Package edu.cmu.tetrad.sem
Class SemEstimatorGibbs
java.lang.Object
edu.cmu.tetrad.sem.SemEstimatorGibbs
Implements the Gibbs sampler apporach to obtain samples of arbitrary size from the posterior distribution over the
freeParameters of a SEM given a continuous dataset and a SemPm. Point estimates, standard deviations and interval
estimates for the freeParameters can be computed from these samples. See "Bayesian Estimation and Testing of
Structural Equation Models" by Scheines, Hoijtink and Boomsma, Psychometrika, v. 64, no. 1.
- Version:
- $Id: $Id
- Author:
- Frank Wimberly
-
Constructor Summary
ConstructorsConstructorDescriptionSemEstimatorGibbs
(int numIterations, double stretch1, double stretch2, double tolerance, double priorVariance, SemPm semPm, SemIm startIm, boolean flatPrior) Constructor for SemEstimatorGibbs.SemEstimatorGibbs
(SemPm semPm, SemIm startIm, double[][] sampleCovars, boolean flatPrior, double stretch, int numIterations) Constructor for SemEstimatorGibbs. -
Method Summary
-
Constructor Details
-
SemEstimatorGibbs
public SemEstimatorGibbs(SemPm semPm, SemIm startIm, double[][] sampleCovars, boolean flatPrior, double stretch, int numIterations) Constructor for SemEstimatorGibbs.
- Parameters:
semPm
- a SemPm specifying the graph and parameterization for the model.startIm
- SemImsampleCovars
- sample covariance matrixflatPrior
- whether or not the prior is informativestretch
- scaling for the variancenumIterations
- number of times to iterate sampler
-
SemEstimatorGibbs
-
-
Method Details
-
estimate
public void estimate()Runs the estimator on the data and SemPm passed in through the constructor. -
getEstimatedSem
-
toString
-
getSemPm
-
getDataSet
-