Uses of Interface
edu.cmu.tetrad.graph.Graph
Packages that use Graph
Package
Description
Contains classes for searching for (mostly structural) causal models given data.
Contains classes for various sorts of scores for running score-based algorithms.
Contains classes for running conditional independence tests for various sorts of data.
Contains some utility classes for search algorithms.
Contains some classes that aren't ready for prime time.
-
Uses of Graph in edu.cmu.tetrad.algcomparison
Methods in edu.cmu.tetrad.algcomparison with parameters of type GraphModifier and TypeMethodDescriptionstatic @NotNull String
CompareTwoGraphs.getEdgewiseComparisonString
(Graph trueGraph, Graph targetGraph) Returns an edgewise comparison of two graphs.static @NotNull String
CompareTwoGraphs.getMisclassificationTable
(Graph trueGraph, Graph targetGraph) Returns a misclassification comparison of two graphs.static String
CompareTwoGraphs.getStatsListTable
(Graph trueGraph, Graph targetGraph) Returns a string representing a table of statistics that can be printed.static String
CompareTwoGraphs.getStatsListTable
(Graph trueGraph, Graph targetGraph, DataModel dataModel, long elapsedTime) Returns a string representing a table of statistics that can be printed. -
Uses of Graph in edu.cmu.tetrad.algcomparison.algorithm
Methods in edu.cmu.tetrad.algcomparison.algorithm that return GraphModifier and TypeMethodDescriptionAlgorithm.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.FirstInflection.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.StabilitySelection.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.StARS.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.AbstractBootstrapAlgorithm.search
(DataModel dataModel, Parameters parameters) Runs the search.Algorithm.search
(DataModel dataSet, Parameters parameters) Runs the search.FirstInflection.search
(DataModel dataSet, Parameters parameters) Runs the search.MultiDataSetAlgorithm.search
(List<DataModel> dataSets, Parameters parameters) Runs the search.StabilitySelection.search
(DataModel dataSet, Parameters parameters) Runs the search.StARS.search
(DataModel dataSet, Parameters parameters) Runs the search.Methods in edu.cmu.tetrad.algcomparison.algorithm that return types with arguments of type GraphModifier and TypeMethodDescriptionAbstractBootstrapAlgorithm.getBootstrapGraphs()
Returns the bootstrap graphs.ReturnsBootstrapGraphs.getBootstrapGraphs()
Returns the bootstrap graphs.Methods in edu.cmu.tetrad.algcomparison.algorithm with parameters of type GraphModifier and TypeMethodDescriptionstatic Algorithm
AlgorithmFactory.create
(Class<? extends Algorithm> algoClass, IndependenceWrapper test, ScoreWrapper score, Graph externalGraph) Creates an algorithm.static Algorithm
AlgorithmFactory.create
(Class<? extends Algorithm> algoClass, Class<? extends IndependenceWrapper> indTestClass, Class<? extends ScoreWrapper> scoreClass, Graph externalGraph) Creates an algorithm.Algorithm.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.FirstInflection.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.StabilitySelection.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.StARS.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to. -
Uses of Graph in edu.cmu.tetrad.algcomparison.algorithm.cluster
Methods in edu.cmu.tetrad.algcomparison.algorithm.cluster that return GraphModifier and TypeMethodDescriptionBpc.getComparisonGraph
(Graph graph) Returns the comparison graph for the given true directed graph.Fofc.getComparisonGraph
(Graph graph) This method returns a comparison graph that is obtained from the given true directed graph.Ftfc.getComparisonGraph
(Graph graph) Retrieves the comparison graph for the given true directed graph.Fofc.runSearch
(DataModel dataModel, Parameters parameters) Runs the search algorithm and returns the resulting graph.Ftfc.runSearch
(DataModel dataSet, Parameters parameters) Runs the search algorithm to find a causal graph.Bpc.search
(DataModel dataModel, Parameters parameters) Runs the search algorithm to build a graph using the given data model and parameters.Methods in edu.cmu.tetrad.algcomparison.algorithm.cluster with parameters of type GraphModifier and TypeMethodDescriptionBpc.getComparisonGraph
(Graph graph) Returns the comparison graph for the given true directed graph.Fofc.getComparisonGraph
(Graph graph) This method returns a comparison graph that is obtained from the given true directed graph.Ftfc.getComparisonGraph
(Graph graph) Retrieves the comparison graph for the given true directed graph. -
Uses of Graph in edu.cmu.tetrad.algcomparison.algorithm.continuous.dag
Methods in edu.cmu.tetrad.algcomparison.algorithm.continuous.dag that return GraphModifier and TypeMethodDescriptionDagma.getComparisonGraph
(Graph graph) Retrieves the comparison graph for the given true directed graph.DirectLingam.getComparisonGraph
(Graph graph) Returns a comparison graph based on the given true directed graph.Fask.getComparisonGraph
(Graph graph) Returns a comparison graph based on the true directed graph, if there is one.FaskOrig.getComparisonGraph
(Graph graph) Returns a comparison graph based on the true directed graph, if there is one.IcaLingam.getComparisonGraph
(Graph graph) Returns a comparison graph based on the true directed graph, if there is one.IcaLingD.getComparisonGraph
(Graph graph) Retrieves the comparison graph of the provided true directed graph.Dagma.runSearch
(DataModel dataModel, Parameters parameters) Runs the DAGMA algorithm to search for a directed acyclic graph (DAG) in the given data model with the specified parameters.DirectLingam.runSearch
(DataModel dataModel, Parameters parameters) Runs the Direct LiNGAM search algorithm on the given data model with the specified parameters.Fask.runSearch
(DataModel dataModel, Parameters parameters) Runs the Fask search algorithm on the given data model with the specified parameters.FaskOrig.runSearch
(DataModel dataModel, Parameters parameters) Runs the Fask search algorithm on the given data model with the specified parameters.IcaLingam.runSearch
(DataModel dataSet, Parameters parameters) Searches for a graph structure based on the given data set and parameters.IcaLingD.runSearch
(DataModel dataSet, Parameters parameters) Runs a search on the provided data set using the given parameters.Methods in edu.cmu.tetrad.algcomparison.algorithm.continuous.dag that return types with arguments of type GraphModifier and TypeMethodDescriptionIcaLingD.getStableGraphs()
Retrieves the list of stable graphs generated by the algorithm.IcaLingD.getUnstableGraphs()
Retrieves the list of unstable graphs generated by the algorithm.Methods in edu.cmu.tetrad.algcomparison.algorithm.continuous.dag with parameters of type GraphModifier and TypeMethodDescriptionDagma.getComparisonGraph
(Graph graph) Retrieves the comparison graph for the given true directed graph.DirectLingam.getComparisonGraph
(Graph graph) Returns a comparison graph based on the given true directed graph.Fask.getComparisonGraph
(Graph graph) Returns a comparison graph based on the true directed graph, if there is one.FaskOrig.getComparisonGraph
(Graph graph) Returns a comparison graph based on the true directed graph, if there is one.IcaLingam.getComparisonGraph
(Graph graph) Returns a comparison graph based on the true directed graph, if there is one.IcaLingD.getComparisonGraph
(Graph graph) Retrieves the comparison graph of the provided true directed graph. -
Uses of Graph in edu.cmu.tetrad.algcomparison.algorithm.mixed
Methods in edu.cmu.tetrad.algcomparison.algorithm.mixed that return GraphModifier and TypeMethodDescriptionMgm.getComparisonGraph
(Graph graph) Returns the comparison graph for the given true directed graph.Mgm.runSearch
(DataModel dataModel, Parameters parameters) Runs the MGM search algorithm.Methods in edu.cmu.tetrad.algcomparison.algorithm.mixed with parameters of type GraphModifier and TypeMethodDescriptionMgm.getComparisonGraph
(Graph graph) Returns the comparison graph for the given true directed graph. -
Uses of Graph in edu.cmu.tetrad.algcomparison.algorithm.multi
Methods in edu.cmu.tetrad.algcomparison.algorithm.multi that return GraphModifier and TypeMethodDescriptionFaskConcatenated.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.FaskLofsConcatenated.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.FaskVote.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.FasLofs.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.FciIod.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.FgesConcatenated.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.Images.getComparisonGraph
(Graph graph) Returns a comparison graph based on the true directed graph, if there is one.ImagesBoss.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.FaskConcatenated.search
(DataModel dataSet, Parameters parameters) Runs the search.FaskConcatenated.search
(List<DataModel> dataSets, Parameters parameters) Runs the search.FaskLofsConcatenated.search
(DataModel dataSet, Parameters parameters) Runs the search.FaskLofsConcatenated.search
(List<DataModel> dataModels, Parameters parameters) Runs the search.FaskVote.search
(DataModel dataSet, Parameters parameters) Runs the search.FaskVote.search
(List<DataModel> dataSets, Parameters parameters) Runs the search.FasLofs.search
(DataModel dataSet, Parameters parameters) Runs the search.FciIod.search
(DataModel dataSet, Parameters parameters) Runs the search.FciIod.search
(List<DataModel> dataSets, Parameters parameters) Runs the search.FgesConcatenated.search
(DataModel dataSet, Parameters parameters) Runs the search.FgesConcatenated.search
(List<DataModel> dataModels, Parameters parameters) Runs the search.Images.search
(DataModel dataSet, Parameters parameters) Searches for a graph using the given data set and parameters.Images.search
(List<DataModel> dataSets, Parameters parameters) Searches for a graph using the given data sets and parameters.ImagesBoss.search
(DataModel dataSet, Parameters parameters) Runs the search.ImagesBoss.search
(List<DataModel> dataSets, Parameters parameters) Runs the search.Methods in edu.cmu.tetrad.algcomparison.algorithm.multi with parameters of type GraphModifier and TypeMethodDescriptionFaskConcatenated.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.FaskLofsConcatenated.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.FaskVote.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.FasLofs.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.FciIod.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.FgesConcatenated.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.Images.getComparisonGraph
(Graph graph) Returns a comparison graph based on the true directed graph, if there is one.ImagesBoss.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to. -
Uses of Graph in edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag
Methods in edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag that return GraphModifier and TypeMethodDescriptionBoss.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.BossLingam.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.Cpc.getComparisonGraph
(Graph graph) Retrieves the comparison graph for the given true directed graph.Cstar.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.Fas.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.Fges.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.FgesMb.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.FgesMeasurement.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.Grasp.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.Pc.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.Pcd.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.PcMb.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.RestrictedBoss.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.SingleGraphAlg.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.Sp.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.Cstar.search
(DataModel dataSet, Parameters parameters) Runs the search.SingleGraphAlg.search
(DataModel dataSet, Parameters parameters) Runs the search.Methods in edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag with parameters of type GraphModifier and TypeMethodDescriptionBoss.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.BossLingam.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.Cpc.getComparisonGraph
(Graph graph) Retrieves the comparison graph for the given true directed graph.Cstar.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.Fas.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.Fges.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.FgesMb.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.FgesMeasurement.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.Grasp.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.Pc.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.Pcd.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.PcMb.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.RestrictedBoss.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.SingleGraphAlg.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.Sp.getComparisonGraph
(Graph graph) Returns that graph that the result should be compared to.Constructors in edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag with parameters of type Graph -
Uses of Graph in edu.cmu.tetrad.algcomparison.algorithm.oracle.pag
Methods in edu.cmu.tetrad.algcomparison.algorithm.oracle.pag that return GraphModifier and TypeMethodDescriptionBfci.getComparisonGraph
(Graph graph) Retrieves the comparison graph generated by applying the DAG-to-PAG transformation to the given true directed graph.BossDumb.getComparisonGraph
(Graph graph) Retrieves a comparison graph by transforming a true directed graph into a partially directed graph (PAG).BossPag.getComparisonGraph
(Graph graph) Retrieves a comparison graph by transforming a true directed graph into a partially directed graph (PAG).Ccd.getComparisonGraph
(Graph graph) Retrieves the comparison graph for the given true directed graph.Cfci.getComparisonGraph
(Graph graph) Retrieves the comparison graph by converting the given true directed graph into a partially directed graph (PAG) using the DAG to PAG transformation.Fci.getComparisonGraph
(Graph graph) Returns the comparison graph based on the true directed graph, if there is one.FciMax.getComparisonGraph
(Graph graph) Returns the comparison graph transformed from the true directed graph.Gfci.getComparisonGraph
(Graph graph) Retrieves the comparison graph by transforming the true directed graph (if there is one) into a partially directed acyclic graph (PAG).GraspFci.getComparisonGraph
(Graph graph) Retrieves a comparison graph by transforming a true directed graph into a partially directed graph (PAG).LvLite.getComparisonGraph
(Graph graph) Retrieves a comparison graph by transforming a true directed graph into a partially directed graph (PAG).PagSampleRfci.getComparisonGraph
(Graph graph) Returns the comparison graph based on the true directed graph.Rfci.getComparisonGraph
(Graph graph) Returns a comparison graph based on the provided true directed graph.RfciBsc.getComparisonGraph
(Graph graph) Retrieves the comparison graph from the true directed graph, if there is one.SpFci.getComparisonGraph
(Graph graph) Returns the comparison graph created by converting a true directed graph into a partially directed acyclic graph (PAG).SvarFci.getComparisonGraph
(Graph graph) Returns a comparison graph based on the given true directed graph.SvarGfci.getComparisonGraph
(Graph graph) Returns a comparison graph based on the given true directed graph.Bfci.runSearch
(DataModel dataModel, Parameters parameters) Runs the search algorithm using the given dataset and parameters and returns the resulting graph.BossDumb.runSearch
(DataModel dataModel, Parameters parameters) Runs the search algorithm to find a graph structure based on a given data model and parameters.BossPag.runSearch
(DataModel dataModel, Parameters parameters) Runs the search algorithm to find a graph structure based on a given data model and parameters.Ccd.runSearch
(DataModel dataModel, Parameters parameters) Runs the CCD (Cyclic Causal Discovery) search algorithm on the given data set using the specified parameters.Cfci.runSearch
(DataModel dataModel, Parameters parameters) Runs the search algorithm to discover the causal graph.Fci.runSearch
(DataModel dataModel, Parameters parameters) Runs a search algorithm to find a graph based on the given data model and parameters.FciMax.runSearch
(DataModel dataModel, Parameters parameters) Runs a search algorithm to discover the causal graph structure.Gfci.runSearch
(DataModel dataModel, Parameters parameters) Runs the search algorithm to infer the causal graph given a dataset and specified parameters.GraspFci.runSearch
(DataModel dataModel, Parameters parameters) Runs a search algorithm to find a graph structure based on a given data set and parameters.LvLite.runSearch
(DataModel dataModel, Parameters parameters) Runs the search algorithm to find a graph structure based on a given data model and parameters.PagSampleRfci.runSearch
(DataModel dataSet, Parameters parameters) Runs the search algorithm using the given data set and parameters.Rfci.runSearch
(DataModel dataModel, Parameters parameters) Runs the search algorithm on the given data model and parameters.RfciBsc.runSearch
(DataModel dataModel, Parameters parameters) Runs a search algorithm using a given dataset and parameters.SpFci.runSearch
(DataModel dataModel, Parameters parameters) Executes a search algorithm to infer the causal graph structure from a given data modelSvarFci.runSearch
(DataModel dataModel, Parameters parameters) Executes the search algorithm to find a graph structure that best fits the given dataset and parameters.SvarGfci.runSearch
(DataModel dataModel, Parameters parameters) Runs a search algorithm on the given data set using the specified parameters.Methods in edu.cmu.tetrad.algcomparison.algorithm.oracle.pag with parameters of type GraphModifier and TypeMethodDescriptionBfci.getComparisonGraph
(Graph graph) Retrieves the comparison graph generated by applying the DAG-to-PAG transformation to the given true directed graph.BossDumb.getComparisonGraph
(Graph graph) Retrieves a comparison graph by transforming a true directed graph into a partially directed graph (PAG).BossPag.getComparisonGraph
(Graph graph) Retrieves a comparison graph by transforming a true directed graph into a partially directed graph (PAG).Ccd.getComparisonGraph
(Graph graph) Retrieves the comparison graph for the given true directed graph.Cfci.getComparisonGraph
(Graph graph) Retrieves the comparison graph by converting the given true directed graph into a partially directed graph (PAG) using the DAG to PAG transformation.Fci.getComparisonGraph
(Graph graph) Returns the comparison graph based on the true directed graph, if there is one.FciMax.getComparisonGraph
(Graph graph) Returns the comparison graph transformed from the true directed graph.Gfci.getComparisonGraph
(Graph graph) Retrieves the comparison graph by transforming the true directed graph (if there is one) into a partially directed acyclic graph (PAG).GraspFci.getComparisonGraph
(Graph graph) Retrieves a comparison graph by transforming a true directed graph into a partially directed graph (PAG).LvLite.getComparisonGraph
(Graph graph) Retrieves a comparison graph by transforming a true directed graph into a partially directed graph (PAG).PagSampleRfci.getComparisonGraph
(Graph graph) Returns the comparison graph based on the true directed graph.Rfci.getComparisonGraph
(Graph graph) Returns a comparison graph based on the provided true directed graph.RfciBsc.getComparisonGraph
(Graph graph) Retrieves the comparison graph from the true directed graph, if there is one.SpFci.getComparisonGraph
(Graph graph) Returns the comparison graph created by converting a true directed graph into a partially directed acyclic graph (PAG).SvarFci.getComparisonGraph
(Graph graph) Returns a comparison graph based on the given true directed graph.SvarGfci.getComparisonGraph
(Graph graph) Returns a comparison graph based on the given true directed graph. -
Uses of Graph in edu.cmu.tetrad.algcomparison.algorithm.other
Methods in edu.cmu.tetrad.algcomparison.algorithm.other that return GraphModifier and TypeMethodDescriptionFactorAnalysis.getComparisonGraph
(Graph graph) Returns an undirected graph used for comparison.Glasso.getComparisonGraph
(Graph graph) Retrieves a comparison graph for the given true directed graph.FactorAnalysis.runSearch
(DataModel dataModel, Parameters parameters) Executes a factor analysis search on the given data model using the provided parameters.Glasso.runSearch
(DataModel dataModel, Parameters parameters) Runs a search algorithm to create a graph representation of the data.Methods in edu.cmu.tetrad.algcomparison.algorithm.other with parameters of type GraphModifier and TypeMethodDescriptionFactorAnalysis.getComparisonGraph
(Graph graph) Returns an undirected graph used for comparison.Glasso.getComparisonGraph
(Graph graph) Retrieves a comparison graph for the given true directed graph. -
Uses of Graph in edu.cmu.tetrad.algcomparison.algorithm.pairwise
Methods in edu.cmu.tetrad.algcomparison.algorithm.pairwise that return GraphModifier and TypeMethodDescriptionEb.getComparisonGraph
(Graph graph) Returns a comparison graph based on the true directed graph, if there is one.FaskPw.getComparisonGraph
(Graph graph) Returns a comparison graph based on the provided true directed graph.R1.getComparisonGraph
(Graph graph) Returns a comparison graph based on the provided true directed graph.R2.getComparisonGraph
(Graph graph) Returns a comparison graph for the given true directed graph.R3.getComparisonGraph
(Graph graph) Generates a comparison graph based on the provided true directed graph.Rskew.getComparisonGraph
(Graph graph) Returns a comparison graph based on the true directed graph.RskewE.getComparisonGraph
(Graph graph) Returns a comparison graph based on the provided true directed graph.Skew.getComparisonGraph
(Graph graph) Returns a comparison graph based on the true directed graph, if there is one.SkewE.getComparisonGraph
(Graph graph) Returns a comparison graph based on the provided true directed graph.Tanh.getComparisonGraph
(Graph graph) Returns a comparison graph for the given true directed graph, if there is one.Eb.runSearch
(DataModel dataModel, Parameters parameters) Runs a search algorithm to orient the edges in a graph using the given data and parameters.FaskPw.runSearch
(DataModel dataModel, Parameters parameters) Runs the search algorithm using the given data model and parameters.R1.runSearch
(DataModel dataModel, Parameters parameters) Runs the search algorithm on the given data model with the provided parameters.R2.runSearch
(DataModel dataModel, Parameters parameters) Runs the search algorithm using the provided data model and parameters.R3.runSearch
(DataModel dataModel, Parameters parameters) Runs the search algorithm to orient edges in the input graph using the provided data.Rskew.runSearch
(DataModel dataModel, Parameters parameters) Runs the search algorithm using the provided data model and parameters.RskewE.runSearch
(DataModel dataModel, Parameters parameters) Runs a search algorithm to find the orientation of edges in a graph using the given data model and parameters.Skew.runSearch
(DataModel dataModel, Parameters parameters) Runs the search algorithm to orient edges in the input graph using the given data model and parameters.SkewE.runSearch
(DataModel dataModel, Parameters parameters) Executes the SkewE search algorithm.Tanh.runSearch
(DataModel dataModel, Parameters parameters) Runs the search algorithm using the given data model and parameters.Methods in edu.cmu.tetrad.algcomparison.algorithm.pairwise with parameters of type GraphModifier and TypeMethodDescriptionEb.getComparisonGraph
(Graph graph) Returns a comparison graph based on the true directed graph, if there is one.FaskPw.getComparisonGraph
(Graph graph) Returns a comparison graph based on the provided true directed graph.R1.getComparisonGraph
(Graph graph) Returns a comparison graph based on the provided true directed graph.R2.getComparisonGraph
(Graph graph) Returns a comparison graph for the given true directed graph.R3.getComparisonGraph
(Graph graph) Generates a comparison graph based on the provided true directed graph.Rskew.getComparisonGraph
(Graph graph) Returns a comparison graph based on the true directed graph.RskewE.getComparisonGraph
(Graph graph) Returns a comparison graph based on the provided true directed graph.Skew.getComparisonGraph
(Graph graph) Returns a comparison graph based on the true directed graph, if there is one.SkewE.getComparisonGraph
(Graph graph) Returns a comparison graph based on the provided true directed graph.Tanh.getComparisonGraph
(Graph graph) Returns a comparison graph for the given true directed graph, if there is one. -
Uses of Graph in edu.cmu.tetrad.algcomparison.graph
Methods in edu.cmu.tetrad.algcomparison.graph that return GraphModifier and TypeMethodDescriptionCyclic.createGraph
(Parameters parameters) createGraph.ErdosRenyi.createGraph
(Parameters parameters) createGraph.RandomForward.createGraph
(Parameters parameters) Creates a random graph by adding forward edges.RandomGraph.createGraph
(Parameters parameters) createGraph.RandomSingleFactorMim.createGraph
(Parameters parameters) createGraph.RandomTwoFactorMim.createGraph
(Parameters parameters) createGraph.ScaleFree.createGraph
(Parameters parameters) createGraph.SingleGraph.createGraph
(Parameters parameters) createGraph.Constructors in edu.cmu.tetrad.algcomparison.graph with parameters of type Graph -
Uses of Graph in edu.cmu.tetrad.algcomparison.independence
Methods in edu.cmu.tetrad.algcomparison.independence with parameters of type GraphModifier and TypeMethodDescriptionvoid
Setter for the fieldgraph
.void
setGraph.Constructors in edu.cmu.tetrad.algcomparison.independence with parameters of type Graph -
Uses of Graph in edu.cmu.tetrad.algcomparison.score
Methods in edu.cmu.tetrad.algcomparison.score with parameters of type GraphModifier and TypeMethodDescriptionvoid
Setter for the fieldgraph
.Constructors in edu.cmu.tetrad.algcomparison.score with parameters of type Graph -
Uses of Graph in edu.cmu.tetrad.algcomparison.simulation
Methods in edu.cmu.tetrad.algcomparison.simulation that return GraphModifier and TypeMethodDescriptionBayesNetSimulation.getTrueGraph
(int index) Returns the true graph at the given index.ConditionalGaussianSimulation.getTrueGraph
(int index) Returns the true graph at the given index.GeneralSemSimulation.getTrueGraph
(int index) Returns the true graph at the specified index.GeneralSemSimulationSpecial1.getTrueGraph
(int index) Returns the true graph at the given index.LeeHastieSimulation.getTrueGraph
(int index) Returns the true graph at the given index.LinearFisherModel.getTrueGraph
(int index) Returns the true graph at the given index.LinearSineSimulation.getTrueGraph
(int index) Returns the true graph at the given index.NLSemSimulation.getTrueGraph
(int index) Returns the true graph at the given index.SemSimulation.getTrueGraph
(int index) Returns the true graph at the specified index.SemThenDiscretize.getTrueGraph
(int index) Returns the true graph at the given index.Simulation.getTrueGraph
(int index) Returns the true graph at the given index.SingleDatasetSimulation.getTrueGraph
(int index) Gets the true graph for the simulation at the specified index.StandardizedSemSimulation.getTrueGraph
(int index) Returns the true graph at the given index.TimeSeriesSemSimulation.getTrueGraph
(int index) Returns the true graph at the given index. -
Uses of Graph in edu.cmu.tetrad.algcomparison.statistic
Methods in edu.cmu.tetrad.algcomparison.statistic with parameters of type GraphModifier and TypeMethodDescriptionstatic boolean
CommonAncestorTruePositiveBidirected.existsCommonAncestor
(Graph trueGraph, Edge edge) Returns true if there is a common ancestor of X and Y in the graph.static boolean
NumCommonMeasuredAncestorBidirected.existsCommonAncestor
(Graph trueGraph, Edge edge) existsCommonAncestor.boolean
NumDirectedEdgeNoMeasureAncestors.existsDirectedPathFromTo
(Graph graph, Node node1, Node node2) existsDirectedPathFromTo.static boolean
LatentCommonAncestorTruePositiveBidirected.existsLatentCommonAncestor
(Graph trueGraph, Edge edge) existsLatentCommonAncestor.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Calculates the percentage of correctly identified bidirected edges in an estimated graph for which a latent confounder exists in the true graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
CommonAncestorFalseNegativeBidirected.getValue
(Graph trueGraph, Graph estGraph, DataModel dataModel) Returns the value of this statistic, given the true graph and the estimated graph.double
CommonAncestorFalsePositiveBidirected.getValue
(Graph trueGraph, Graph estGraph, DataModel dataModel) Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
CommonMeasuredAncestorRecallBidirected.getValue
(Graph trueGraph, Graph estGraph, DataModel dataModel) Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Calculates the value of the IDA Average Squared Distance statistic.double
Calculates the average maximum squared difference between the estimated and true values for a given data model and graphs.double
Calculates the average minimum squared difference between the estimated and true values for a given data model and graphs.double
Retrieves the value of the statistic, which is the average squared difference between the estimated and true values for a given data model and graphs.double
Calculates the value of the statistic "IDA Average Maximum Squared Difference".double
Calculates the value of the statistic "IDA Average Minimum Squared Difference".double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
LatentCommonAncestorFalseNegativeBidirected.getValue
(Graph trueGraph, Graph estGraph, DataModel dataModel) Returns the value of this statistic, given the true graph and the estimated graph.double
LatentCommonAncestorFalsePositiveBidirected.getValue
(Graph trueGraph, Graph estGraph, DataModel dataModel) Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
LatentCommonAncestorTruePositiveBidirected.getValue
(Graph trueGraph, Graph estGraph, DataModel dataModel) Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
This method calculates the Local Graph Precision.double
double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Calculates the Anderson Darling p-value > 0.05.double
Calculates the Anderson Darling p-value > 0.05.double
Calculates the Anderson Darling P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).double
Calculates the Anderson Darling P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).double
Calculates the Binomial P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).double
Calculates the Binomial P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).double
Calculates the Kolmogorov-Smirnoff P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).double
MarkovCheckKolmogorovSmirnoffPBestOf10.getValue
(Graph trueGraph, Graph estGraph, DataModel dataModel) Calculates the Kolmogorov-Smirnoff P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).double
Calculates whether Kolmogorov-Smirnoff P > 0.05.double
Calculates whether Kolmogorov-Smirnoff P > 0.05.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Checks whether a PAG is maximal.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
NumberArrowsNotInUnshieldedCollidersEst.getValue
(Graph trueGraph, Graph estGraph, DataModel dataModel) Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
NumCompatibleDefiniteDirectedEdgeAncestors.getValue
(Graph trueGraph, Graph estGraph, DataModel dataModel) Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
NumCompatibleDirectedEdgeNonAncestors.getValue
(Graph trueGraph, Graph estGraph, DataModel dataModel) Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
NumCompatiblePossiblyDirectedEdgeAncestors.getValue
(Graph trueGraph, Graph estGraph, DataModel dataModel) Returns the value of this statistic, given the true graph and the estimated graph.double
NumCompatiblePossiblyDirectedEdgeNonAncestors.getValue
(Graph trueGraph, Graph estGraph, DataModel dataModel) Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the number of bidirected edges for which a latent confounder exists.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
NumDirectedEdgeBnaMeasuredCounfounded.getValue
(Graph trueGraph, Graph estGraph, DataModel dataModel) Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the number of X-->Y edges that are visible in the estimated PAG.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Retrieves the number of X-->Y edges for which X-->Y is visible in the true PAG.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Calculates the Orientation Recall statistic, which measures the accuracy of the estimated orientation of edges in a graph compared to the true graph.double
Calculates the adjacency precision of the estimated graph compared to the true graph.double
Calculates the adjacency recall compared to the true PAG (Partial Ancestral Graph).double
Returns the value of this statistic, given the true graph and the estimated graph.double
Calculates the percentage of ambiguous triples in the estimated graph compared to the true graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
ProportionSemidirectedPathsNotReversedEst.getValue
(Graph trueGraph, Graph estGraph, DataModel dataModel) Calculates the proportion of semi(X, Y) in the estimated graph for which there is no semi(Y, X) in the true graph.double
ProportionSemidirectedPathsNotReversedTrue.getValue
(Graph trueGraph, Graph estGraph, DataModel dataModel) Calculates the proportion of semi(X, Y) paths in the true graph for which there is no semi(Y, Z) path in the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Calculates the F1 statistic for adjacencies.double
Calculates the semi-directed precision value.double
Calculates the Semidirected-Rec statistic, which is the proportion of (X, Y) where if there is a semidirected path in the true graph, then there is also a semidirected path in the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Calculates the tail precision, which is the ratio of true positive arrows to the sum of true positive arrows and false positive arrows.double
Calculates the tail recall value for a given true graph, estimated graph, and data model.double
Calculates the number of false negatives for arrows compared to the true DAG.double
Calculates the number of false negatives for tails compared to the true DAG.double
Calculates the false positives for arrows compared to the true DAG.double
Calculates the number of false positives for tails in the estimated graph compared to the true DAG.double
Calculates the proportion of X*->Y in the estimated graph for which there is no path Y~~>X in the true graph.double
Calculates the proportion of X-->Y edges in the estimated graph for which there is a path X~~>Y in the true graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Calculates the number of true positives for arrows compared to the true DAG.double
TrueDagTruePositiveDirectedPathNonancestor.getValue
(Graph trueGraph, Graph estGraph, DataModel dataModel) Calculates the true positives for arrows compared to the true DAG.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph. -
Uses of Graph in edu.cmu.tetrad.algcomparison.statistic.utils
Constructors in edu.cmu.tetrad.algcomparison.statistic.utils with parameters of type GraphModifierConstructorDescriptionAdjacencyConfusion
(Graph truth, Graph est) Constructs a new AdjacencyConfusion object from the given graphs.ArrowConfusion
(Graph truth, Graph est) Constructs a new ArrowConfusion object.ArrowConfusion
(Graph truth, Graph est, boolean truthAdj) Constructs a new ArrowConfusion object.BidirectedConfusion
(Graph truth, Graph est) Constructs a new confusion matrix for bidirected edges.LocalGraphConfusion
(Graph trueGraph, Graph estGraph) Constructs a new LocalGraphConfusion object from the given graphs.OrientationConfusion
(Graph truth, Graph est) Constructor for OrientationConfusion.TailConfusion
(Graph truth, Graph est) Constructor for TailConfusion. -
Uses of Graph in edu.cmu.tetrad.bayes
Methods in edu.cmu.tetrad.bayes that return GraphModifier and TypeMethodDescriptionBayesIm.getDag()
$DescriptionBayesPm.getDag()
Returns the DAG.DirichletBayesIm.getDag()
getDag.MlBayesIm.getDag()
getDag.MlBayesImObs.getDag()
getDag.UpdatedBayesIm.getDag()
getDag.ApproximateUpdater.getManipulatedGraph()
getManipulatedGraph.CptInvariantUpdater.getManipulatedGraph()
getManipulatedGraph.Identifiability.getManipulatedGraph()
getManipulatedGraph.JunctionTreeUpdater.getManipulatedGraph()
Returns the manipulated graph.ManipulatingBayesUpdater.getManipulatedGraph()
Returns the manipulated graph.RowSummingExactUpdater.getManipulatedGraph()
getManipulatedGraph.static Graph
Create a moral graph.Methods in edu.cmu.tetrad.bayes that return types with arguments of type GraphModifier and TypeMethodDescriptionThis method takes an acyclic graph as input and returns a list of graphs each of which is a modification of the original graph with either an edge deleted, added or reversed.Methods in edu.cmu.tetrad.bayes with parameters of type GraphModifier and TypeMethodDescriptionstatic void
Apply Tarjan and Yannakakis (1984) fill in algorithm for graph triangulation.This method takes an acyclic graph as input and returns a list of graphs each of which is a modification of the original graph with either an edge deleted, added or reversed.GraphTools.getCliques
(Node[] ordering, Graph graph) Get cliques in a decomposable graph.BayesProperties.getLikelihoodRatioP
(Graph graph0) Calculates the p-value of the graph with respect to the given data, against the complete model as an alternative.static Node[]
GraphTools.getMaximumCardinalityOrdering
(Graph graph) Perform Tarjan and Yannakakis (1984) maximum cardinality search (MCS) to get the maximum cardinality ordering.static Graph
Create a moral graph.void
Setter for the fieldgraph
.Constructors in edu.cmu.tetrad.bayes with parameters of type GraphModifierConstructorDescriptionConstruct a new BayesPm using the given DAG, assigning each variable two values named "value1" and "value2" unless nodes are discrete variables with categories already defined.Constructs a new BayesPm from the given DAG, assigning each variable a random number of values betweenlowerBound
andupperBound
.Constructs a new BayesPm using a given DAG, using as much information from the old BayesPm as possible.Constructs a new BayesPm from the given DAG, using as much information from the old BayesPm as possible.EmBayesProperties
(DataSet dataSet, Graph graph) Constructor for EmBayesProperties.JunctionTreeAlgorithm
(Graph graph, DataModel dataModel) Constructor for JunctionTreeAlgorithm. -
Uses of Graph in edu.cmu.tetrad.calibration
Methods in edu.cmu.tetrad.calibration that return GraphModifier and TypeMethodDescriptionDataForCalibrationRfci.learnBNRFCI
(DataSet bootstrapSample, int depth, Graph truePag) learnBNRFCI.DataForCalibrationRfci.makeDAG
(int numVars, double edgesPerNode, int numLatentConfounders) makeDAG.Methods in edu.cmu.tetrad.calibration with parameters of type GraphModifier and TypeMethodDescriptionDataForCalibrationRfci.learnBNRFCI
(DataSet bootstrapSample, int depth, Graph truePag) learnBNRFCI. -
Uses of Graph in edu.cmu.tetrad.data
Methods in edu.cmu.tetrad.data that return GraphModifier and TypeMethodDescriptionstatic Graph
DataGraphUtils.randomBifactorModel
(int numStructuralNodes, int numStructuralEdges, int numMeasurementsPerLatent, int numLatentMeasuredImpureParents, int numMeasuredMeasuredImpureParents, int numMeasuredMeasuredImpureAssociations) First a random single factor model is created with the specified number of latent nodes and latent edges, and impurity structure.static Graph
DataGraphUtils.randomMim
(Graph graph, int numMeasurementsPerLatent, int numLatentMeasuredImpureParents, int numMeasuredMeasuredImpureParents, int numMeasuredMeasuredImpureAssociations, boolean arrangeGraph) randomMim.static Graph
DataGraphUtils.randomSingleFactorModel
(int numStructuralNodes, int numStructuralEdges, int numMeasurementsPerLatent, int numLatentMeasuredImpureParents, int numMeasuredMeasuredImpureParents, int numMeasuredMeasuredImpureAssociations) randomSingleFactorModel.Methods in edu.cmu.tetrad.data with parameters of type GraphModifier and TypeMethodDescriptionboolean
Knowledge.isViolatedBy
(Graph graph) isViolatedBy.static Graph
DataGraphUtils.randomMim
(Graph graph, int numMeasurementsPerLatent, int numLatentMeasuredImpureParents, int numMeasuredMeasuredImpureParents, int numMeasuredMeasuredImpureAssociations, boolean arrangeGraph) randomMim.Constructors in edu.cmu.tetrad.data with parameters of type Graph -
Uses of Graph in edu.cmu.tetrad.data.simulation
Methods in edu.cmu.tetrad.data.simulation that return GraphModifier and TypeMethodDescriptionLoadContinuousDataAndGraphs.getTrueGraph
(int index) Returns the true graph at the given index.LoadContinuousDataAndSingleGraph.getTrueGraph
(int index) Returns the true graph at the given index.LoadContinuousDataSmithSim.getTrueGraph
(int index) Returns the true graph at the given index.LoadDataAndGraphs.getTrueGraph
(int index) Returns the true graph at the given index.LoadDataFromFileWithoutGraph.getTrueGraph
(int index) Returns the true graph at the given index.readGraph. -
Uses of Graph in edu.cmu.tetrad.graph
Classes in edu.cmu.tetrad.graph that implement GraphModifier and TypeClassDescriptionfinal class
Represents a directed acyclic graph--that is, a graph containing only directed edges, with no cycles.class
Stores a graph a list of lists of edges adjacent to each node in the graph, with an additional list storing all of the edges in the graph.class
Implements a graph allowing nodes in the getModel time lag to have parents taken from previous time lags.final class
Represents the graphical structure of a structural equation model.class
Represents a time series graph--that is, a graph with a fixed number S of lags, with edges into initial lags only--that is, into nodes in the first R lags, for some R.Methods in edu.cmu.tetrad.graph that return GraphModifier and TypeMethodDescriptionstatic Graph
GraphUtils.bidirectedToUndirected
(Graph graph) Converts a bidirected graph to an undirected graph.static Graph
GraphUtils.completeGraph
(Graph graph) completeGraph.static Graph
Converts a string spec of a graph--for example, "X1-->X2, X1---X3, X2o->X4, X3<->X4" to a Graph.static Graph
GraphTransforms.dagFromCpdag
(Graph graph) Converts a completed partially directed acyclic graph (CPDAG) into a directed acyclic graph (DAG).static Graph
GraphTransforms.dagFromCpdag
(Graph graph, boolean verbose) Converts a completed partially directed acyclic graph (CPDAG) into a directed acyclic graph (DAG).static Graph
GraphTransforms.dagFromCpdag
(Graph graph, boolean meekPreventCycles, boolean verbose) Converts a completed partially directed acyclic graph (CPDAG) into a directed acyclic graph (DAG).static Graph
GraphTransforms.dagFromCpdag
(Graph graph, Knowledge knowledge) dagFromCpdag.static Graph
GraphTransforms.dagFromCpdag
(Graph cpdag, Knowledge knowledge, boolean meekPreventCycles, boolean verbose) Returns a random DAG from the given CPDAG.static Graph
GraphTransforms.dagToCpdag
(Graph dag) Returns the completed partially directed acyclic graph (CPDAG) for a given directed acyclic graph (DAG).static @NotNull Graph
Converts a Directed Acyclic Graph (DAG) to a Maximal Ancestral Graph (MAG) by adding arrows to the edges.static @NotNull Graph
Converts a Directed Acyclic Graph (DAG) to a Partial Ancestral Graph (PAG) using the DagToPag algorithm.static Graph
GraphUtils.emptyGraph
(int numNodes) Creates an empty graph with the specified number of nodes.static Graph
GraphUtils.getComparisonGraph
(Graph graph, Parameters params) Returns a comparison graph based on the specified parameters.static Graph
Generates a directed acyclic graph (DAG) based on the given list of nodes using Raskutti and Uhler's method.RandomGraph.UniformGraphGenerator.getDag()
Returns the parent matrix for the graph.Returns the parent matrix for the graph.static Graph
GraphUtils.getGraphWithoutXToY
(Graph G, Node x, Node y, GraphUtils.GraphType graphType) Returns a graph that is obtained by removing the edge from node x to node y from the input graph.static Graph
GraphUtils.getMarkovBlanketSubgraphWithTargetNode
(Graph graph, Node target) Calculates the subgraph over the Markov blanket of a target node for a DAG, CPDAG, MAG, or PAG.static Graph
GraphUtils.guaranteePag
(Graph pag, FciOrient fciOrient, Knowledge knowledge, Set<Triple> unshieldedColliders, Set<Triple> extraUnshieldedColliders, boolean verbose, Set<Node> selection) Guarantees a legal PAG by repairing deviations of a graph from a legal PAG (partial ancestral graph).static Graph
loadGraph.static Graph
GraphSaveLoadUtils.loadGraphAmatCpdag
(File file) Loads a CPDAG in the "amat.cpdag" format of PCALG.static Graph
GraphSaveLoadUtils.loadGraphAmatPag
(File file) Loads a PAG in the "amat.pag" format of PCALG.static Graph
GraphSaveLoadUtils.loadGraphBNTPcMatrix
(List<Node> vars, DataSet dataSet) loadGraphBNTPcMatrix.static Graph
GraphSaveLoadUtils.loadGraphJson
(File file) loadGraphJson.static Graph
GraphSaveLoadUtils.loadGraphRuben
(File file) loadGraphRuben.static Graph
GraphSaveLoadUtils.loadGraphTxt
(File file) loadGraphTxt.static Graph
GraphSaveLoadUtils.loadRSpecial
(File file) loadRSpecial.static Graph
GraphTransforms.magFromPag
(Graph pag) Picks a random Maximal Ancestral Graph (MAG) from the given Partial Ancestral Graph (PAG) by randomly orienting the circle endpoints as either tail or arrow and then applying the final FCI orient algorithm after each change.static Graph
GraphUtils.markovBlanketSubgraph
(Node target, Graph graph) Calculates the subgraph over the Markov blanket of a target node in a given DAG, CPDAG, MAG, or PAG.static Graph
GraphUtils.nondirectedGraph
(Graph graph) undirectedGraph.static Graph
GraphSaveLoadUtils.parseGraphXml
(nu.xom.Element graphElement, Map<String, Node> nodes) parseGraphXml.static Graph
RandomGraph.randomCyclicGraph2
(int numNodes, int numEdges, int maxDegree) Makes a cyclic graph by repeatedly adding cycles of length of 3, 4, or 5 to the graph, then finally adding two cycles.static Graph
RandomGraph.randomCyclicGraph3
(int numNodes, int numEdges, int maxDegree, double probCycle, double probTwoCycle) Makes a cyclic graph by repeatedly adding cycles of length of 3, 4, or 5 to the graph, then finally adding two cycles.static Graph
RandomGraph.randomDag
(int numNodes, int numLatentConfounders, int maxNumEdges, int maxDegree, int maxIndegree, int maxOutdegree, boolean connected) Generates a random Directed Acyclic Graph (DAG) with the specified parameters.static Graph
RandomGraph.randomGraph
(int numMeasures, int numLatentConfounders, int numEdges, int maxDegree, int maxIndegree, int maxOutdegree, boolean connected) Generates a random graph based on the given parameters.static Graph
RandomGraph.randomGraph
(List<Node> nodes, int numLatentConfounders, int maxNumEdges, int maxDegree, int maxIndegree, int maxOutdegree, boolean connected) Generates a random graph based on the given parameters.static Graph
RandomGraph.randomGraphRandomForwardEdges
(int numNodes, int numLatentConfounders, int numEdges, int maxDegree, int maxIndegree, int maxOutdegree, boolean connected) Generates a random graph with the given parameters and random forward edges.static Graph
RandomGraph.randomGraphRandomForwardEdges
(List<Node> nodes, int numLatentConfounders, int numEdges, int maxDegree, int maxIndegree, int maxOutdegree, boolean connected) Generates a random graph with forward edges.static Graph
RandomGraph.randomGraphRandomForwardEdges
(List<Node> nodes, int numLatentConfounders, int numEdges, int maxDegree, int maxIndegree, int maxOutdegree, boolean connected, boolean layoutAsCircle) Generates a random graph with forward edges.static Graph
RandomGraph.randomGraphUniform
(List<Node> nodes, int numLatentConfounders, int maxNumEdges, int maxDegree, int maxIndegree, int maxOutdegree, boolean connected, int numIterations) Generates a random graph using UniformGraphGenerator with the specified parameters.static Graph
RandomGraph.randomScaleFreeGraph
(int numNodes, int numLatentConfounders, double alpha, double beta, double delta_in, double delta_out) Generates a random scale-free graph.static Graph
GraphSaveLoadUtils.readerToGraphJson
(Reader reader) readerToGraphJson.static Graph
GraphSaveLoadUtils.readerToGraphRuben
(Reader reader) readerToGraphRuben.static Graph
GraphSaveLoadUtils.readerToGraphTxt
(Reader reader) readerToGraphTxt.static Graph
GraphSaveLoadUtils.readerToGraphTxt
(String graphString) readerToGraphTxt.static Graph
GraphUtils.removeBidirectedOrientations
(Graph estCpdag) removeBidirectedOrientations.static Graph
GraphUtils.replaceNodes
(Graph originalGraph, List<Node> newVariables) Converts the given graph,originalGraph
, to use the new variables (with the same names as the old).static Graph
GraphUtils.restrictToMeasured
(Graph graph) Removes all latent nodes from the graph and returns the modified graph.Returns a subgraph of the current graph consisting only of the specified nodes.Constructs and returns a subgraph consisting of a given subset of the nodes of this graph together with the edges between them.Constructs and returns a subgraph consisting of a given subset of the nodes of this graph together with the edges between them.Constructs and returns a subgraph consisting of a given subset of the nodes of this graph together with the edges between them.Constructs and returns a subgraph consisting of a given subset of the nodes of this graph together with the edges between them.Returns a subgraph of the current graph based on the provided nodes.static Graph
Trims the given graph based on the specified trimming style.static Graph
GraphUtils.undirectedGraph
(Graph graph) undirectedGraph.static Graph
GraphUtils.undirectedToBidirected
(Graph graph) Converts an undirected graph to a bidirected graph.static Graph
GraphTransforms.zhangMagFromPag
(Graph pag) Transforms a partial ancestral graph (PAG) into a maximal ancestral graph (MAG) using Zhang's 2008 Theorem 2.Methods in edu.cmu.tetrad.graph that return types with arguments of type GraphModifier and TypeMethodDescriptionGraphTransforms.generateCpdagDags
(Graph cpdag, boolean orientBidirectedEdges) Generates the list of DAGs in the given cpdag.GraphTransforms.getAllGraphsByDirectingUndirectedEdges
(Graph skeleton) Returns a list of all possible graphs obtained by directing undirected edges in the given graph.GraphTransforms.getDagsInCpdagMeek
(Graph cpdag, Knowledge knowledge) Retrieves a list of directed acyclic graphs (DAGs) within the given completed partially directed acyclic graph (CPDAG) using the Meek rules.Methods in edu.cmu.tetrad.graph with parameters of type GraphModifier and TypeMethodDescriptionstatic void
GraphUtils.addEdgeSpecializationMarkup
(Graph graph) Adds markups for edge specializations for the edges in the given graph.static void
GraphUtils.addForbiddenReverseEdgesForDirectedEdges
(Graph graph, Knowledge knowledge) Adds forbidden reverse edges for directed edges in the given graph based on the knowledge.static void
RandomGraph.addTwoCycles
(Graph graph, int numTwoCycles) addTwoCycles.boolean
Triple.alongPathIn
(Graph graph) alongPathIn.GraphUtils.anteriority
(Graph G, Node... x) Computes the anteriority of the given nodes in a graph.static void
LayoutUtil.arrangeByLayout
(Graph graph, HashMap<String, PointXy> layout) arrangeByLayout.static boolean
LayoutUtil.arrangeBySourceGraph
(Graph resultGraph, Graph sourceGraph) Arranges the nodes in the result graph according to their positions in the source graph.static Graph
GraphUtils.bidirectedToUndirected
(Graph graph) Converts a bidirected graph to an undirected graph.static void
LayoutUtil.circleLayout
(Graph graph) Arranges the nodes in the graph in a circle.static boolean
Determines if the collider is allowed.static Graph
GraphUtils.completeGraph
(Graph graph) completeGraph.static boolean
GraphUtils.containsBidirectedEdge
(Graph graph) Checks if a given graph contains a bidirected edge.static nu.xom.Element
GraphSaveLoadUtils.convertToXml
(Graph graph) convertToXml.static int
GraphUtils.countAdjErrors
(Graph graph1, Graph graph2) Counts the adjacencies that are in graph1 but not in graph2.static Graph
GraphTransforms.dagFromCpdag
(Graph graph) Converts a completed partially directed acyclic graph (CPDAG) into a directed acyclic graph (DAG).static Graph
GraphTransforms.dagFromCpdag
(Graph graph, boolean verbose) Converts a completed partially directed acyclic graph (CPDAG) into a directed acyclic graph (DAG).static Graph
GraphTransforms.dagFromCpdag
(Graph graph, boolean meekPreventCycles, boolean verbose) Converts a completed partially directed acyclic graph (CPDAG) into a directed acyclic graph (DAG).static Graph
GraphTransforms.dagFromCpdag
(Graph graph, Knowledge knowledge) dagFromCpdag.static Graph
GraphTransforms.dagFromCpdag
(Graph cpdag, Knowledge knowledge, boolean meekPreventCycles, boolean verbose) Returns a random DAG from the given CPDAG.static Graph
GraphTransforms.dagToCpdag
(Graph dag) Returns the completed partially directed acyclic graph (CPDAG) for a given directed acyclic graph (DAG).static @NotNull Graph
Converts a Directed Acyclic Graph (DAG) to a Maximal Ancestral Graph (MAG) by adding arrows to the edges.static @NotNull Graph
Converts a Directed Acyclic Graph (DAG) to a Partial Ancestral Graph (PAG) using the DagToPag algorithm.static void
LayoutUtil.defaultLayout
(Graph graph) Arranges the nodes in the graph in a circle if there are 20 or fewer nodes, otherwise arranges them in a square.static int
Calculates the maximum degree of a graph.Calculates the district of a given node in a graph.static void
GraphUtils.doRequiredOrientations
(FciOrient fciOrient, Graph pag, List<Node> best, Knowledge knowledge, boolean verbose) Orient required edges in PAG.Returns D-SEP(x, y) for a MAG G.Returns D-SEP(x, y) for a MAG G (or inducing path graph G, as in Causation, Prediction and Search).Returns D-SEP(x, y) for a MAG G.GraphUtils.dsepReachability
(Node x, Node y, Graph G) Returns D-SEP(x, y) for a MAG G.static int[][]
GraphUtils.edgeMisclassificationCounts
(Graph leftGraph, Graph topGraph, boolean print) Computes the misclassification counts for each edge in the given graphs.static String
MisclassificationUtils.edgeMisclassifications
(Graph estGraph, Graph refGraph) edgeMisclassifications.static String
MisclassificationUtils.endpointMisclassification
(Graph estGraph, Graph refGraph) endpointMisclassification.static void
GraphUtils.fciOrientbk
(Knowledge knowledge, Graph graph, List<Node> variables) Attempts to orient the edges in the graph based on the given knowledge.static void
RandomGraph.fixLatents1
(int numLatentConfounders, Graph graph) fixLatents1.static void
RandomGraph.fixLatents4
(int numLatentConfounders, Graph graph) fixLatents4.static void
LayoutUtil.fruchtermanReingoldLayout
(Graph graph) fruchtermanReingoldLayout.GraphTransforms.generateCpdagDags
(Graph cpdag, boolean orientBidirectedEdges) Generates the list of DAGs in the given cpdag.GraphTransforms.getAllGraphsByDirectingUndirectedEdges
(Graph skeleton) Returns a list of all possible graphs obtained by directing undirected edges in the given graph.GraphUtils.getAmbiguousTriplesFromGraph
(Node node, Graph graph) Retrieves the list of ambiguous triples from the given graph for a given node.static Node
GraphUtils.getAssociatedNode
(Node errorNode, Graph graph) Returns the associated node for the given error node in the specified graph.GraphSaveLoadUtils.getCollidersFromGraph
(Node node, Graph graph) getCollidersFromGraph.static Graph
GraphUtils.getComparisonGraph
(Graph graph, Parameters params) Returns a comparison graph based on the specified parameters.static Graph
Generates a directed acyclic graph (DAG) based on the given list of nodes using Raskutti and Uhler's method.GraphTransforms.getDagsInCpdagMeek
(Graph cpdag, Knowledge knowledge) Retrieves a list of directed acyclic graphs (DAGs) within the given completed partially directed acyclic graph (CPDAG) using the Meek rules.static int
Returns the maximum degree of a graph.GraphUtils.getDottedUnderlinedTriplesFromGraph
(Node node, Graph graph) Retrieves the list of dotted and underlined triples from the given graph, with the specified node as the middle node.static Graph
GraphUtils.getGraphWithoutXToY
(Graph G, Node x, Node y, GraphUtils.GraphType graphType) Returns a graph that is obtained by removing the edge from node x to node y from the input graph.static int
GraphUtils.getIndegree
(Graph graph) Calculates the maximum indegree in a given graph.static Graph
GraphUtils.getMarkovBlanketSubgraphWithTargetNode
(Graph graph, Node target) Calculates the subgraph over the Markov blanket of a target node for a DAG, CPDAG, MAG, or PAG.static int
GraphUtils.getNumCoveringAdjacenciesInPag
(Graph trueGraph, Graph estGraph) Returns the number of covering edges in the given estimated partial ancestral graph (PAG) with respect to the given true PAG.static int
GraphUtils.getNumInducedAdjacenciesInPag
(Graph trueGraph, Graph estGraph) Calculates the number of induced adjacencies in the given estiamted Partial Ancestral (PAG) with respect to the given true PAG.Paths.getParents
(List<Node> pi, int p, Graph g, boolean verbose, boolean allowSelectionBias) Returns the parents of the node at index p, calculated using Pearl's method.static Node
GraphUtils.getTrekSource
(Graph graph, List<Node> trek) This method returns the source node of a given trek in a graph.static GraphUtils.TwoCycleErrors
GraphUtils.getTwoCycleErrors
(Graph trueGraph, Graph estGraph) Returns the TwoCycleErrors object that represents errors for direct feedback loops.GraphUtils.getUnderlinedTriplesFromGraph
(Node node, Graph graph) Retrieves the underlined triples from the given graph that involve the specified node.static void
GraphUtils.gfciExtraEdgeRemovalStep
(Graph graph, Graph cpdag, List<Node> nodes, SepsetProducer sepsets, int depth, boolean verbose) The extra-edge removal step for GFCI.static void
GraphUtils.gfciR0
(Graph pag, Graph cpdag, SepsetProducer sepsets, Knowledge knowledge, boolean verbose, Set<Triple> unshieldedTriples) Applies the GFCI-R0 algorithm to orient edges in a pag based on a reference CPDAG, sepsets, and knowledge.static String
GraphUtils.graphAttributesToText
(Graph graph, String title) Converts the attributes of a given graph into a text format.static String
GraphUtils.graphEdgesToText
(Graph graph, String title) Converts the edges of a graph to text representation.static String
GraphUtils.graphNodeAttributesToText
(Graph graph, String title, char delimiter) Converts the attributes of nodes in a graph to text format.static String
GraphUtils.graphNodesToText
(Graph graph, String title, char delimiter) Converts the nodes of a graph to a formatted text representation.static String
GraphSaveLoadUtils.graphRMatrixTxt
(Graph graph) graphRMatrixTxt.static String
GraphSaveLoadUtils.graphToAmatCpag
(Graph g) Converts a given graph into an adjacency matrix in CPAG format.static String
GraphSaveLoadUtils.graphToAmatPag
(Graph g) Saves a PAG in the "amat.pag" format of PCALG.static String
GraphSaveLoadUtils.graphToDot
(Graph graph) Converts a graph to a Graphviz .dot filestatic void
GraphSaveLoadUtils.graphToDot
(Graph graph, File file) graphToDot.static String
GraphSaveLoadUtils.graphToLavaan
(Graph g) graphToLavaan.static String
GraphSaveLoadUtils.graphToPcalg
(Graph g) graphToPcalg.static String
GraphSaveLoadUtils.graphToXml
(Graph graph) graphToXml.static Graph
GraphUtils.guaranteePag
(Graph pag, FciOrient fciOrient, Knowledge knowledge, Set<Triple> unshieldedColliders, Set<Triple> extraUnshieldedColliders, boolean verbose, Set<Node> selection) Guarantees a legal PAG by repairing deviations of a graph from a legal PAG (partial ancestral graph).static boolean
GraphUtils.isClique
(Collection<Node> set, Graph graph) Checks if the given set of nodes forms a clique in the specified graph.static boolean
Checks if the given trek in a graph is a confounding trek.static boolean
GraphUtils.isCorrectBidirectedEdge
(Edge edge, Graph trueGraph) Determines if the given bidirected edge has a latent confounder in the true graph--that is, whether for X <-> Y there is a latent node Z such that X <- (Z) -> Y.static boolean
GraphUtils.isCoveringAdjacency
(Graph trueGraph, Graph estGraph, Node x, Node y) Determines whether an edge between two nodes in the estimated graph is covering a collider or noncollider in the true graph.static boolean
Determines if the given graph is a directed acyclic graph (DAG).boolean
Check to see if a set of variables Z satisfies the back-door criterion relative to node x and node y.static void
LayoutUtil.kamadaKawaiLayout
(Graph graph, boolean randomlyInitialized, double naturalEdgeLength, double springConstant, double stopEnergy) kamadaKawaiLayout.static void
LayoutUtil.layoutByCausalOrder
(Graph graph) layoutByCausalOrder.static LinkedList
<Triple> GraphUtils.listColliderTriples
(Graph graph) Generates a list of triples where a node acts as a collider in a given graph.static String
GraphSaveLoadUtils.loadGraphRMatrix
(Graph graph) loadGraphRMatrix.static String
GraphSaveLoadUtils.loadGraphTxt
(Graph graph, boolean pagEdgeSpecializationMarked) Converts a given graph to human-readable text format.static double
GraphUtils.localMarkovInitializePValues
(Graph dag, boolean ensureMarkov, IndependenceTest test, Map<org.apache.commons.lang3.tuple.Pair<Node, Node>, Set<Double>> pValues) Initializes and evaluates p-values for local Markov properties in a given graph.static Graph
GraphTransforms.magFromPag
(Graph pag) Picks a random Maximal Ancestral Graph (MAG) from the given Partial Ancestral Graph (PAG) by randomly orienting the circle endpoints as either tail or arrow and then applying the final FCI orient algorithm after each change.GraphUtils.markovBlanket
(Node x, Graph G) Returns a Markov blanket of a node for a DAG, CPDAG, MAG, or PAG.static Graph
GraphUtils.markovBlanketSubgraph
(Node target, Graph graph) Calculates the subgraph over the Markov blanket of a target node in a given DAG, CPDAG, MAG, or PAG.GraphUtils.maximalCliques
(Graph graph, List<Node> nodes) Finds all maximal cliques in a given graph.static Graph
GraphUtils.nondirectedGraph
(Graph graph) undirectedGraph.static String
GraphUtils.pathString
(Graph graph, Node... x) Generates a string representation of a path in a given graph, starting from the specified nodes.static String
GraphUtils.pathString
(Graph graph, List<Node> path, boolean showBlocked) Constructs a string representation of a path in a graph.static String
Returns a string representation of the given path in the graph, considering the conditioning variables.static String
GraphUtils.pathString
(Graph graph, List<Node> path, Set<Node> conditioningVars, boolean showBlocked, boolean allowSelectionBias) Returns a string representation of the given path in the graph, with additional information about conditioning variables.static String
Triple.pathString
(Graph graph, Node x, Node y, Node z) pathString.static void
GraphUtils.recallUnshieldedTriples
(Graph pag, Set<Triple> unshieldedColliders, Knowledge knowledge) Recall unshielded triples in a given graph.static boolean
GraphUtils.removeAlmostCycles
(Graph pag, Set<Triple> unshieldedColliders, Set<Triple> extraUnshieldedColliders, FciOrient fciOrient, Knowledge knowledge, boolean verbose) Removes almost cycles from a graph.static Graph
GraphUtils.removeBidirectedOrientations
(Graph estCpdag) removeBidirectedOrientations.static boolean
GraphUtils.removeCycles
(Set<Triple> unshieldedColliders, FciOrient fciOrient, Graph pag, Knowledge knowledge, boolean verbose) Removes cycles from the given graph using the Fast Causal Inference (FCI) algorithm.static void
GraphUtils.removeNonSkeletonEdges
(Graph graph, Knowledge knowledge) Removes non-skeleton edges from the given graph based on the provided knowledge.static void
GraphUtils.reorientWithCircles
(Graph pag, boolean verbose) Reorients all edges in a Graph as o-o.static Graph
GraphUtils.replaceNodes
(Graph originalGraph, List<Node> newVariables) Converts the given graph,originalGraph
, to use the new variables (with the same names as the old).GraphUtils.replaceNodes
(List<Node> originalNodes, Graph graph) Converts the given list of nodes,originalNodes
, to use the replacement nodes for them by the same name in the givengraph
.static Graph
GraphUtils.restrictToMeasured
(Graph graph) Removes all latent nodes from the graph and returns the modified graph.static void
saveGraph.static void
LayoutUtil.squareLayout
(Graph graph) squareLayout.void
Dag.transferAttributes
(Graph graph) Transfers attributes from the given graph to the current graph.void
EdgeListGraph.transferAttributes
(Graph graph) transferAttributes.void
Graph.transferAttributes
(Graph graph) transferAttributes.void
LagGraph.transferAttributes
(Graph graph) transferAttributes.void
SemGraph.transferAttributes
(Graph graph) transferAttributes.void
TimeLagGraph.transferAttributes
(Graph graph) Transfers attributes from the given graph to the current graph.void
Dag.transferNodesAndEdges
(Graph graph) Transfers nodes and edges from the given graph to the current graph.void
EdgeListGraph.transferNodesAndEdges
(Graph graph) Transfers nodes and edges from one graph to another.void
Graph.transferNodesAndEdges
(Graph graph) Transfers nodes and edges from one graph to another.void
LagGraph.transferNodesAndEdges
(Graph graph) Transfers nodes and edges from one graph to another.void
SemGraph.transferNodesAndEdges
(Graph graph) Transfers nodes and edges from one graph to another.void
TimeLagGraph.transferNodesAndEdges
(Graph graph) Transfers nodes and edges from the given graph to the current graph.static void
GraphTransforms.transformCpdagIntoRandomDag
(Graph graph, Knowledge knowledge, boolean meekPreventCycles, boolean verbose) Transforms a completed partially directed acyclic graph (CPDAG) into a random directed acyclic graph (DAG) by randomly orienting the undirected edges in the CPDAG in shuffled order.static void
GraphTransforms.transormPagIntoRandomMag
(Graph pag) Transforms a partially ancestral graph (PAG) into a maximally ancestral graph (MAG) by randomly orienting the circle endpoints as either tail or arrow and then applying the final FCI orient algorithm after each change.static Graph
Trims the given graph based on the specified trimming style.static boolean
Checks if three nodes are connected in a graph.static Graph
GraphUtils.undirectedGraph
(Graph graph) undirectedGraph.static Graph
GraphUtils.undirectedToBidirected
(Graph graph) Converts an undirected graph to a bidirected graph.static boolean
GraphUtils.unshieldedCollider
(Graph graph, Node a, Node b, Node c) Checks if the given nodes are unshielded colliders when considering the given graph.GraphUtils.visibleEdgeAdjustments1
(Graph G, Node x, Node y, int numSmallestSizes, GraphUtils.GraphType graphType) Calculates visual-edge adjustments given graph G between two nodes x and y that are subsets of MB(X).GraphUtils.visibleEdgeAdjustments3
(Graph G, Node x, Node y, int numSmallestSizes, GraphUtils.GraphType graphType) This method calculates visible-edge adjustments for a given graph, two nodes, a number of smallest sizes, and a graph type.static Graph
GraphTransforms.zhangMagFromPag
(Graph pag) Transforms a partial ancestral graph (PAG) into a maximal ancestral graph (MAG) using Zhang's 2008 Theorem 2.Method parameters in edu.cmu.tetrad.graph with type arguments of type GraphModifier and TypeMethodDescriptionstatic String
GraphUtils.getIntersectionComparisonString
(List<Graph> graphs) Generates a comparison string for the intersection of multiple graphs.Constructors in edu.cmu.tetrad.graph with parameters of type GraphModifierConstructorDescriptionConstructs a new directed acyclic graph from the given graph object.EdgeListGraph
(Graph graph) Constructs a EdgeListGraph using the nodes and edges of the given graph.FruchtermanReingoldLayout
(Graph graph) Constructs a new FruchtermanReingoldLayout for the given graph.KamadaKawaiLayout
(Graph graph) Constructs a new Kamada-Kawai layout for the given graph.Constructor for Paths.Constructs a new SemGraph from the nodes and edges of the given graph.Underlines
(Graph graph) Constructor for Underlines. -
Uses of Graph in edu.cmu.tetrad.regression
Methods in edu.cmu.tetrad.regression that return GraphModifier and TypeMethodDescriptionRegression.getGraph()
getGraph.RegressionCovariance.getGraph()
Getter for the fieldgraph
.RegressionDataset.getGraph()
Getter for the fieldgraph
.Methods in edu.cmu.tetrad.regression with parameters of type Graph -
Uses of Graph in edu.cmu.tetrad.search
Methods in edu.cmu.tetrad.search that return GraphModifier and TypeMethodDescriptionSvarFges.getAdjacencies()
Retrieves the adjacency graph.SvarFges.getExternalGraph()
Getter for the fieldexternalGraph
.Mimbuild.getFullGraph()
The full graph inferred, including the edges from latents to measures.MimbuildTrek.getFullGraph()
The full graph discovered.Cpc.getGraph()
The graph that's constructed during the search.@NotNull Graph
Grasp.getGraph
(boolean cpDag) Returns the graph implied by the discovered permutation.static Graph
Construct a graph given a specification of the parents for each node.static Graph
PermutationSearch.getGraph
(List<Node> nodes, Map<Node, Set<Node>> parents, Knowledge knowledge, boolean cpDag) Constructs a graph given a specification of the parents for each node.Cstar.makeGraph
(List<Cstar.Record> records) Makes a graph of the estimated predictors to the effect.static @NotNull Graph
Returns a graph given a coefficient matrix and a list of variables.Lofs.orient()
Orients the graph and returns the oriented graph.PcMb.resultGraph()
Returns the result graph.BFci.search()
Does the search and returns a PAG.BossLingam.search()
Runs the search and returns the result graph.Bpc.search()
Runs the search and returns the graph, or null if there is no model.Ccd.search()
The search method assumes that the IndependenceTest provided to the constructor is a conditional independence oracle for the SEM (or Bayes network) which describes the causal structure of the population.Cfci.search()
Performs the search and returns the PAG.Cpc.search()
Runs CPC starting with a fully connected graph over all the variables in the domain of the independence test.Dagma.search()
Performs a search algorithm to find a graph representation.DirectLingam.search()
Performs the search.Fas.search()
Performs a search to discover all adjacencies in the graph.Discovers all adjacencies in data.Fasd.search()
Discovers all adjacencies in data.Fask.search()
Runs the search on the concatenated data, returning a graph, possibly cyclic, possibly with two-cycles.FaskOrig.search()
Runs the search on the concatenated data, returning a graph, possibly cyclic, possibly with two-cycles.Fci.search()
Performs a search using the FCI algorithm.FciMax.search()
Performs the search and returns the PAG.Fges.search()
Greedy equivalence search: Start from the empty graph, add edges till the model is significant.Greedy equivalence search: Start from the empty graph, add edges till the model is significant.Fofc.search()
Runs the search and returns a graph of clusters with the ir respective latent parents.Ftfc.search()
Runs the search and returns a graph of clusters, each of which has two common latent parents.GFci.search()
Runs the graph and returns the search PAG.GraspFci.search()
Run the search and return s a PAG.IGraphSearch.search()
Runs the search and returns a graph.LvDumb.search()
Run the search and return s a PAG.LvLite.search()
Run the search and return s a PAG.Mimbuild.search
(List<List<Node>> clustering, List<String> latentNames, ICovarianceMatrix measuresCov) Does a Mimbuild search.MimbuildTrek.search
(List<List<Node>> clustering, List<String> latentNames, ICovarianceMatrix measuresCov) Does the search and returns the graph.Pc.search()
Runs PC starting with a complete graph over all nodes of the given conditional independence test, using the given independence test and knowledge and returns the resultant graph.Runs the search using a particular implementation of the fast adjacency search (FAS), over the given sublist of nodes.Runs PC starting with a complete graph over the given list of nodes, using the given independence test and knowledge and returns the resultant graph.Pcd.search()
Runs PC starting with a complete graph over all nodes of the given conditional independence test, using the given independence test and knowledge and returns the resultant graph.Searches for a graph using the given IFas instance and list of nodes.Runs PC starting with a complete graph over the given list of nodes, using the given independence test and knowledge and returns the resultant graph.PcMb.search()
Searches for the Markov blanket CPDAG for the given targets.Searches for the MB CPDAG for the given targets.PermutationSearch.search()
Performs a search for a graph using the default options.PermutationSearch.search
(boolean cpdag) Performe the search and return a CPDAG.Rfci.search()
Runs the search and returns the RFCI PAG.Runs the search and returns the RFCI PAG.Searches of a specific sublist of nodes.SpFci.search()
Runs the search and returns the discovered PAG.SvarFas.search()
Discovers all adjacencies in data.SvarFci.search()
Runs the search and returns the PAG.Runs the search using a particular implementation of FAS.SvarFges.search()
Greedy equivalence search: Start from the empty graph, add edges till the model is significant.SvarGfci.search()
Runs the search and returns a PAG.Methods in edu.cmu.tetrad.search with parameters of type GraphModifier and TypeMethodDescriptionSepsetFinder.bfsAllPathsOutOfX
(Graph graph, Set<Node> conditionSet, Set<Node> couldBeColliders, Set<Node> blacklist, int maxLength, Node x, Node y, boolean allowSelectionBias) Performs a breadth-first search to find all paths out of a specific node in a graph, considering certain conditions and constraints.SepsetFinder.blockPathsLocalMarkov
(Graph graph, Node x) Returns a set of nodes that are the parents of the given node in the graph.SepsetFinder.blockPathsNoncollidersOnly
(Graph graph, Node x, Node y, int maxLength, boolean isPag) Returns a set that blocks all paths that can be blocked by conditioning on noncolliders only, searching outward from x.SepsetFinder.blockPathsRecursively
(Graph graph, Node x, Node y, Set<Node> containing, Set<Node> notFollowed, int maxPathLength) Retrieves set that blocks all blockable paths between x and y in the given graph, where this set contains the given nodes.SepsetFinder.blockPathsWithMarkovBlanket
(Node x, Graph G) Identifies the set of nodes that form the Markov Blanket for a given node in a graph.CheckKnowledge.forbiddenViolations
(Graph graph, Knowledge knowledge) Returns a sorted list of edges that violate the given knowledge.MarkovCheck.getAndersonDarlingTestAcceptsRejectsNodesForAllNodes
(IndependenceTest independenceTest, Graph graph, Double threshold, Double shuffleThreshold) Calculates the Anderson-Darling test and classifies nodes as accepted or rejected based on the given threshold.MarkovCheck.getAndersonDarlingTestAcceptsRejectsNodesForAllNodesPlotData
(IndependenceTest independenceTest, Graph estimatedCpdag, Graph trueGraph, Double threshold, Double shuffleThreshold, Double lowRecallBound) Get accepts and rejects nodes for all nodes from Anderson-Darling test and generate the plot data for confusion statistics.MarkovCheck.getAndersonDarlingTestAcceptsRejectsNodesForAllNodesPlotData2
(IndependenceTest independenceTest, Graph estimatedCpdag, Graph trueGraph, Double threshold, Double shuffleThreshold, Double lowRecallBound) Get accepts and rejects nodes for all nodes from Anderson-Darling test and generate the plot data for confusion statistics.double[][]
CpdagParentDistancesFromTrue.getDistances
(Graph outputCpdag, double[][] trueEdgeStrengths, DataSet dataSet, CpdagParentDistancesFromTrue.DistanceType distanceType) Calculates the distance matrix for the edges in the given CPDAG (outputCpdag).SepsetFinder.getPathBlockingSetRecursive
(Graph graph, Node x, Node y, Set<Node> containing, int maxPathLength, Set<Node> notFollowing) Finds a set of nodes that blocks all paths from node x to node y in a graph, considering a maximum path length and a set of nodes that must be included in the blocking set.void
MarkovCheck.getPrecisionAndRecallOnMarkovBlanketGraph
(Node x, Graph estimatedGraph, Graph trueGraph) Calculates the precision and recall on the Markov Blanket graph for a given node.void
MarkovCheck.getPrecisionAndRecallOnMarkovBlanketGraph2
(Node x, Graph estimatedGraph, Graph trueGraph) Calculates the precision and recall using LocalGraphConfusion (which calculates the combination of Adjacency and ArrowHead) on the Markov Blanket graph for a given node.MarkovCheck.getPrecisionAndRecallOnMarkovBlanketGraphPlotData
(Node x, Graph estimatedGraph, Graph trueGraph) Calculates the precision and recall on the markov blanket graph plot data.MarkovCheck.getPrecisionAndRecallOnMarkovBlanketGraphPlotData2
(Node x, Graph estimatedGraph, Graph trueGraph) This method calculates the precision and recall of a target node's Markov Blanket in the given estimated graph.double
Returns the score of the given DAG.SepsetFinder.getSepsetContainingGreedy
(Graph graph, Node x, Node y, Set<Node> containing, IndependenceTest test, int depth) Returns the sepset that contains the greedy test for variables x and y in the given graph.SepsetFinder.getSepsetContainingMaxPHybrid
(Graph graph, Node x, Node y, Set<Node> containing, IndependenceTest test, int depth) Returns the set of nodes that act as a separating set between two given nodes (x and y) in a graph.SepsetFinder.getSepsetContainingMinPHybrid
(Graph graph, Node x, Node y, Set<Node> containing, IndependenceTest test, int depth) Returns the sepset containing the minimum p-value for the given variables x and y.SepsetFinder.getSepsetPathBlockingOutOfX
(Graph mpdag, Node x, Node y, IndependenceTest test, int maxLength, int depth, boolean allowSelectionBias, Set<Node> blacklist) Calculates the sepset path blocking out-of operation for a given pair of nodes in a graph.SepsetFinder.getSmallestSubset
(Node x, Node y, Set<Node> blocking, Set<Node> containing, Graph graph, boolean isPag) Finds a smallest subset S ofblocking
that renders two nodes x and y conditionally d-separated conditional on S in the given graph.CheckKnowledge.requiredViolations
(Graph graph, Knowledge knowledge) Returns a sorted list of edges that are required by knowledge but which do not appear in the graph.double
Scores a Directed Acyclic Graph (DAG) based on its structure.double
Scores the given directed acyclic graph (DAG).double
Calculates the score of a Directed Acyclic Graph (DAG).void
SvarFges.setAdjacencies
(Graph adjacencies) Sets the set of preset adjacencies for the algorithm; edges not in this adjacencies graph will not be added.void
Fges.setBoundGraph
(Graph boundGraph) If non-null, edges not adjacent in this graph will not be added.void
FgesMb.setBoundGraph
(Graph boundGraph) If non-null, edges not adjacent in this graph will not be added.void
Fasd.setExternalGraph
(Graph externalGraph) Sets the external graph.void
Fask.setExternalGraph
(Graph externalGraph) Sets the initial graph for the FaskOrig class.void
FaskOrig.setExternalGraph
(Graph externalGraph) Sets the external graph to use.void
SvarFas.setExternalGraph
(Graph externalGraph) Sets an external graph.void
SvarFges.setExternalGraph
(Graph externalGraph) Sets the initial graph.void
Fges.setInitialGraph
(Graph initialGraph) Sets the initial graph for the application.void
FgesMb.setInitialGraph
(Graph initialGraph) Sets the initial graph for the software.void
SvarFges.setTrueGraph
(Graph trueGraph) Sets the true graph, which will result in some edges in output graphs being marked with asterisks.Constructors in edu.cmu.tetrad.search with parameters of type GraphModifierConstructorDescriptionBossLingam
(Graph cpdag, DataSet dataSet) Constructor.Represents a graph used in Dijkstra's algorithm.Constructor.Constructs a new IDA check for the given MPDAG and data set.Constructor.LvLite
(Graph cpdag, IndependenceTest test) Alternative LV-Lite constructor.MarkovCheck
(Graph graph, IndependenceTest independenceTest, ConditioningSetType setType) Constructor. -
Uses of Graph in edu.cmu.tetrad.search.score
Methods in edu.cmu.tetrad.search.score that return GraphModifier and TypeMethodDescriptionGraphScore.getDag()
Returns a copy of the DAG being searched over.ScoredGraph.getGraph()
Returns the graph.Methods in edu.cmu.tetrad.search.score with parameters of type GraphModifier and TypeMethodDescriptionstatic double
Scores the given DAG using the given data model, usimg a BIC score.static double
SemBicScorer.scoreDag
(Graph dag, DataModel data, double penaltyDiscount, boolean precomputeCovariances) Scores the given DAG using the given data model, usimg a BIC score.Constructors in edu.cmu.tetrad.search.score with parameters of type GraphModifierConstructorDescriptionGraphScore
(Graph dag) Constructs a GraphScore from a DAG.ScoredGraph
(Graph graph, Double score) Constructs a scored graph. -
Uses of Graph in edu.cmu.tetrad.search.test
Methods in edu.cmu.tetrad.search.test that return GraphModifier and TypeMethodDescriptionMsepTest.getGraph()
Returns the underlying graph that is being used to calculate d-separation relationships.Constructors in edu.cmu.tetrad.search.test with parameters of type Graph -
Uses of Graph in edu.cmu.tetrad.search.utils
Methods in edu.cmu.tetrad.search.utils that return GraphModifier and TypeMethodDescriptionstatic Graph
DagToPag.calcAdjacencyGraph
(Graph dag) Calculates the adjacency graph for the given Directed Acyclic Graph (DAG).DagToPag.convert()
This method does the conversion of DAG to PAG.TsDagToPag.convert()
convert.static Graph
ClusterUtils.convertSearchGraph
(List<int[]> clusters, String[] varNames) Converts a list of indices into a list of Nodes representing a cluster.static Graph
Purify.convertSearchGraph
(SemGraph input) convertSearchGraph.FgesOrienter.getAdjacencies()
Getter for the fieldadjacencies
.TsUtils.VarResult.getCollapsedVarGraph()
Getter for the fieldcollapsedVarGraph
.DagSepsets.getDag()
Returns the DAG being analyzed.SepsetsGreedy.getDag()
Retrieves the Directed Acyclic Graph (DAG) produced by the Sepsets algorithm.SepsetsMaxP.getDag()
Retrieves the Directed Acyclic Graph (DAG) produced by the Sepset algorithm.SepsetsMinP.getDag()
Retrieves the Directed Acyclic Graph (DAG) produced by the Sepsets algorithm.FgesOrienter.getExternalGraph()
Getter for the fieldexternalGraph
.TeyssierScorer.getGraph
(boolean cpDag) Returns the DAG build for the current permutation, or its CPDAG.static Graph
MbUtils.getOneMbDag
(Graph mbCpdag) Returns an example DAG from the given MB CPDAG.PossibleMConnectingPath.getPag()
Getter for the fieldpag
.TsDagToPag.getTruePag()
Getter for the fieldtruePag
.DagInCpcagIterator.next()
Successive calls to this method return successive DAGs in the CPDAG, in a more or less natural enumeration of them in which an arbitrary undirected edge is picked, oriented one way, Meek rules applied, then a remaining unoriented edge is picked, oriented one way, and so on, until a DAG is obtained, and then by backtracking the other orientation of each chosen edge is tried.DagIterator.next()
Successive calls to this method return successive DAGs in the CPDAG, in a more or less natural enumeration of them in which an arbitrary undirected edge is picked, oriented one way, Meek rules applied, then a remaining unoriented edge is picked, oriented one way, and so on, until a DAG is obtained, and then by backtracking the other orientation of each chosen edge is tried.FgesOrienter.search()
Greedy equivalence search: Start from the empty graph, add edges till model is significant.PcCommon.search()
Runs the search and returns the search graph.Runs the search over the given list of nodes only, returning the search graph.Purify.search()
****************************************************** SEARCH INTERFACE *******************************************************Methods in edu.cmu.tetrad.search.utils that return types with arguments of type GraphModifier and TypeMethodDescriptionMbUtils.generateMbDags
(Graph mbCPDAG, boolean orientBidirectedEdges, IndependenceTest test, int depth, Node target) Generates the list of MB DAGs consistent with the MB CPDAG returned by the previous search.Methods in edu.cmu.tetrad.search.utils with parameters of type GraphModifier and TypeMethodDescriptionstatic void
GraphSearchUtils.arrangeByKnowledgeTiers
(Graph graph) arrangeByKnowledgeTiers.static void
GraphSearchUtils.arrangeByKnowledgeTiers
(Graph graph, Knowledge knowledge) arrangeByKnowledgeTiers.static void
GraphSearchUtils.basicCpdag
(Graph graph) Get a graph and direct only the unshielded colliders.static void
GraphSearchUtils.basicCpdagRestricted2
(Graph graph, Node node) basicCpdagRestricted2.void
Runs BES for a graph over the given list of variablesvoid
Runs BES.static Graph
DagToPag.calcAdjacencyGraph
(Graph dag) Calculates the adjacency graph for the given Directed Acyclic Graph (DAG).static boolean
Checks if colliders are allowed based on the given knowledge.static Clusters
MimUtils.convertToClusters
(Graph clusterGraph) convertToClusters.static Clusters
MimUtils.convertToClusters
(Graph clusterGraph, List<Node> measuredVariables) Converts a disconnected multiple indicator model into a set of clusters.MimUtils.convertToClusters2
(Graph clusterGraph) convertToClusters2.static R0R4Strategy
R0R4StrategyTestBased.defaultConfiguration
(Graph dag, Knowledge knowledge) Returns a default configuration of the FciOrientDataExaminationStrategy object.org.apache.commons.lang3.tuple.Pair
<DiscriminatingPath, Boolean> R0R4Strategy.doDiscriminatingPathOrientation
(DiscriminatingPath discriminatingPath, Graph graph, Set<Node> vNodes) Does a discriminating path orientation based on an examination of the data.org.apache.commons.lang3.tuple.Pair
<DiscriminatingPath, Boolean> R0R4StrategyScoreBased.doDiscriminatingPathOrientation
(DiscriminatingPath discriminatingPath, Graph graph, Set<Node> vNodes) Does a discriminating path orientation based on the Discriminating Path Rule.org.apache.commons.lang3.tuple.Pair
<DiscriminatingPath, Boolean> R0R4StrategyTestBased.doDiscriminatingPathOrientation
(DiscriminatingPath discriminatingPath, Graph graph, Set<Node> vNodes) Does a discriminating path orientation.boolean
Checks this discriminating path construct to make sure it is a discriminating path in the given graph.static boolean
TsDagToPag.existsInducingPathInto
(Node x, Node y, Graph graph, Knowledge knowledge) existsInducingPathInto.static boolean
TsDagToPag.existsInducingPathVisitts
(Graph graph, Node a, Node b, Node x, Node y, LinkedList<Node> path, Knowledge knowledge) existsInducingPathVisitts.void
FciOrient.fciOrientbk
(Knowledge bk, Graph graph, List<Node> variables) Orient the edges of a graph based on the given knowledge.void
FciOrient.finalOrientation
(Graph graph) Orients the graph (in place) according to rules in the graph (FCI step D).static List
<PossibleMConnectingPath> PossibleMConnectingPath.findMConnectingPaths
(Graph pag, Node x, Node y, Collection<Node> z) Finds all possible D-connection undirectedPaths as sub-graphs of the pag given at construction time from x to y given z.static List
<PossibleMConnectingPath> PossibleMConnectingPath.findMConnectingPathsOfLength
(Graph pag, Node x, Node y, Collection<Node> z, Integer length) Finds all possible D-connection undirectedPaths as sub-graphs of the pag given at construction time from x to y given z for a particular path length.MbUtils.generateMbDags
(Graph mbCPDAG, boolean orientBidirectedEdges, IndependenceTest test, int depth, Node target) Generates the list of MB DAGs consistent with the MB CPDAG returned by the previous search.Returns a map of nodes to bidirected edges for them.GraphSearchUtils.getCpcTripleType
(Node x, Node y, Node z, IndependenceTest test, int depth, Graph graph) getCpcTripleType.static String
GraphSearchUtils.getEdgewiseComparisonString
(String trueGraphName, Graph trueGraph, String targetGraphName, Graph targetGraph) getEdgewiseComparisonString.static R0R4StrategyTestBased
DagToPag.getFinalStrategyUsingDsep
(Graph mag, Knowledge knowledge, boolean verbose) Returns the final strategy for finding a PAG using D-SEP.static GraphUtils.GraphComparison
GraphSearchUtils.getGraphComparison
(Graph trueGraph, Graph targetGraph) Just counts arrowhead errors--for cyclic edges counts an arrowhead at each node.static Knowledge
TsUtils.getKnowledge
(Graph graph) getKnowledge.static Graph
MbUtils.getOneMbDag
(Graph mbCpdag) Returns an example DAG from the given MB CPDAG.GraphSearchUtils.getReachableNodes
(List<Node> initialNodes, LegalPairs legalPairs, List<Node> c, List<Node> d, Graph graph, int maxPathLength) getReachableNodes.double
getScore.static int[][]
GraphSearchUtils.graphComparison
(Graph trueCpdag, Graph estCpdag, PrintStream out) graphComparison.static boolean
GraphInPag.graphInPagStep0
(Graph pag, Graph dag) This method implements step (1) of the definition.static boolean
GraphInPag.graphInPagStep1
(Graph pag, Graph dag) graphInPagStep1.static boolean
GraphInPag.graphInPagStep2
(Graph pag, Graph dag) graphInPagStep2.static boolean
GraphInPag.graphInPagStep3
(Graph pag, Graph dag) graphInPagStep3.static boolean
GraphInPag.graphInPagStep4
(Graph pag, Graph dag) graphInPagStep4.static boolean
GraphInPag.graphInPagStep5
(Graph pag, Graph dag) graphInPagStep5.static TimeLagGraph
TsUtils.graphToLagGraph
(Graph _graph, int numLags) graphToLagGraph.static boolean
FciOrient.isArrowheadAllowed
(Node x, Node y, Graph graph, Knowledge knowledge) Determines whether an arrowhead is allowed between two nodes in a graph, based on specific conditions.static GraphSearchUtils.LegalMagRet
GraphSearchUtils.isLegalMag
(Graph mag, Set<Node> selection) Determines whether the given graph is a legal Mixed Ancestral Graph (MAG).static GraphSearchUtils.LegalPagRet
GraphSearchUtils.isLegalPag
(Graph pag, Set<Node> selection) Checks if the provided Directed Acyclic Graph (PAG) is a legal PAG.boolean
R0R4Strategy.isUnshieldedCollider
(Graph graph, Node a, Node b, Node c) Determines if a given triple is an unshielded collider based on an examination of the data.boolean
R0R4StrategyScoreBased.isUnshieldedCollider
(Graph graph, Node i, Node j, Node k) Checks if a collider is unshielded or not.boolean
R0R4StrategyTestBased.isUnshieldedCollider
(Graph graph, Node i, Node j, Node k) Checks if a collider is unshielded or not.static Set
<DiscriminatingPath> FciOrient.listDiscriminatingPaths
(Graph graph, int maxDiscriminatingPathLength, boolean checkEcNonadjacency) Lists all the discriminating paths in the given graph.static Set
<DiscriminatingPath> FciOrient.listDiscriminatingPaths
(Graph graph, Node w, Node y, int maxDiscriminatingPathLength, boolean checkEcNonadjacency) Lists the discriminating paths for <w, y> in the graph.EnsureMarkov.localMarkovAdjustPValues
(Graph cpdag, boolean ensureMarkov, IndependenceTest test, Map<org.apache.commons.lang3.tuple.Pair<Node, Node>, Set<Double>> pValues, org.apache.commons.lang3.tuple.Pair<Node, Node> withoutPair) Adjusts the p-values for a local Markov condition in a given constraint-based partially directed acyclic graph (CPDAG).static Clusters
ClusterUtils.mimClusters
(Graph mim) Converts a list of indices into a list of Nodes representing a cluster.void
Performs FCI orientation on the given graph, including R0 and either the Spirtes or Zhang final orientation rules.void
orient.void
Adds colliders to the given graph using the max P rule.static void
PcCommon.orientCollider
(Node x, Node y, Node z, PcCommon.ConflictRule conflictRule, Graph graph, boolean verbose) Orient a single unshielded triple, x*-*y*-*z, in a graph.static void
GraphSearchUtils.orientCollidersUsingSepsets
(SepsetMap set, Knowledge knowledge, Graph graph, boolean verbose, boolean enforceCpdag) Step C of PC; orients colliders using specified sepset.MeekRules.orientImplied
(Graph graph) Uses the Meek rules to do as many orientations in the given graph as possible.static void
GraphSearchUtils.pcdOrientC
(IndependenceTest test, Knowledge knowledge, Graph graph) Performs step C of the algorithm, as indicated on page xxx of CPS, with the modification that X--W--Y is oriented as X-->W<--Y if W is *determined by* the sepset of (X, Y), rather than W just being *in* the sepset of (X, Y).static void
GraphSearchUtils.pcOrientbk
(Knowledge bk, Graph graph, List<Node> nodes, boolean verbose) Orients according to background knowledge.void
AlmostCycleRemover.recallUnshieldedTriples
(Graph pag) Recalls unshielded triples in the given graph.boolean
AlmostCycleRemover.removeAlmostCycles
(Graph pag) Removes almost cycles from the Graph.boolean
AlmostCycleRemover.removeCycles
(Graph pag) Removes cycles from the Graph.void
Orients unshielded colliders in the graph.void
R1 If α ∗→ β o−−∗ γ, and α and γ are not adjacent, then orient the triple as α ∗→ β → γ.void
R10 Suppose α o→ γ, β → γ ← θ, p1 is an uncovered potentially directed (semidirected) path from α to β, and p2 is an uncovered p.d.void
R2 If α → β ∗→ γ or α ∗→ β → γ, and α ∗−o γ, then orient α ∗−o γ as α ∗→ γ.void
R3 If α ∗→ β ←∗ γ, α ∗−o θ o−∗ γ, α and γ are not adjacent, and θ ∗−o β, then orient θ ∗−o β as θ ∗→ β.void
R4 If u = <θ ,...,α,β,γ> is a discriminating path between θ and γ for β, and β o−−∗ γ; then if β ∈ Sepset(θ,γ), orient β o−−∗ γ as β → γ; otherwise orient the triple <α,β,γ> as α ↔ β ↔ γ.void
R5 For every (remaining) α o−−o β, if there is an uncovered circle path p = <α,γ,...,θ,β> between α and β s.t.void
R6 If α —- β o−−∗ γ (α and γ may or may not be adjacent), then orient β o−−∗ γ as β −−∗ γ.void
R7 If α −−o β o−−∗ γ, and α, γ are not adjacent, then orient β o−−∗ γ as β −−∗ γ.boolean
R8 If α → β → γ or α−−◦β → γ, and α o→ γ, orient α o→ γ as α → γ.boolean
R9 If α o→ γ, and p = <α,β,θ,...,γ> is an uncovered potentialy directed path from α to γ such that γ and β are not adjacent, then orient α o→ γ as α → γ.void
FciOrient.rulesR1R2cycle
(Graph graph) Apply rules R1 and R2 in cycles for a given graph.void
FciOrient.rulesR8R9R10
(Graph graph) Implements Zhang's rules R8, R9, R10, applies them over the graph once.double
scoreDag.double
scoreDag.void
FgesOrienter.setAdjacencies
(Graph adjacencies) Sets the set of preset adjacenies for the algorithm; edges not in this adjacencies graph will not be added.void
DefaultSetEndpointStrategy.setEndpoint
(Graph graph, Node a, Node b, Endpoint endpoint) Sets the endpoint of a graph given the two nodes and the desired endpoint.void
SetEndpointStrategy.setEndpoint
(Graph graph, Node a, Node b, Endpoint arrow) Sets the endpoint of a graph given the two nodes and the desired endpoint.void
SvarSetEndpointStrategy.setEndpoint
(Graph graph, Node a, Node b, Endpoint endpoint) Sets the endpoint of a graph given the two nodes and the desired endpoint.void
FgesOrienter.setExternalGraph
(Graph externalGraph) Sets the initial graph.void
void
Sets the graph for the SepsetProducer object.void
Sets the graph for the Sepsets object.void
Sets the graph for the SepsetsMaxP object.void
Sets the graph for the Sepsets object.void
void
void
Sets the PAG (partial ancestral graph) for the strategy.void
FgesOrienter.setTrueGraph
(Graph trueGraph) If the true graph is set, askterisks will be printed in log output for the true edges.void
IPurify.setTrueGraph
(Graph mim) setTrueGraph.void
PurifyScoreBased.setTrueGraph
(Graph mim) setTrueGraph.void
PurifyTetradBased.setTrueGraph
(Graph mim) setTrueGraph.void
TsDagToPag.setTruePag
(Graph truePag) Setter for the fieldtruePag
.static void
LogUtilsSearch.stampWithBic
(Graph graph, DataModel dataModel) stampWithBic.static void
LogUtilsSearch.stampWithScore
(Graph graph, Score score) stampWithScore.static int
GraphSearchUtils.structuralHammingDistance
(Graph trueGraph, Graph estGraph) Tsamardinos, I., Brown, L.static void
MbUtils.trimEdgesAmongParents
(Graph graph, Node target) Removes edges among the parents of the target.static void
MbUtils.trimEdgesAmongParentsOfChildren
(Graph graph, Node target) Removes edges among the parents of children of the target.static void
MbUtils.trimToAdjacents
(Graph graph, Node target) Trims the graph to just the adjacents of the target.static void
MbUtils.trimToMbNodes
(Graph graph, Node target, boolean includeBidirected) Trims the graph to the target, the parents and children of the target, and the parents of the children of the target.Constructors in edu.cmu.tetrad.search.utils with parameters of type GraphModifierConstructorDescriptionDagInCpcagIterator
(Graph CPDAG) The given CPDAG must be a CPDAG.DagInCpcagIterator
(Graph CPDAG, Knowledge knowledge) The given CPDAG must be a CPDAG.DagInCpcagIterator
(Graph CPDAG, Knowledge knowledge, boolean allowArbitraryOrientations, boolean allowNewColliders) The given CPDAG must be a CPDAG.DagIterator
(Graph CPDAG) The given CPDAG must be a CPDAG.DagSepsets
(Graph dag) Constructs a new DagSepsets object for the given DAG.Constructs a new FCI search for the given independence test and background knowledge.EnsureMarkov
(Graph dag, IndependenceTest test) Constructs an EnsureMarkov class for a given Markov dag.Graph
(Graph graph, R5R9Dijkstra.Rule rule) Represents a graph for Dijkstra's algorithm.PossibleMsepFci
(Graph graph, IndependenceTest test) Creates a new SepSet and assumes that none of the variables have yet been checked.SepsetsGreedy
(Graph graph, IndependenceTest independenceTest, int depth) Constructor for Sepsets.SepsetsMaxP
(Graph graph, IndependenceTest independenceTest, int depth) Constructs a SepsetsMaxP object with the given graph, independence test, and depth.SepsetsMinP
(Graph graph, IndependenceTest independenceTest, int depth) Initializes a new instance of the SepsetsMinP class.SepsetsPossibleMsep
(Graph graph, IndependenceTest test, Knowledge knowledge, int depth, int maxDiscriminatingPathLength) Constructor for SepsetsPossibleMsep.TsDagToPag
(Graph dag) Constructs a new FCI search for the given independence test and background knowledge.Constructs a new result. -
Uses of Graph in edu.cmu.tetrad.search.work_in_progress
Methods in edu.cmu.tetrad.search.work_in_progress that return GraphModifier and TypeMethodDescriptionOutputs a new PAG, a copy of the input excepting the applied changes of this object.ISFges.getAdjacencies()
Retrieves the preset adjacencies graph.@NotNull Graph
GraspTol.getGraph
(boolean cpDag) getGraph.HbsmsBeam.getGraph()
Getter for the fieldgraph
.HbsmsGes.getGraph()
Getter for the fieldgraph
.HbsmsGes.GraphWithPValue.getGraph()
Getter for the fieldgraph
.SampleVcpc.getGraph()
The graph that's constructed during the search.SampleVcpcFast.getGraph()
The graph that's constructed during the search.VcPc.getGraph()
The graph that's constructed during the search.VcPcAlt.getGraph()
The graph that's constructed during the search.VcPcFast.getGraph()
The graph that's constructed during the search.MagCgBicScore.getMag()
Returns the wrapped MAG.MagDgBicScore.getMag()
Returns the wrapped MAG.MagSemBicScore.getMag()
Returns the wrapped MAG.DMSearch.LatentStructure.latentStructToEdgeListGraph
(DMSearch.LatentStructure structure) latentStructToEdgeListGraph.HbsmsBeam.removeZeroEdges
(Graph bestGraph) removeZeroEdges.BpcTetradPurifyWashdown.search()
Runs the search and returns a graph.DMSearch.search()
search.FasFdr.search()
Discovers all adjacencies in data.FaskVote.search
(Parameters parameters) Does the search.FasLofs.search()
Runs the search on the concatenated data, returning a graph, possibly cyclic, possibly with two-cycles.Hbsms.search()
search.HbsmsBeam.search()
search.HbsmsGes.search()
search.IGFci.search()
Executes the FCI algorithm using the provided independence test, score, and population graph, and returns the resulting graph with edges oriented according to the algorithm's rules.InverseCorrelation.search()
search.ISFges.search()
Greedy equivalence search: Start from the empty graph, add edges till the model is significant.Kpc.search()
Runs PC starting with a complete graph over all nodes of the given conditional independence test, using the given independence test and knowledge and returns the resultant graph.Runs PC starting with a commplete graph over the given list of nodes, using the given independence test and knowledge and returns the resultant graph.Mmhc.search()
Runs PC starting with a fully connected graph over all of the variables in the domain of the independence test.SampleVcpc.search()
search.SampleVcpcFast.search()
search.VcFas.search()
Discovers all adjacencies in data.VcPc.search()
search.VcPcAlt.search()
search.VcPcFast.search()
search.Washdown.search()
Runs the Washdown algorithm and return a graph.Methods in edu.cmu.tetrad.search.work_in_progress that return types with arguments of type GraphModifier and TypeMethodDescriptionDci.search()
Begins the DCI search procedure, described at each stepIon.search()
Runs the ION search and returns a list of compatible graphs.Methods in edu.cmu.tetrad.search.work_in_progress with parameters of type GraphModifier and TypeMethodDescriptionDMSearch.applyDmSearch
(Graph pattern, Set<String> inputString, double penalty) applyDmSearch.Outputs a new PAG, a copy of the input excepting the applied changes of this object.static void
SampleVcpc.futureNodeVisit
(Graph graph, Node b, LinkedList<Node> path, Set<Node> futureNodes) futureNodeVisit.static void
SampleVcpcFast.futureNodeVisit
(Graph graph, Node b, LinkedList<Node> path, Set<Node> futureNodes) futureNodeVisit.static void
VcPc.futureNodeVisit
(Graph graph, Node b, LinkedList<Node> path, Set<Node> futureNodes) futureNodeVisit.static void
VcPcAlt.futureNodeVisit
(Graph graph, Node b, LinkedList<Node> path, Set<Node> futureNodes) futureNodeVisit.static void
VcPcFast.futureNodeVisit
(Graph graph, Node b, LinkedList<Node> path, Set<Node> futureNodes) futureNodeVisit.VcPc.getPopulationTripleType
(Node x, Node y, Node z, IndependenceTest test, int depth, Graph graph, boolean verbose) getPopulationTripleType.VcPcFast.getPopulationTripleType
(Node x, Node y, Node z, IndependenceTest test, int depth, Graph graph, boolean verbose) getPopulationTripleType.double
Calculates and returns the score of the provided Directed Acyclic Graph (DAG).void
IGFci.modifiedR0
(Graph fgesGraph) Modifies the given FGES graph based on the FCI algorithm rules, reorienting edges and potentially identifying and orienting definite colliders.HbsmsBeam.removeZeroEdges
(Graph bestGraph) removeZeroEdges.scoreDag.double
Computes the score of a given directed acyclic graph (DAG).double
Computes the score of a Directed Acyclic Graph (DAG) based on a given population graph.HbsmsBeam.scoreGraph
(Graph graph) scoreGraph.HbsmsGes.scoreGraph
(Graph graph) scoreGraph.void
ISFges.setAdjacencies
(Graph adjacencies) Sets the preset adjacency information for the graph.void
VcFas.setExternalGraph
(Graph externalGraph) Setter for the fieldexternalGraph
.void
Setter for the fieldgraph
.void
Setter for the fieldgraph
.void
Setter for the fieldgraph
.void
Setter for the fieldgraph
.void
Setter for the fieldgraph
.void
ISFges.setInitialGraph
(Graph initialGraph) Sets the initial graph, ensuring the graph's nodes match the expected variables.void
Sets the MAG to wrap.void
Sets the MAG to wrap.void
Sets the MAG to wrap.void
ISFges.setPopulationGraph
(Graph populationGraph) Sets the population graph for the current instance.void
ISFges.setTrueGraph
(Graph trueGraph) Sets the true graph.treks.Constructors in edu.cmu.tetrad.search.work_in_progress with parameters of type GraphModifierConstructorDescriptionFasDci
(Graph graph, IndependenceTest independenceTest) Constructs a new FastAdjacencySearch for DCI.FasDci
(Graph graph, IndependenceTest independenceTest, ResolveSepsets.Method method, List<Set<Node>> marginalVars, List<IndependenceTest> independenceTests, SepsetMapDci knownIndependencies, SepsetMapDci knownAssociations) Constructs a new FastAdjacencySearch for DCI with independence test pooling to resolve inconsistencies.GraphWithPValue
(Graph graph, double pValue) Constructor for GraphWithPValue.HbsmsBeam
(Graph graph, CovarianceMatrix cov, Knowledge knowledge) Constructor for HbsmsBeam.Constructor for HbsmsBeam.Constructor for HbsmsGes.IGFci
(IndependenceTest test, ISScore score, Graph populationGraph) Constructs an instance of IGFci with the provided independence test, score, and population graph.Constructor parameters in edu.cmu.tetrad.search.work_in_progress with type arguments of type Graph -
Uses of Graph in edu.cmu.tetrad.sem
Methods in edu.cmu.tetrad.sem that return GraphModifier and TypeMethodDescriptionLargeScaleSimulation.getGraph()
Getter for the fieldgraph
.SemUpdater.getManipulatedGraph()
getManipulatedGraph.Methods in edu.cmu.tetrad.sem with parameters of type GraphModifier and TypeMethodDescriptioncliques.LargeScaleSimulation.getKnowledge
(Graph graph) getKnowledge.ReidentifyVariables.getLatents
(Graph graph) getLatents.ReidentifyVariables.reidentifyVariables1
(List<List<Node>> partition, Graph trueGraph) reidentifyVariables1.reidentifyVariables2.Ricf.ricf2
(Graph mag, ICovarianceMatrix covMatrix, double tolerance) Same as above but takes a Graph instead of a SemGraphdouble
Scores the given DAG using the implemented algorithm.double
score.Constructors in edu.cmu.tetrad.sem with parameters of type GraphModifierConstructorDescriptionGeneralizedSemPm
(Graph graph) Constructs a BayesPm from the given Graph, which must be convertible first into a ProtoSemGraph and then into a SemGraph.LargeScaleSimulation
(Graph graph) Constructor for LargeScaleSimulation.LargeScaleSimulation
(Graph graph, List<Node> nodes, int[] tierIndices) Constructor for LargeScaleSimulation.Constructs a BayesPm from the given Graph, which must be convertible first into a ProtoSemGraph and then into a SemGraph. -
Uses of Graph in edu.cmu.tetrad.simulation
Methods in edu.cmu.tetrad.simulation that return GraphModifier and TypeMethodDescriptionstatic Graph
evalEdges.static Graph
HsimUtils.mkRandSEMDAG
(int numVars, int numEdges) mkRandSEMDAG.Methods in edu.cmu.tetrad.simulation with parameters of type GraphModifier and TypeMethodDescriptiondistances.static double[]
errorEval.static Graph
evalEdges.HsimUtils.getAllParents
(Graph inputgraph, Set<Node> inputnodes) getAllParents. -
Uses of Graph in edu.cmu.tetrad.study.performance
Methods in edu.cmu.tetrad.study.performance that return GraphModifier and TypeMethodDescriptionComparisonResult.getCorrectResult()
Getter for the fieldcorrectResult
.ComparisonResult.getResultGraph()
Getter for the fieldresultGraph
.ComparisonResult.getTrueDag()
Getter for the fieldtrueDag
.Methods in edu.cmu.tetrad.study.performance with parameters of type GraphModifier and TypeMethodDescriptionstatic String
PerformanceTests.endpointMisclassification
(List<Node> _nodes, Graph estGraph, Graph refGraph) endpointMisclassification.static Knowledge
Comparison2.getKnowledge
(Graph graph) getKnowledge.void
ComparisonResult.setCorrectResult
(Graph correctResult) Setter for the fieldcorrectResult
.void
ComparisonResult.setResultGraph
(Graph graph) Setter for the fieldresultGraph
.void
ComparisonResult.setTrueDag
(Graph trueDag) Setter for the fieldtrueDag
. -
Uses of Graph in edu.cmu.tetrad.util
Methods in edu.cmu.tetrad.util that return GraphModifier and TypeMethodDescriptionstatic Graph
GraphSampling.createDisplayGraph
(Graph graph, ResamplingEdgeEnsemble ensemble) Create a graph for displaying and print out.static Graph
GraphSampling.createGraphWithHighProbabilityEdges
(List<Graph> graphs) Combine all the edges from the list of graphs onto one graph with the edge type that has the highest frequency probability.static Graph
GraphSampling.createGraphWithHighProbabilityEdges
(List<Graph> graphs, ResamplingEdgeEnsemble ensemble) createGraphWithHighProbabilityEdges.static Graph
GraphSampling.createGraphWithoutNullEdges
(Graph graph) Create a graph from the given graph that contains no null edges.Returns the Directed Acyclic Graph (DAG) corresponding to the given graph if it is a PAG that has previously been converted from a DAG.Returns the PAG (Partial Ancestral Graph) corresponding to the given DAG (Directed Acyclic Graph).Returns the PAG (Partial Ancestral Graph) corresponding to the given DAG (Directed Acyclic Graph).static Graph
JsonUtils.parseJSONObjectToTetradGraph
(String jsonResponse) parseJSONObjectToTetradGraph.static Graph
JsonUtils.parseJSONObjectToTetradGraph
(org.json.JSONObject jObj) parseJSONObjectToTetradGraph.Methods in edu.cmu.tetrad.util with parameters of type GraphModifier and TypeMethodDescriptionstatic Graph
GraphSampling.createDisplayGraph
(Graph graph, ResamplingEdgeEnsemble ensemble) Create a graph for displaying and print out.static Graph
GraphSampling.createGraphWithoutNullEdges
(Graph graph) Create a graph from the given graph that contains no null edges.Returns the Directed Acyclic Graph (DAG) corresponding to the given graph if it is a PAG that has previously been converted from a DAG.Returns the PAG (Partial Ancestral Graph) corresponding to the given DAG (Directed Acyclic Graph).Returns the PAG (Partial Ancestral Graph) corresponding to the given DAG (Directed Acyclic Graph).JsonUtils.parseJSONArrayToTetradEdges
(Graph graph, org.json.JSONArray jArray) parseJSONArrayToTetradEdges.static Edge
JsonUtils.parseJSONObjectToTetradEdge
(Graph graph, org.json.JSONObject jObj) parseJSONObjectToTetradEdge.Method parameters in edu.cmu.tetrad.util with type arguments of type GraphModifier and TypeMethodDescriptionstatic Graph
GraphSampling.createGraphWithHighProbabilityEdges
(List<Graph> graphs) Combine all the edges from the list of graphs onto one graph with the edge type that has the highest frequency probability.static Graph
GraphSampling.createGraphWithHighProbabilityEdges
(List<Graph> graphs, ResamplingEdgeEnsemble ensemble) createGraphWithHighProbabilityEdges. -
Uses of Graph in edu.pitt.csb.mgm
Methods in edu.pitt.csb.mgm that return GraphModifier and TypeMethodDescriptionMgm.graphFromMGM()
Converts MGM object to Graph object with edges if edge parameters are non-zero.static Graph
MixedUtils.makeMixedGraph
(Graph g, Map<String, Integer> m) makeMixedGraph.Mgm.search()
Simple search command for GraphSearch implementation.Methods in edu.pitt.csb.mgm with parameters of type GraphModifier and TypeMethodDescriptionstatic int[][]
MixedUtils.allEdgeStats
(Graph pT, Graph pE) allEdgeStats.static int[][]
allEdgeStats.static GeneralizedSemPm
MixedUtils.GaussianCategoricalPm
(Graph trueGraph, String paramTemplate) GaussianCategoricalPm.static GeneralizedSemPm
MixedUtils.GaussianTrinaryPm
(Graph trueGraph, HashMap<String, String> nodeDists, int maxSample, String paramTemplate) GaussianTrinaryPm.MixedUtils.getNodeDists
(Graph g) getNodeDists.static cern.colt.matrix.DoubleMatrix2D
MixedUtils.graphToMatrix
(Graph graph) graphToMatrix.static cern.colt.matrix.DoubleMatrix2D
MixedUtils.graphToMatrix
(Graph graph, double undirectedWeight, double directedWeight) graphToMatrix.static Graph
MixedUtils.makeMixedGraph
(Graph g, Map<String, Integer> m) makeMixedGraph.static cern.colt.matrix.DoubleMatrix2D
MixedUtils.skeletonToMatrix
(Graph graph) skeletonToMatrix. -
Uses of Graph in edu.pitt.csb.stability
Methods in edu.pitt.csb.stability that return GraphModifier and TypeMethodDescriptionabstract Graph
search.Search method.Search method.Search method. -
Uses of Graph in edu.pitt.dbmi.algo.bayesian.constraint.search
Methods in edu.pitt.dbmi.algo.bayesian.constraint.search that return GraphModifier and TypeMethodDescriptionRfciBsc.getGraphRBD()
Returns the graph that was learned using the BSC-D method.RfciBsc.getGraphRBI()
Returns the graph that was learned using the BSC-I method.PagSamplingRfci.search()
Runs the search and returns a graph.RfciBsc.search()
Runs the search and returns a graph.