Class DirichletBayesIm
- All Implemented Interfaces:
BayesIm,Simulator,VariableSource,Im,TetradSerializable,Serializable
Stores Dirichlet pseudocounts for the distributions of each variable conditional on particular combinations of its parent values and, together with Bayes Pm and Dag, provides methods to manipulate these tables. The division of labor is as follows. The Dag is responsible for manipulating the basic graphical structure of the Dirichlet Bayes net. Dag also stores and manipulates the names of the nodes in the graph; there are no method in either BayesPm or DiriculetBayesIm to do this. BayesPm stores and manipulates the *values* of each node in a DAG, considered as a variable in a Bayes net. The number of values for a variable can be changed there as well as the names for those values. This class, DirichletBayesIm, stores the actual tables of parameter pseudocounts whose structures are implied by the structures in the other two classes. The implied parameters take the form of conditional probabilities--e.g., P(V=v0|P1=v1, P2=v2, ...), for all nodes and all combinations of their parent values. The set of all such probabilities is organized in this class as a three-dimensional table of double values. The first dimension corresponds to the nodes in the DAG. For each such node, the second dimension corresponds to a flat list of combinations of parent values for that node. The third dimension corresponds to the list of pseudocounts for each node/row combination. Two methods in this class allow these values to be set and retrieved:
- getPseudocount(int nodeIndex, int rowIndex, int colIndex); and,
- setPseudocount(int nodeIndex, int rowIndex, int colIndex, int pValue).
- getNodeIndex(Node node).
- getRowIndex(int[] parentVals).
- getParents(int nodeIndex)
- getCategoryIndex(Node node)
Thanks to Bill Taysom for an earlier version.
- Version:
- $Id: $Id
- Author:
- josephramsey
- See Also:
-
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptionstatic DirichletBayesImblankDirichletIm(BayesPm bayesPm) blankDirichletIm.voidclearRow(int nodeIndex, int rowIndex) Assigns random probability values to the child values of this row that add to 1.voidclearTable(int nodeIndex) Randomizes every row in the table for the given node index.booleanReturns true iff this Bayes net is equal to the given Bayes net.Getter for the fieldbayesPm.intgetCorrespondingNodeIndex(int nodeIndex, BayesIm otherBayesIm) Returns the index of the given node in the given BayesIm.getDag()getDag.getMeasuredNodes.getNode(int nodeIndex) Returns the name of the given node.getNode.intgetNodeIndex(Node node) Returns the index of the given node.intgetNumColumns(int nodeIndex) Returns the number of columns.intgetNumNodes.intgetNumParents(int nodeIndex) Returns the number of parents for the given node.intgetNumRows(int nodeIndex) Returns the number of rows.intgetParent(int nodeIndex, int parentIndex) Returns the ith parent of the givne node.intgetParentDim(int nodeIndex, int parentIndex) Returns the dimension of the given parent for the given node.int[]getParentDims(int nodeIndex) Returns the dimensions of the pararents of the given node.int[]getParents(int nodeIndex) Returns the parents of the given node.intgetParentValue(int nodeIndex, int rowIndex, int colIndex) Returns the given parent value.int[]getParentValues(int nodeIndex, int rowIndex) Returns the parents values of the given node.doublegetProbability(int nodeIndex, int rowIndex, int colIndex) Returns the probability for the given cell in the given CPT.doublegetPseudocount(int nodeIndex, int rowIndex, int colIndex) getPseudocount.intgetRowIndex(int nodeIndex, int[] values) getRowIndex.doublegetRowPseudocount(int nodeIndex, int rowIndex) getRowPseudocount.getVariableNames.getVariables.booleanisIncomplete(int nodeIndex) Returns true iff the given node has a Double.NaN value in it.booleanisIncomplete(int nodeIndex, int rowIndex) Returns true iff the given row in the given node has a Double.NaN value in it.voidNormalizes all rows in the tables associated with each of node in turn.voidnormalizeNode(int nodeIndex) Normalizes all rows in the table associated with a given node.voidnormalizeRow(int nodeIndex, int rowIndex) Normalizes the given row.voidrandomizeIncompleteRows(int nodeIndex) Randomizes any row in the table for the given node index that has a Double.NaN value in it.voidrandomizeRow(int nodeIndex, int rowIndex) Assigns random probability values to the child values of this row that add to 1.voidrandomizeTable(int nodeIndex) Randomizes every row in the table for the given node index.static DirichletBayesImGenerates a simple exemplar of this class to test serialization.voidsetProbability(int nodeIndex, double[][] probMatrix) Sets the probability for the given node.voidsetProbability(int nodeIndex, int rowIndex, int colIndex, double value) Sets the probability for the given node at a given row and column in the table for that node.voidsetPseudocount(int nodeIndex, int rowIndex, int colIndex, double pseudocount) setPseudocount.simulateData(int sampleSize, boolean latentDataSaved) Simulates a data set with the specified number of rows.simulateData(DataSet dataSet, boolean latentDataSaved) Simulates data based on the provided data set and saves the latent data if specified.static DirichletBayesImsymmetricDirichletIm(BayesPm bayesPm, double symmetricAlpha) symmetricDirichletIm.toString()Prints out the probability table for each variable.Methods inherited from class java.lang.Object
getClass, hashCode, notify, notifyAll, wait, wait, waitMethods inherited from interface edu.cmu.tetrad.bayes.BayesIm
getCptMapType
-
Constructor Details
-
DirichletBayesIm
Copy constructor.- Parameters:
dirichletBayesIm- aDirichletBayesImobject- Throws:
IllegalArgumentException- if any.
-
-
Method Details
-
blankDirichletIm
blankDirichletIm.
- Parameters:
bayesPm- aBayesPmobject- Returns:
- a
DirichletBayesImobject
-
symmetricDirichletIm
symmetricDirichletIm.
- Parameters:
bayesPm- aBayesPmobjectsymmetricAlpha- a double- Returns:
- a
DirichletBayesImobject
-
serializableInstance
Generates a simple exemplar of this class to test serialization.- Returns:
- a
DirichletBayesImobject
-
getBayesPm
Getter for the field
bayesPm.- Specified by:
getBayesPmin interfaceBayesIm- Returns:
- this PM.
-
getCorrespondingNodeIndex
Returns the index of the given node in the given BayesIm.- Specified by:
getCorrespondingNodeIndexin interfaceBayesIm- Parameters:
nodeIndex- the index of the node in this BayesIm.otherBayesIm- the BayesIm in which the node is to be found.- Returns:
- the index of the node with the given name in the specified BayesIm.
-
getDag
-
getNode
-
getNode
-
getNodeIndex
Returns the index of the given node.- Specified by:
getNodeIndexin interfaceBayesIm- Parameters:
node- the given node.- Returns:
- the index for that node, or -1 if the node is not in the BayesIm.
-
getNumColumns
public int getNumColumns(int nodeIndex) Returns the number of columns.- Specified by:
getNumColumnsin interfaceBayesIm- Parameters:
nodeIndex- the index of the node.- Returns:
- the number of columns in the table of the given node N with index 'nodeIndex'--that is, the number of possible values that N can take on. That is, if P(N=v0 | P1=v1, P2=v2, ... Pn=vn) is a conditional probability stored in 'probs', then the maximum number of rows in the table for N is #vals(N).
- See Also:
-
getNumNodes
public int getNumNodes()getNumNodes.
- Specified by:
getNumNodesin interfaceBayesIm- Returns:
- the number of nodes in the model.
-
getNumParents
public int getNumParents(int nodeIndex) Returns the number of parents for the given node.- Specified by:
getNumParentsin interfaceBayesIm- Parameters:
nodeIndex- the given node.- Returns:
- the number of parents of the given node.
-
getNumRows
public int getNumRows(int nodeIndex) Returns the number of rows.- Specified by:
getNumRowsin interfaceBayesIm- Parameters:
nodeIndex- the index of the node.- Returns:
- the number of rows in the table of the given node, which would be the total number of possible combinations of parent values for a given node. That is, if P(N=v0 | P1=v1, P2=v2, ... Pn=vn) is a conditional probability stored in 'probs', then the maximum number of rows in the table for N is #vals(P1) x #vals(P2) x ... x #vals(Pn).
- See Also:
-
getParent
-
getParentDim
public int getParentDim(int nodeIndex, int parentIndex) Returns the dimension of the given parent for the given node.- Specified by:
getParentDimin interfaceBayesIm- Parameters:
nodeIndex- the index of the node.parentIndex- the index of the parent.- Returns:
- the dimension of the given parent for the given node.
-
getParentDims
public int[] getParentDims(int nodeIndex) Returns the dimensions of the pararents of the given node.- Specified by:
getParentDimsin interfaceBayesIm- Parameters:
nodeIndex- the index of the node.- Returns:
- (a defensive copy of) the array representing the dimensionality of each parent of a node, that is, the number of values which that node can take on. The order of entries in this array is the same as the order of entries of nodes returned by getParents() for that node.
- See Also:
-
getParents
public int[] getParents(int nodeIndex) Returns the parents of the given node.- Specified by:
getParentsin interfaceBayesIm- Parameters:
nodeIndex- the index of the node.- Returns:
- (a defensive copy of) the array containing all of the parents of a given node in the order in which they are stored internally.
- See Also:
-
getParentValue
public int getParentValue(int nodeIndex, int rowIndex, int colIndex) Returns the given parent value.- Specified by:
getParentValuein interfaceBayesIm- Parameters:
nodeIndex- the index of the node.rowIndex- the index of the row in question.colIndex- the index of the column in question.- Returns:
- the value in the probability table for the given node, at the given row and column.
-
getParentValues
public int[] getParentValues(int nodeIndex, int rowIndex) Returns the parents values of the given node.- Specified by:
getParentValuesin interfaceBayesIm- Parameters:
nodeIndex- the index of the node.rowIndex- the index of the row in question.- Returns:
- an array containing the combination of parent values for a given node and given row in the probability table for that node. To get the combination of parent values from the row number, the row number is represented using a variable-base place value system, where the bases for each place value are the dimensions of the parents in the order in which they are given by getParentDims(). For instance, if the row number (base 10) is 103 and the parent dimension array is [3 5 7], we calculate the first value as 103 / 7 = 14 with a remainder of 5. We then divide 14 / 5 = 2 with a remainder of 4. We then divide 2 / 3 = 0 with a remainder of 2. The variable place value representation is [2 4 5], which is the combination of parent values. This is the inverse function of getRowIndex().
- See Also:
-
getProbability
public double getProbability(int nodeIndex, int rowIndex, int colIndex) Returns the probability for the given cell in the given CPT.- Specified by:
getProbabilityin interfaceBayesIm- Parameters:
nodeIndex- the index of the node in question.rowIndex- the row in the table for this for node which represents the combination of parent values in question.colIndex- the column in the table for this node which represents the value of the node in question.- Returns:
- the probability for the given node at the given row and column in the table for that node. To get the node index, use getNodeIndex(). To get the row index, use getRowIndex(). To get the column index, use getCategoryIndex() from the underlying BayesPm(). The value returned will represent a conditional probability of the form P(N=v0 | P1=v1, P2=v2, ... , Pn=vn), where N is the node referenced by nodeIndex, v0 is the value referenced by colIndex, and the combination of parent values indicated is the combination indicated by rowIndex.
- See Also:
-
getPseudocount
public double getPseudocount(int nodeIndex, int rowIndex, int colIndex) getPseudocount.
- Parameters:
nodeIndex- a introwIndex- a intcolIndex- a int- Returns:
- a double
-
getRowIndex
public int getRowIndex(int nodeIndex, int[] values) getRowIndex.
- Specified by:
getRowIndexin interfaceBayesIm- Parameters:
nodeIndex- a intvalues- an array of objects- Returns:
- the row in the table for the given node and combination of parent values.
- See Also:
-
getRowPseudocount
public double getRowPseudocount(int nodeIndex, int rowIndex) getRowPseudocount.
- Parameters:
nodeIndex- a introwIndex- a int- Returns:
- a double
-
getVariableNames
getVariableNames.
- Specified by:
getVariableNamesin interfaceBayesIm- Specified by:
getVariableNamesin interfaceVariableSource- Returns:
- a
Listobject
-
getMeasuredNodes
getMeasuredNodes.
- Specified by:
getMeasuredNodesin interfaceBayesIm- Returns:
- a
Listobject
-
getVariables
getVariables.
- Specified by:
getVariablesin interfaceBayesIm- Specified by:
getVariablesin interfaceVariableSource- Returns:
- a
Listobject
-
isIncomplete
public boolean isIncomplete(int nodeIndex) Returns true iff the given node has a Double.NaN value in it.- Specified by:
isIncompletein interfaceBayesIm- Parameters:
nodeIndex- the node for the table whose incomplete rows are to be checked.- Returns:
- true iff any value in the table for the given node is Double.NaN.
-
isIncomplete
public boolean isIncomplete(int nodeIndex, int rowIndex) Returns true iff the given row in the given node has a Double.NaN value in it.- Specified by:
isIncompletein interfaceBayesIm- Parameters:
nodeIndex- the node for the table whose incomplete rows are to be checked.rowIndex- the index of the row in question.- Returns:
- true iff one of the values in the given row is Double.NaN.
-
normalizeAll
public void normalizeAll()Normalizes all rows in the tables associated with each of node in turn.- Specified by:
normalizeAllin interfaceBayesIm
-
normalizeNode
public void normalizeNode(int nodeIndex) Normalizes all rows in the table associated with a given node.Normalizes all rows in the table associated with a given node.
- Specified by:
normalizeNodein interfaceBayesIm- Parameters:
nodeIndex- the index of the node in question.
-
normalizeRow
public void normalizeRow(int nodeIndex, int rowIndex) Normalizes the given row.Normalizes the given row.
- Specified by:
normalizeRowin interfaceBayesIm- Parameters:
nodeIndex- the index of the node in question.rowIndex- the index of the row in question.
-
randomizeIncompleteRows
public void randomizeIncompleteRows(int nodeIndex) Randomizes any row in the table for the given node index that has a Double.NaN value in it.Randomizes any row in the table for the given node index that has a Double.NaN value in it.
- Specified by:
randomizeIncompleteRowsin interfaceBayesIm- Parameters:
nodeIndex- the node for the table whose incomplete rows are to be randomized.
-
randomizeRow
public void randomizeRow(int nodeIndex, int rowIndex) Assigns random probability values to the child values of this row that add to 1.Assigns random probability values to the child values of this row that add to 1.
- Specified by:
randomizeRowin interfaceBayesIm- Parameters:
nodeIndex- the node for the table that this row belongs to.rowIndex- the index of the row.
-
randomizeTable
public void randomizeTable(int nodeIndex) Randomizes every row in the table for the given node index.Randomizes every row in the table for the given node index.
- Specified by:
randomizeTablein interfaceBayesIm- Parameters:
nodeIndex- the node for the table to be randomized.
-
setProbability
public void setProbability(int nodeIndex, double[][] probMatrix) Sets the probability for the given node. The matrix row represent row index, the row in the table for this for node which represents the combination of parent values in question. of the CPT. The matrix column represent column index, the column in the table for this node which represents the value of the node in question.Sets the probability for the given node. The matrix row represent row index, the row in the table for this for node which represents the combination of parent values in question. of the CPT. The matrix column represent column index, the column in the table for this node which represents the value of the node in question.
- Specified by:
setProbabilityin interfaceBayesIm- Parameters:
nodeIndex- the index of the node in question.probMatrix- a matrix containing probabilities of a node along with its parents
-
setProbability
public void setProbability(int nodeIndex, int rowIndex, int colIndex, double value) Sets the probability for the given node at a given row and column in the table for that node. To get the node index, use getNodeIndex(). To get the row index, use getRowIndex(). To get the column index, use getCategoryIndex() from the underlying BayesPm(). The value returned will represent a conditional probability of the form P(N=v0 | P1=v1, P2=v2, ... , Pn=vn), where N is the node referenced by nodeIndex, v0 is the value referenced by colIndex, and the combination of parent values indicated is the combination indicated by rowIndex.Sets the probability for the given node at a given row and column in the table for that node. To get the node index, use getNodeIndex(). To get the row index, use getRowIndex(). To get the column index, use getCategoryIndex() from the underlying BayesPm(). The value returned will represent a conditional probability of the form P(N=v0 | P1=v1, P2=v2, ... , Pn=vn), where N is the node referenced by nodeIndex, v0 is the value referenced by colIndex, and the combination of parent values indicated is the combination indicated by rowIndex.
- Specified by:
setProbabilityin interfaceBayesIm- Parameters:
nodeIndex- the index of the node in question.rowIndex- the row in the table for this for node which represents the combination of parent values in question.colIndex- the column in the table for this node which represents the value of the node in question.value- the desired probability to be set.- See Also:
-
setPseudocount
public void setPseudocount(int nodeIndex, int rowIndex, int colIndex, double pseudocount) setPseudocount.
- Parameters:
nodeIndex- a introwIndex- a intcolIndex- a intpseudocount- a double
-
simulateData
Simulates a data set with the specified number of rows.Simulates and returns a dataset with number of cases equal to
sampleSize. iflatentDataSavedis true, data for latent variables is included in the simulated dataset.- Specified by:
simulateDatain interfaceBayesIm- Specified by:
simulateDatain interfaceSimulator- Parameters:
sampleSize- the number of rows to simulate.latentDataSaved- if true, latent variables are saved in the data set.- Returns:
- the simulated data set.
-
simulateData
Simulates data based on the provided data set and saves the latent data if specified.Would be nice to have this method supported, but no one's using it, so it's not.
- Specified by:
simulateDatain interfaceBayesIm- Parameters:
dataSet- the data set to simulate data forlatentDataSaved- a boolean value indicating whether the latent data should be saved or not- Returns:
- the simulated data set
-
clearRow
public void clearRow(int nodeIndex, int rowIndex) Assigns random probability values to the child values of this row that add to 1.Assigns random probability values to the child values of this row that add to 1.
-
clearTable
public void clearTable(int nodeIndex) Randomizes every row in the table for the given node index.Randomizes every row in the table for the given node index.
- Specified by:
clearTablein interfaceBayesIm- Parameters:
nodeIndex- the node for the table to be randomized.
-
equals
Returns true iff this Bayes net is equal to the given Bayes net. The sense of equality may vary depending on the type of Bayes net. -
toString
-