Package edu.cmu.tetrad.cluster.metrics
Class SquaredErrorLoss
java.lang.Object
edu.cmu.tetrad.cluster.metrics.SquaredErrorLoss
- All Implemented Interfaces:
Dissimilarity
Euclidean dissimilarity metric--i.e., the sum of the differences in corresponding variable values.
- Version:
- $Id: $Id
- Author:
- josephramsey
-
Constructor Summary
ConstructorsConstructorDescriptionCalculates the squared error dissimilarity between two vectors using the Euclidean dissimilarity metric. -
Method Summary
Modifier and TypeMethodDescriptiondouble
dissimilarity
(Vector v1, Vector v2) Calculates the dissimilarity between two vectors using the Euclidean dissimilarity metric.
-
Constructor Details
-
SquaredErrorLoss
public SquaredErrorLoss()Calculates the squared error dissimilarity between two vectors using the Euclidean dissimilarity metric.
-
-
Method Details
-
dissimilarity
Calculates the dissimilarity between two vectors using the Euclidean dissimilarity metric.- Specified by:
dissimilarity
in interfaceDissimilarity
- Parameters:
v1
- the first vectorv2
- the second vector- Returns:
- the dissimilarity between the two vectors
- Throws:
IllegalArgumentException
- if the vectors are not the same length
-