Interface Statistic
- All Superinterfaces:
Serializable
- All Known Implementing Classes:
AdjacencyFn
,AdjacencyFp
,AdjacencyFpr
,AdjacencyPrecision
,AdjacencyRecall
,AdjacencyTn
,AdjacencyTp
,AdjacencyTpr
,AncestorF1
,AncestorPrecision
,AncestorRecall
,AncestralPrecision
,AncestralRecall
,ArrowheadFn
,ArrowheadFp
,ArrowheadFpr
,ArrowheadPrecision
,ArrowheadPrecisionCommonEdges
,ArrowheadRecall
,ArrowheadRecallCommonEdges
,ArrowheadTn
,ArrowheadTp
,AverageDegreeEst
,AverageDegreeTrue
,BicDiff
,BicDiffPerRecord
,BicEst
,BicTrue
,BidirectedEst
,BidirectedFP
,BidirectedLatentPrecision
,BidirectedPrecision
,BidirectedRecall
,BidirectedTP
,BidirectedTrue
,CommonAncestorFalseNegativeBidirected
,CommonAncestorFalsePositiveBidirected
,CommonAncestorTruePositiveBidirected
,CommonMeasuredAncestorRecallBidirected
,CorrectSkeleton
,DefiniteDirectedPathPrecision
,DefiniteDirectedPathRecall
,DensityEst
,DensityTrue
,ElapsedCpuTime
,F1Adj
,F1All
,F1Arrow
,FalseNegativesAdjacencies
,FalsePositiveAdjacencies
,FBetaAdj
,FractionDependentUnderAlternative
,FractionDependentUnderNull
,GraphExactlyRight
,IdaAverageSquaredDistance
,IdaCheckAvgMaxSquaredDiffEstTrue
,IdaCheckAvgMinSquaredDiffEstTrue
,IdaCheckAvgSquaredDifference
,IdaMaximumSquaredDifference
,IdaMinimumSquaredDifference
,ImpliedArrowOrientationRatioEst
,ImpliedArrowOrientationRatioEst2
,ImpliedOrientationRatioEst
,ImpliesLegalMag
,KnowledgeSatisfied
,LatentCommonAncestorFalseNegativeBidirected
,LatentCommonAncestorFalsePositiveBidirected
,LatentCommonAncestorRecallBidirected
,LatentCommonAncestorTruePositiveBidirected
,LegalPag
,LocalGraphPrecision
,LocalGraphRecall
,MagCgScore
,MagDgScore
,MagSemScore
,MarkovCheckAdPasses
,MarkovCheckAdPassesBestOf10
,MarkovCheckAndersonDarlingP
,MarkovCheckAndersonDarlingPBestOf10
,MarkovCheckBinomialP
,MarkovCheckBinomialPBestOf10
,MarkovCheckKolmogorovSmirnoffP
,MarkovCheckKolmogorovSmirnoffPBestOf10
,MarkovCheckKsPasses
,MarkovCheckKsPassesBestOf10
,MathewsCorrAdj
,MathewsCorrArrow
,Maximal
,MaximalityCondition
,NoAlmostCyclicPathsCondition
,NoCyclicPathsCondition
,NodesInCyclesPrecision
,NodesInCyclesRecall
,NonancestorPrecision
,NonancestorRecall
,NoSemidirectedF1
,NoSemidirectedPrecision
,NoSemidirectedRecall
,NumAmbiguousTriples
,NumberArrowsEst
,NumberArrowsNotInUnshieldedCollidersEst
,NumberCollidersEst
,NumberEdgesEst
,NumberEdgesInCollidersEst
,NumberEdgesInUnshieldedCollidersEst
,NumberEdgesTrue
,NumberOfEdgesEst
,NumberOfEdgesTrue
,NumberTailsEst
,NumberUnshieldedCollidersEst
,NumBidirectedBothNonancestorAncestor
,NumBidirectedEdgesEst
,NumBidirectedEdgesTrue
,NumColoredDD
,NumColoredNL
,NumColoredPD
,NumColoredPL
,NumCommonMeasuredAncestorBidirected
,NumCompatibleDefiniteDirectedEdgeAncestors
,NumCompatibleDirectedEdgeConfounded
,NumCompatibleDirectedEdgeNonAncestors
,NumCompatibleEdges
,NumCompatiblePossiblyDirectedEdgeAncestors
,NumCompatiblePossiblyDirectedEdgeNonAncestors
,NumCompatibleVisibleNonancestors
,NumCorrectBidirected
,NumCorrectDDAncestors
,NumCorrectPDAncestors
,NumCorrectVisibleEdges
,NumCoveringAdjacenciesInPag
,NumDefinitelyDirected
,NumDefinitelyNotDirectedPaths
,NumDirectedEdgeAncestors
,NumDirectedEdgeBnaMeasuredCounfounded
,NumDirectedEdgeNoMeasureAncestors
,NumDirectedEdgeNotAncNotRev
,NumDirectedEdgeReversed
,NumDirectedEdges
,NumDirectedPathsEst
,NumDirectedPathsTrue
,NumDirectedShouldBePartiallyDirected
,NumEdgeInEstInTrue
,NumGenuineAdjacenciesInPag
,NumIncorrectDDAncestors
,NumIncorrectPDAncestors
,NumIncorrectVisibleAncestors
,NumLatentCommonAncestorBidirected
,NumNondirectedEdges
,NumParametersEst
,NumPartiallyOrientedEdges
,NumPossiblyDirected
,NumUndirectedEdges
,NumVisibleEdgeEst
,NumVisibleEdges
,NumVisibleEdgeTrue
,OrientationPrecision
,OrientationRecall
,PagAdjacencyPrecision
,PagAdjacencyRecall
,ParameterColumn
,PercentAmbiguous
,PercentBidirectedEdges
,ProportionSemidirectedPathsNotReversedEst
,ProportionSemidirectedPathsNotReversedTrue
,PvalueDistanceToAlpha
,PvalueUniformityUnderNull
,SemidirectedPathF1
,SemidirectedPrecision
,SemidirectedRecall
,StructuralHammingDistance
,TailPrecision
,TailRecall
,TrueDagFalseNegativesArrows
,TrueDagFalseNegativesTails
,TrueDagFalsePositiveArrow
,TrueDagFalsePositiveTails
,TrueDagPrecisionArrow
,TrueDagPrecisionTails
,TrueDagRecallArrows
,TrueDagRecallTails
,TrueDagTruePositiveArrow
,TrueDagTruePositiveDirectedPathNonancestor
,TrueDagTruePositiveTails
,TwoCycleFalseNegative
,TwoCycleFalsePositive
,TwoCyclePrecision
,TwoCycleRecall
,TwoCycleTruePositive
The interface that each statistic needs to implement.
- Version:
- $Id: $Id
- Author:
- josephramsey
-
Field Summary
FieldsModifier and TypeFieldDescriptionstatic final long
ConstantserialVersionUID=23L
-
Method Summary
Modifier and TypeMethodDescriptionThe abbreviation for the statistic.Returns a short one-line description of this statistic.double
getNormValue
(double value) Returns a mapping of the statistic to the interval [0, 1], with higher being better.double
Returns the value of this statistic, given the true graph and the estimated graph.
-
Field Details
-
serialVersionUID
static final long serialVersionUIDConstantserialVersionUID=23L
- See Also:
-
-
Method Details
-
getAbbreviation
String getAbbreviation()The abbreviation for the statistic. This will be printed at the top of each column.- Returns:
- This abbreviation.
-
getDescription
String getDescription()Returns a short one-line description of this statistic. This will be printed at the beginning of the report.- Returns:
- This description.
-
getValue
Returns the value of this statistic, given the true graph and the estimated graph.- Parameters:
trueGraph
- The true graph (DAG, CPDAG, PAG_of_the_true_DAG).estGraph
- The estimated graph (same type).dataModel
- The data model.- Returns:
- The value of the statistic.
-
getNormValue
double getNormValue(double value) Returns a mapping of the statistic to the interval [0, 1], with higher being better. This is used for a calculation of a utility for an algorithm. If the statistic is already between 0 and 1, you can just return the statistic.- Parameters:
value
- The value of the statistic.- Returns:
- The weight of the statistic, 0 to 1, higher is better.
-