetrad.search.work_in_progress
-
Implements a convervative version of PC, in which the Markov condition is assumed but faithfulness is tested locally.
- VcPcAlt(IndependenceTest) - Constructor for class edu.cmu.tetrad.search.work_in_progress.VcPcAlt
-
Constructs a CPC algorithm that uses the given independence test as oracle.
- VcPcFast - Class in edu.cmu.tetrad.search.work_in_progress
-
Implements a convervative version of PC, in which the Markov condition is assumed but faithfulness is tested locally.
- VcPcFast(IndependenceTest) - Constructor for class edu.cmu.tetrad.search.work_in_progress.VcPcFast
-
Constructs a CPC algorithm that uses the given independence test as oracle.
- VcPcFast.CpcTripleType - Enum Class in edu.cmu.tetrad.search.work_in_progress
-
An enum of the types of triples that can be found in a graph.
- vec(double[][]) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
vec.
- vech(double[][]) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
vech.
- vechToVecLeft(int) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
The matrix which, when postmultiplied by vech, return vec.
- vecMax(DoubleMatrix1D) - Static method in class edu.pitt.csb.mgm.MixedUtils
-
vecMax.
- Vector - Class in edu.cmu.tetrad.util
-
Vector wrapping matrix library.
- Vector(double[]) - Constructor for class edu.cmu.tetrad.util.Vector
-
Constructs a new Vector object from an array of double values.
- Vector(int) - Constructor for class edu.cmu.tetrad.util.Vector
-
Constructs a new Vector object with the specified size.
- Vector(RealVector) - Constructor for class edu.cmu.tetrad.util.Vector
-
Creates a new Vector object from a RealVector object.
- verbose - Variable in class edu.cmu.tetrad.search.utils.TetradTestDiscrete
-
Whether to print out verbose information.
- VERBOSE - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
VERBOSE="verbose"
- Version - Class in edu.cmu.tetrad.util
-
Represents the getModel Tetrad version.
- Version(String) - Constructor for class edu.cmu.tetrad.util.Version
-
Parses string version specs into Versions.
- VerticalDoubleDataBox - Class in edu.cmu.tetrad.data
-
Stores a 2D array of double data.
- VerticalDoubleDataBox(double[][]) - Constructor for class edu.cmu.tetrad.data.VerticalDoubleDataBox
-
Constructs a new data box using the given 2D double data array as data.
- VerticalDoubleDataBox(int, int) - Constructor for class edu.cmu.tetrad.data.VerticalDoubleDataBox
-
Constructs an 2D double array consisting entirely of missing values (Double.NaN).
- VerticalDoubleDataBox(DataBox) - Constructor for class edu.cmu.tetrad.data.VerticalDoubleDataBox
-
Copies the data from the given data box into this one.
- VerticalIntDataBox - Class in edu.cmu.tetrad.data
-
Stores a 2D array of int data.
- VerticalIntDataBox(int[][]) - Constructor for class edu.cmu.tetrad.data.VerticalIntDataBox
-
Constructs a new data box using the given 2D int data array as data.
- VerticalIntDataBox(int, int) - Constructor for class edu.cmu.tetrad.data.VerticalIntDataBox
-
Constructs an 2D int array consisting entirely of missing values (int.NaN).
- VerticalIntDataBox(DataBox) - Constructor for class edu.cmu.tetrad.data.VerticalIntDataBox
-
Constructor for VerticalIntDataBox.
- Vicinity - Class in edu.cmu.tetrad.simulation
-
This version of Vicinity finds nearby nodes by searching with an expanding cube Prior to Vicinity4, versions of Vicinity looked at the 3 axis independently instead of collectively.
- Vicinity(List<Edge>, DataSet, int, int, int, int, int, int, double, double, double) - Constructor for class edu.cmu.tetrad.simulation.Vicinity
-
Constructor for Vicinity.
- viewSelection(int[], int[]) - Method in class edu.cmu.tetrad.data.ByteDataBox
-
viewSelection.
- viewSelection(int[], int[]) - Method in interface edu.cmu.tetrad.data.DataBox
-
viewSelection.
- viewSelection(int[], int[]) - Method in class edu.cmu.tetrad.data.DoubleDataBox
-
viewSelection.
- viewSelection(int[], int[]) - Method in class edu.cmu.tetrad.data.FloatDataBox
-
viewSelection.
- viewSelection(int[], int[]) - Method in class edu.cmu.tetrad.data.IntDataBox
-
viewSelection.
- viewSelection(int[], int[]) - Method in class edu.cmu.tetrad.data.LongDataBox
-
viewSelection.
- viewSelection(int[], int[]) - Method in class edu.cmu.tetrad.data.MixedDataBox
-
viewSelection.
- viewSelection(int[], int[]) - Method in class edu.cmu.tetrad.data.ShortDataBox
-
viewSelection.
- viewSelection(int[], int[]) - Method in class edu.cmu.tetrad.data.VerticalDoubleDataBox
-
viewSelection.
- viewSelection(int[], int[]) - Method in class edu.cmu.tetrad.data.VerticalIntDataBox
-
viewSelection.
- visibleEdgeAdjustments1(Graph, Node, Node, int, GraphUtils.GraphType) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
Calculates visual-edge adjustments given graph G between two nodes x and y that are subsets of MB(X).
- visibleEdgeAdjustments3(Graph, Node, Node, int, GraphUtils.GraphType) - Static method in class edu.cmu.tetrad.graph.GraphUtils
-
This method calculates visible-edge adjustments for a given graph, two nodes, a number of smallest sizes, and a graph type.
W
- W_THRESHOLD - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
W_THRESHOLD="wThreshold"
- Wall - Enum constant in enum class edu.cmu.tetrad.util.MillisecondTimes.Type
-
Wall time.
- wallTimeMillis() - Static method in class edu.cmu.tetrad.util.MillisecondTimes
-
wallTimeMillis.
- warning(String) - Method in class edu.cmu.tetrad.util.LogUtils
-
warning.
- Washdown - Class in edu.cmu.tetrad.search.work_in_progress
-
Implements the Washdown algorithm,
- Washdown(DataSet, double) - Constructor for class edu.cmu.tetrad.search.work_in_progress.Washdown
-
Constructor.
- Washdown(ICovarianceMatrix, double) - Constructor for class edu.cmu.tetrad.search.work_in_progress.Washdown
-
Constructor.
- weakUnion() - Method in class edu.cmu.tetrad.search.utils.GraphoidAxioms
-
Checks is weak union holds, e.g., X _||_ Y U W | Z ==> X _||_ Y | Z U W
- WHITESPACE - Enum constant in enum class edu.cmu.tetrad.calculator.parser.Token
-
Whitespace.
- WHITESPACE - Static variable in class edu.cmu.tetrad.data.DelimiterType
-
Constant
WHITESPACE
- worsleyfriston - Enum constant in enum class edu.cmu.tetrad.search.utils.ResolveSepsets.Method
-
Worsley and Friston's method
- worsleyfriston - Enum constant in enum class edu.cmu.tetrad.search.work_in_progress.ResolveSepsetsDci.Method
-
The wilkinson method.
- wouldBeSatisfied(double) - Method in class edu.cmu.tetrad.sem.ParamConstraint
-
This method is for testing whether a value that might be assigned to a parameter would satisfy it.
- writeCovMatrix(ICovarianceMatrix, PrintWriter, NumberFormat) - Static method in class edu.cmu.tetrad.data.DataWriter
-
Writes the lower triangle of a covariance matrix to file.
- writeRectangularData(DataSet, Writer, char) - Static method in class edu.cmu.tetrad.data.DataWriter
-
Writes a dataset to file.
Z
- zeros(int, int) - Static method in class edu.cmu.tetrad.util.MatrixUtils
-
zeros.
- zhangMagFromPag(Graph) - Static method in class edu.cmu.tetrad.graph.GraphTransforms
-
Transforms a partial ancestral graph (PAG) into a maximal ancestral graph (MAG) using Zhang's 2008 Theorem 2.
- ZhangShenBoundScore - Class in edu.cmu.tetrad.algcomparison.score
-
Wrapper for linear, Gaussian Extended BIC score (Chen and Chen).
- ZhangShenBoundScore() - Constructor for class edu.cmu.tetrad.algcomparison.score.ZhangShenBoundScore
-
This class represents the constructor for the ZhangShenBoundScore class.
- ZS_RISK_BOUND - Static variable in class edu.cmu.tetrad.util.Params
-
Constant
ZS_RISK_BOUND="zSRiskBound"
- ZsbScore - Class in edu.cmu.tetrad.search.score
-
Implements an unpublished score based on a risk bound due to Zhang and Shen.
- ZsbScore(DataSet, boolean) - Constructor for class edu.cmu.tetrad.search.score.ZsbScore
-
Constructs the score using a covariance matrix.
- ZsbScore(ICovarianceMatrix) - Constructor for class edu.cmu.tetrad.search.score.ZsbScore
-
Constructs the score using a covariance matrix.
- zSum() - Method in class edu.cmu.tetrad.util.Matrix
-
zSum.
All Classes and Interfaces|All Packages|Constant Field Values|Serialized Form