Package edu.cmu.tetrad.bayes
Class ApproximateUpdater
java.lang.Object
edu.cmu.tetrad.bayes.ApproximateUpdater
- All Implemented Interfaces:
BayesUpdater
,ManipulatingBayesUpdater
,TetradSerializable
,Serializable
Calculates updated marginals for a Bayes net by simulating data and calculating likelihood ratios. The method is as
follows. For P(A | B), enough sample points are simulated from the underlying BayesIm so that 1000 satisfy the
condition B. Then the maximum likelihood estimate of condition A is calculated.
- Version:
- $Id: $Id
- Author:
- josephramsey
- See Also:
-
Constructor Summary
ConstructorsConstructorDescriptionApproximateUpdater
(BayesIm bayesIm) Constructs a new updater for the given Bayes net.ApproximateUpdater
(BayesIm bayesIm, Evidence evidence) Constructs a new updater for the given Bayes net. -
Method Summary
Modifier and TypeMethodDescriptiondouble[]
calculatePriorMarginals
(int nodeIndex) Calculates the prior marginal probabilities of the given node.double[]
calculateUpdatedMarginals
(int nodeIndex) Calculates the updated marginal probabilities of the given node, given the evidence.Getter for the fieldbayesIm
.Getter for the fieldevidence
.double
getJointMarginal
(int[] variables, int[] values) Computes the joint marginal probability for the specified variables and their corresponding values.Getter for the fieldmanipulatedBayesIm
.getManipulatedGraph.double
getMarginal
(int variable, int value) Returns the marginal probability of the given variable taking the given value, given the evidence.getUpdatedBayesIm.boolean
isJointMarginalSupported.static ApproximateUpdater
Returns a simple exemplar of this class to test serialization.void
setEvidence
(Evidence evidence) Sets new evidence for the updater.toString()
Prints out the most recent marginal.
-
Constructor Details
-
ApproximateUpdater
Constructs a new updater for the given Bayes net.- Parameters:
bayesIm
- the Bayes net to be updated.
-
ApproximateUpdater
-
-
Method Details
-
serializableInstance
Returns a simple exemplar of this class to test serialization.- Returns:
- a simple exemplar of this class to test serialization.
-
getBayesIm
Getter for the field
bayesIm
.- Specified by:
getBayesIm
in interfaceBayesUpdater
- Returns:
- the Bayes instantiated model that is being updated.
-
getManipulatedBayesIm
Getter for the field
manipulatedBayesIm
.- Specified by:
getManipulatedBayesIm
in interfaceManipulatingBayesUpdater
- Returns:
- the Bayes instantiated model after manipulations have been applied.
-
getManipulatedGraph
getManipulatedGraph.
- Specified by:
getManipulatedGraph
in interfaceManipulatingBayesUpdater
- Returns:
- the graph for getManipulatedBayesIm().
-
getUpdatedBayesIm
getUpdatedBayesIm.
- Specified by:
getUpdatedBayesIm
in interfaceManipulatingBayesUpdater
- Returns:
- the updated Bayes IM, or null if there is no updated Bayes IM.
-
getEvidence
Getter for the field
evidence
.- Specified by:
getEvidence
in interfaceManipulatingBayesUpdater
- Returns:
- a copy of the getModel evidence.
-
setEvidence
Sets new evidence for the updater. Once this is called, old updating results should not longer be available.Sets new evidence for the updater. Once this is called, old updating results should not longer be available.
Sets new evidence for the next update operation.
- Specified by:
setEvidence
in interfaceBayesUpdater
- Specified by:
setEvidence
in interfaceManipulatingBayesUpdater
- Parameters:
evidence
- evidence
-
getMarginal
public double getMarginal(int variable, int value) Returns the marginal probability of the given variable taking the given value, given the evidence.Returns the updated graph. This is the graph in which all probabilities of variables conditional on their parents have been updated.
- Specified by:
getMarginal
in interfaceBayesUpdater
- Specified by:
getMarginal
in interfaceManipulatingBayesUpdater
- Parameters:
variable
- variable indexvalue
- category index- Returns:
- P(variable = value | evidence), where evidence is getEvidence().
-
isJointMarginalSupported
public boolean isJointMarginalSupported()isJointMarginalSupported.
- Specified by:
isJointMarginalSupported
in interfaceBayesUpdater
- Returns:
- a boolean
-
getJointMarginal
public double getJointMarginal(int[] variables, int[] values) Computes the joint marginal probability for the specified variables and their corresponding values.- Specified by:
getJointMarginal
in interfaceBayesUpdater
- Parameters:
variables
- an array of integers representing the indices of the variables for which the joint marginal is to be computed.values
- an array of integers representing the corresponding values of the variables for which the joint marginal is to be computed.- Returns:
- the joint marginal probability for the specified variables and values.
-
calculatePriorMarginals
public double[] calculatePriorMarginals(int nodeIndex) Calculates the prior marginal probabilities of the given node.- Specified by:
calculatePriorMarginals
in interfaceBayesUpdater
- Parameters:
nodeIndex
- node index- Returns:
- P(node = value), where value is the value of the node in the Bayes net.
-
calculateUpdatedMarginals
public double[] calculateUpdatedMarginals(int nodeIndex) Calculates the updated marginal probabilities of the given node, given the evidence.- Specified by:
calculateUpdatedMarginals
in interfaceBayesUpdater
- Parameters:
nodeIndex
- node index- Returns:
- P(node = value | evidence), where value is the value of the node in the Bayes net.
-
toString
-