Package edu.cmu.tetrad.search
Interface IndependenceTest
- All Known Implementing Classes:
CompositeIndependenceTest
,IndTestChiSquare
,IndTestConditionalCorrelation
,IndTestConditionalGaussianLrt
,IndTestCramerT
,IndTestDegenerateGaussianLrt
,IndTestFisherZ
,IndTestFisherZConcatenateResiduals
,IndTestFisherZFisherPValue
,IndTestFisherZPercentIndependent
,IndTestFisherZRecursive
,IndTestGSquare
,IndTestHsic
,IndTestIndependenceFacts
,IndTestIod
,IndTestMixedMultipleTTest
,IndTestMnlrLr
,IndTestMulti
,IndTestMultinomialLogisticRegression
,IndTestMultinomialLogisticRegressionWald
,IndTestMvpLrt
,IndTestPositiveCorr
,IndTestProbabilistic
,IndTestRegression
,IndTestSepsetDci
,IndTestTrekSep
,Kci
,MsepTest
,ProbabilisticMapIndependence
,ScoreIndTest
public interface IndependenceTest
Gives an interface that can be implemented by classes that do conditional independence testing. These classes are
capable of serving as conditional independence "oracles" for constraint-based searches. Many methods are given
defaults so that such a test will be easy to implement in Python using JPype.
- Version:
- $Id: $Id
- Author:
- josephramsey
-
Method Summary
Modifier and TypeMethodDescriptiondefault IndependenceResult
checkIndependence
(Node x, Node y, Node... z) Checks the independence fact in question and returns and independence result.checkIndependence
(Node x, Node y, Set<Node> z) checkIndependence.default boolean
determines
(Set<Node> z, Node y) Returns true if y is determined the variable in z.default double
getAlpha()
Returns the significance level of the independence test.default ICovarianceMatrix
getCov()
Returns the covariance matrix.getData()
getData.Returns the datasets for this testdefault int
Returns the sample size.default Node
getVariable
(String name) Returns The variable by the given name.Returns the list of names for the variables in getNodesInEvidence.getVariables.default IndependenceTest
indTestSubset
(List<Node> vars) Returns an Independence test for a sublist of the variables.boolean
Returns true if the test prints verbose output.default void
setAlpha
(double alpha) Sets the significance level.void
setVerbose
(boolean verbose) Sets whether this test will print verbose output.toString()
Returns a string representation of this test.
-
Method Details
-
checkIndependence
checkIndependence.
- Parameters:
x
- aNode
objecty
- aNode
objectz
- aSet
object- Returns:
- an IndependenceResult (see).
- Throws:
InterruptedException
- See Also:
-
getVariables
-
getData
DataModel getData()getData.
- Returns:
- The data model for the independence test, either a DataSet or a CovarianceMatrix.
- See Also:
-
isVerbose
boolean isVerbose()Returns true if the test prints verbose output.- Returns:
- True if the case.
-
setVerbose
void setVerbose(boolean verbose) Sets whether this test will print verbose output.- Parameters:
verbose
- True, if so.
-
toString
-
indTestSubset
Returns an Independence test for a sublist of the variables.- Parameters:
vars
- The sublist of variables.- Returns:
- a
IndependenceTest
object
-
checkIndependence
Checks the independence fact in question and returns and independence result.- Parameters:
x
- aNode
objecty
- aNode
objectz
- aNode
object- Returns:
- The independence result.
- Throws:
InterruptedException
- See Also:
-
getSampleSize
default int getSampleSize()Returns the sample size.- Returns:
- This size.
-
getVariable
-
getVariableNames
-
determines
-
getAlpha
default double getAlpha()Returns the significance level of the independence test.- Returns:
- This level.
- Throws:
UnsupportedOperationException
- if there is no significance level.
-
setAlpha
default void setAlpha(double alpha) Sets the significance level.- Parameters:
alpha
- This level.
-
getCov
Returns the covariance matrix.- Returns:
- This matrix.
- Throws:
UnsupportedOperationException
- If this method is not supported for a particular test.
-
getDataSets
Returns the datasets for this test- Returns:
- these datasets.
- Throws:
UnsupportedOperationException
- If this method is not supported for a particular test.
-