Package edu.cmu.tetrad.bayes
Class RowSummingExactUpdater
java.lang.Object
edu.cmu.tetrad.bayes.RowSummingExactUpdater
- All Implemented Interfaces:
BayesUpdater
,ManipulatingBayesUpdater
,TetradSerializable
,Serializable
Performs updating operations on a BayesIm by summing over cells in the joint probability table for the BayesIm. Quite
flexible and fast if almost all of the variables in the Bayes net are in evidence. Can be excruciatingly slow if
numVars - numVarsInEvidence is more than 15.
- Version:
- $Id: $Id
- Author:
- josephramsey
- See Also:
-
Constructor Summary
ConstructorsConstructorDescriptionRowSummingExactUpdater
(BayesIm bayesIm) Constructs a new updater for the given Bayes net.RowSummingExactUpdater
(BayesIm bayesIm, Evidence evidence) Constructs a new updater for the given Bayes net. -
Method Summary
Modifier and TypeMethodDescriptiondouble[]
calculatePriorMarginals
(int nodeIndex) Calculates the prior marginal probabilities of the given node.double[]
calculateUpdatedMarginals
(int nodeIndex) Calculates the updated marginal probabilities of the given node, given the evidence.The BayesIm that this updater bases its update on.Getter for the fieldevidence
.double
getJointMarginal
(int[] variables, int[] values) getJointMarginal.Getter for the fieldmanipulatedBayesIm
.getManipulatedGraph.double
getMarginal
(int variable, int value) Returns the marginal probability of the given variable taking the given value, given the evidence.The updated BayesIm.boolean
isJointMarginalSupported.static RowSummingExactUpdater
Generates a simple exemplar of this class to test serialization.void
setEvidence
(Evidence evidence) Sets new evidence for the updater.toString()
Prints out the most recent marginal.
-
Constructor Details
-
RowSummingExactUpdater
-
RowSummingExactUpdater
-
-
Method Details
-
serializableInstance
Generates a simple exemplar of this class to test serialization.- Returns:
- a
RowSummingExactUpdater
object
-
getBayesIm
The BayesIm that this updater bases its update on. This BayesIm is not modified; rather, a new BayesIm is created and updated.- Specified by:
getBayesIm
in interfaceBayesUpdater
- Returns:
- a
BayesIm
object
-
getManipulatedBayesIm
Getter for the field
manipulatedBayesIm
.- Specified by:
getManipulatedBayesIm
in interfaceManipulatingBayesUpdater
- Returns:
- the updated BayesIm.
-
getManipulatedGraph
getManipulatedGraph.
- Specified by:
getManipulatedGraph
in interfaceManipulatingBayesUpdater
- Returns:
- a
Graph
object
-
getUpdatedBayesIm
The updated BayesIm. This is a different object from the source BayesIm.- Specified by:
getUpdatedBayesIm
in interfaceManipulatingBayesUpdater
- Returns:
- a
BayesIm
object - See Also:
-
getEvidence
Getter for the field
evidence
.- Specified by:
getEvidence
in interfaceManipulatingBayesUpdater
- Returns:
- a defensive copy of the evidence.
-
setEvidence
Sets new evidence for the updater. Once this is called, old updating results should not longer be available.Sets new evidence for the updater. Once this is called, old updating results should not longer be available.
- Specified by:
setEvidence
in interfaceBayesUpdater
- Specified by:
setEvidence
in interfaceManipulatingBayesUpdater
- Parameters:
evidence
- evidence
-
isJointMarginalSupported
public boolean isJointMarginalSupported()isJointMarginalSupported.
- Specified by:
isJointMarginalSupported
in interfaceBayesUpdater
- Returns:
- a boolean
-
getJointMarginal
public double getJointMarginal(int[] variables, int[] values) getJointMarginal.
- Specified by:
getJointMarginal
in interfaceBayesUpdater
- Parameters:
variables
- an array of objectsvalues
- an array of objects- Returns:
- a double
-
getMarginal
public double getMarginal(int variable, int value) Returns the marginal probability of the given variable taking the given value, given the evidence.Returns the updated graph. This is the graph in which all probabilities of variables conditional on their parents have been updated.
- Specified by:
getMarginal
in interfaceBayesUpdater
- Specified by:
getMarginal
in interfaceManipulatingBayesUpdater
- Parameters:
variable
- variable indexvalue
- category index- Returns:
- P(variable = value | evidence), where evidence is getEvidence().
-
calculatePriorMarginals
public double[] calculatePriorMarginals(int nodeIndex) Calculates the prior marginal probabilities of the given node.- Specified by:
calculatePriorMarginals
in interfaceBayesUpdater
- Parameters:
nodeIndex
- node index- Returns:
- P(node = value), where value is the value of the node in the Bayes net.
-
calculateUpdatedMarginals
public double[] calculateUpdatedMarginals(int nodeIndex) Calculates the updated marginal probabilities of the given node, given the evidence.- Specified by:
calculateUpdatedMarginals
in interfaceBayesUpdater
- Parameters:
nodeIndex
- node index- Returns:
- P(node = value | evidence), where value is the value of the node in the Bayes net.
-
toString
-