Class IndTestFisherZRecursive
java.lang.Object
edu.cmu.tetrad.search.work_in_progress.IndTestFisherZRecursive
- All Implemented Interfaces:
IndependenceTest
Checks conditional independence of variable in a continuous data set using Fisher's Z test. See Spirtes, Glymour, and
Scheines, "Causation, Prediction and Search," 2nd edition, page 94.
- Version:
- $Id: $Id
- Author:
- josephramsey, Frank Wimberly adapted IndTestCramerT for Fisher's Z
-
Constructor Summary
ConstructorsConstructorDescriptionIndTestFisherZRecursive
(DataSet dataSet, double alpha) Constructs a new Independence test which checks independence facts based on the correlation matrix implied by the given data set (must be continuous).IndTestFisherZRecursive
(ICovarianceMatrix covMatrix, double alpha) Constructs a new independence test that will determine conditional independence facts using the given correlation matrix and the given significance level.IndTestFisherZRecursive
(Matrix data, List<Node> variables, double alpha) Constructs a new Fisher Z independence test with the listed arguments. -
Method Summary
Modifier and TypeMethodDescriptioncheckIndependence
(Node x, Node y, Set<Node> z) checkIndependence.boolean
determines
(Set<Node> _z, Node x) Returns true if y is determined the variable in z.double
getAlpha()
Gets the getModel significance level.getCov()
getCov.getData()
getData.Returns the datasets for this testdouble
getPValue.int
Returns the sample size.getVariable
(String name) Returns The variable by the given name.Getter for the fieldvariables
.indTestSubset
(List<Node> vars) Returns an Independence test for a sublist of the variables.boolean
isVerbose.void
setAlpha
(double alpha) Sets the significance level.void
setVariables
(List<Node> variables) Setter for the fieldvariables
.void
setVerbose
(boolean verbose) Sets whether this test will print verbose output.toString()
toString.Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface edu.cmu.tetrad.search.IndependenceTest
checkIndependence, getVariableNames
-
Constructor Details
-
IndTestFisherZRecursive
Constructs a new Independence test which checks independence facts based on the correlation matrix implied by the given data set (must be continuous). The given significance level is used.- Parameters:
dataSet
- A data set containing only continuous columns.alpha
- The alpha level of the test.
-
IndTestFisherZRecursive
Constructs a new Fisher Z independence test with the listed arguments.- Parameters:
data
- A 2D continuous data set with no missing values.variables
- A list of variables, a subset of the variables ofdata
.alpha
- The significance cutoff level. p values less than alpha will be reported as dependent.
-
IndTestFisherZRecursive
Constructs a new independence test that will determine conditional independence facts using the given correlation matrix and the given significance level.- Parameters:
covMatrix
- aICovarianceMatrix
objectalpha
- a double
-
-
Method Details
-
indTestSubset
Returns an Independence test for a sublist of the variables.Creates a new independence test instance for a subset of the variables.
- Specified by:
indTestSubset
in interfaceIndependenceTest
- Parameters:
vars
- The sublist of variables.- Returns:
- a
IndependenceTest
object
-
checkIndependence
checkIndependence.
Determines whether variable x is independent of variable y given a list of conditioning variables z.
- Specified by:
checkIndependence
in interfaceIndependenceTest
- Parameters:
x
- aNode
objecty
- aNode
objectz
- aSet
object- Returns:
- a
IndependenceResult
object - See Also:
-
getPValue
public double getPValue()getPValue.
- Returns:
- the probability associated with the most recently computed independence test.
-
getAlpha
public double getAlpha()Gets the getModel significance level.- Specified by:
getAlpha
in interfaceIndependenceTest
- Returns:
- a double
-
setAlpha
public void setAlpha(double alpha) Sets the significance level.Sets the significance level at which independence judgments should be made. Affects the cutoff for partial correlations to be considered statistically equal to zero.
- Specified by:
setAlpha
in interfaceIndependenceTest
- Parameters:
alpha
- This level.
-
getVariables
Getter for the field
variables
.- Specified by:
getVariables
in interfaceIndependenceTest
- Returns:
- the list of variables over which this independence checker is capable of determinine independence relations-- that is, all the variables in the given graph or the given data set.
-
setVariables
-
getVariable
Returns The variable by the given name.- Specified by:
getVariable
in interfaceIndependenceTest
- Parameters:
name
- aString
object- Returns:
- This variable.
-
determines
Returns true if y is determined the variable in z.If
isDeterminismAllowed()
, deters to IndTestFisherZD; otherwise throws UnsupportedOperationException.- Specified by:
determines
in interfaceIndependenceTest
- Parameters:
_z
- aSet
objectx
- aNode
object- Returns:
- True, if so.
- Throws:
UnsupportedOperationException
-
getData
getData.
- Specified by:
getData
in interfaceIndependenceTest
- Returns:
- the data set being analyzed.
- See Also:
-
toString
toString.
- Specified by:
toString
in interfaceIndependenceTest
- Overrides:
toString
in classObject
- Returns:
- a string representation of this test.
-
getCov
getCov.
- Specified by:
getCov
in interfaceIndependenceTest
- Returns:
- a
ICovarianceMatrix
object
-
getDataSets
Returns the datasets for this test- Specified by:
getDataSets
in interfaceIndependenceTest
- Returns:
- these datasets.
-
getSampleSize
public int getSampleSize()Returns the sample size.- Specified by:
getSampleSize
in interfaceIndependenceTest
- Returns:
- This size.
-
isVerbose
public boolean isVerbose()isVerbose.
- Specified by:
isVerbose
in interfaceIndependenceTest
- Returns:
- a boolean
-
setVerbose
public void setVerbose(boolean verbose) Sets whether this test will print verbose output.- Specified by:
setVerbose
in interfaceIndependenceTest
- Parameters:
verbose
- True, if so.
-