Package edu.cmu.tetrad.search
Class MimbuildTrek
java.lang.Object
edu.cmu.tetrad.search.MimbuildTrek
Implements Mimbuild using the theory of treks and ranks.
 
This class is configured to respect knowledge of forbidden and required edges, including knowledge of temporal tiers.
- Version:
- $Id: $Id
- Author:
- adambrodie
- See Also:
- 
Constructor SummaryConstructors
- 
Method SummaryModifier and TypeMethodDescriptionThe clustering used.The full graph discovered.The covariance matrix over the latents that is implied by the clustering.intClusters smaller than this size will be tossed out.doubleThe p-value of the model.Does the search and returns the graph.voidsetAlpha(double alpha) The alpha to use.voidsetEpsilon(double epsilon) Sets the parameter convergence threshold.voidsetKnowledge(Knowledge knowledge) The knowledge to use in the search.voidsetMinClusterSize(int minClusterSize) Sets the minimum cluster size.
- 
Constructor Details- 
MimbuildTrekpublic MimbuildTrek()Empty constructor.
 
- 
- 
Method Details- 
searchpublic Graph search(List<List<Node>> clustering, List<String> latentNames, ICovarianceMatrix measuresCov) throws InterruptedException Does the search and returns the graph.- Parameters:
- clustering- A clustering of the variables, each of which is explained by a single latent.
- latentNames- The names of the latents, which cannot be known by the clustering algorithm.
- measuresCov- The covariance matrix over the measured variables, from the data.
- Returns:
- A graph over the latents.
- Throws:
- InterruptedException
 
- 
getClustering
- 
setAlphapublic void setAlpha(double alpha) The alpha to use.- Parameters:
- alpha- This alpha.
 
- 
setKnowledgeThe knowledge to use in the search.- Parameters:
- knowledge- This knowledge.
 
- 
getLatentsCovThe covariance matrix over the latents that is implied by the clustering.- Returns:
- This covariance matrix.
 
- 
getpValuepublic double getpValue()The p-value of the model.- Returns:
- This p-value.
 
- 
getFullGraphThe full graph discovered.- Returns:
- the allowUnfaithfulness discovered graph, with latents and indicators.
 
- 
setEpsilonpublic void setEpsilon(double epsilon) Sets the parameter convergence threshold. Default = 1e-4.- Parameters:
- epsilon- This threshold.
 
- 
getMinClusterSizepublic int getMinClusterSize()Clusters smaller than this size will be tossed out.- Returns:
- a int
 
- 
setMinClusterSizepublic void setMinClusterSize(int minClusterSize) Sets the minimum cluster size.- Parameters:
- minClusterSize- The minimum cluster size to be set.
- Throws:
- IllegalArgumentException- If the minimum cluster size is less than 3.
 
 
-