Uses of Interface
edu.cmu.tetrad.graph.Graph
Packages that use Graph
Package
Description
This package contains classes for causal graph search algorithms.
This package contains classes for scoring causal graph models.
This package contains classes for testing causal graph search algorithms.
This package contains utility classes for causal graph search algorithms.
A package for algorithms that are not ready for prime time.
-
Uses of Graph in edu.cmu.tetrad.algcomparison
Methods in edu.cmu.tetrad.algcomparison with parameters of type GraphModifier and TypeMethodDescriptionstatic @NotNull StringCompareTwoGraphs.getEdgewiseComparisonString(Graph trueGraph, Graph targetGraph) Returns an edgewise comparison of two graphs.static @NotNull StringCompareTwoGraphs.getMisclassificationTable(Graph trueGraph, Graph targetGraph) Returns a misclassification comparison of two graphs.static StringCompareTwoGraphs.getStatsListTable(Graph trueGraph, Graph targetGraph) Returns a string representing a table of statistics that can be printed.static StringCompareTwoGraphs.getStatsListTable(Graph trueGraph, Graph targetGraph, DataModel dataModel, long elapsedTime) Returns a string representing a table of statistics that can be printed. -
Uses of Graph in edu.cmu.tetrad.algcomparison.algorithm
Methods in edu.cmu.tetrad.algcomparison.algorithm that return GraphModifier and TypeMethodDescriptionAlgorithm.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.FirstInflection.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.StabilitySelection.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.StARS.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.AbstractBootstrapAlgorithm.search(DataModel dataModel, Parameters parameters) Runs the search.Algorithm.search(DataModel dataSet, Parameters parameters) Runs the search.FirstInflection.search(DataModel dataSet, Parameters parameters) Runs the search.MultiDataSetAlgorithm.search(List<DataModel> dataSets, Parameters parameters) Runs the search.StabilitySelection.search(DataModel dataSet, Parameters parameters) Runs the search.StARS.search(DataModel dataSet, Parameters parameters) Runs the search.Methods in edu.cmu.tetrad.algcomparison.algorithm that return types with arguments of type GraphModifier and TypeMethodDescriptionAbstractBootstrapAlgorithm.getBootstrapGraphs()Returns the bootstrap graphs.ReturnsBootstrapGraphs.getBootstrapGraphs()Returns the bootstrap graphs.Methods in edu.cmu.tetrad.algcomparison.algorithm with parameters of type GraphModifier and TypeMethodDescriptionstatic AlgorithmAlgorithmFactory.create(Class<? extends Algorithm> algoClass, IndependenceWrapper test, ScoreWrapper score, Graph externalGraph) Creates an algorithm.static AlgorithmAlgorithmFactory.create(Class<? extends Algorithm> algoClass, Class<? extends IndependenceWrapper> indTestClass, Class<? extends ScoreWrapper> scoreClass, Graph externalGraph) Creates an algorithm.Algorithm.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.FirstInflection.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.StabilitySelection.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.StARS.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to. -
Uses of Graph in edu.cmu.tetrad.algcomparison.algorithm.continuous.dag
Methods in edu.cmu.tetrad.algcomparison.algorithm.continuous.dag that return GraphModifier and TypeMethodDescriptionDagma.getComparisonGraph(Graph graph) Retrieves the comparison graph for the given true directed graph.DirectLingam.getComparisonGraph(Graph graph) Returns a comparison graph based on the given true directed graph.Fask.getComparisonGraph(Graph graph) Returns a comparison graph based on the true directed graph, if there is one.FaskOrig.getComparisonGraph(Graph graph) Returns a comparison graph based on the true directed graph, if there is one.IcaLingam.getComparisonGraph(Graph graph) Returns a comparison graph based on the true directed graph, if there is one.IcaLingD.getComparisonGraph(Graph graph) Retrieves the comparison graph of the provided true directed graph.Dagma.runSearch(DataModel dataModel, Parameters parameters) Runs the DAGMA algorithm to search for a directed acyclic graph (DAG) in the given data model with the specified parameters.DirectLingam.runSearch(DataModel dataModel, Parameters parameters) Runs the Direct LiNGAM search algorithm on the given data model with the specified parameters.Fask.runSearch(DataModel dataModel, Parameters parameters) Runs the Fask search algorithm on the given data model with the specified parameters.FaskOrig.runSearch(DataModel dataModel, Parameters parameters) Runs the Fask search algorithm on the given data model with the specified parameters.IcaLingam.runSearch(DataModel dataSet, Parameters parameters) Searches for a graph structure based on the given data set and parameters.IcaLingD.runSearch(DataModel dataSet, Parameters parameters) Runs a search on the provided data set using the given parameters.Methods in edu.cmu.tetrad.algcomparison.algorithm.continuous.dag that return types with arguments of type GraphModifier and TypeMethodDescriptionIcaLingD.getStableGraphs()Retrieves the list of stable graphs generated by the algorithm.IcaLingD.getUnstableGraphs()Retrieves the list of unstable graphs generated by the algorithm.Methods in edu.cmu.tetrad.algcomparison.algorithm.continuous.dag with parameters of type GraphModifier and TypeMethodDescriptionDagma.getComparisonGraph(Graph graph) Retrieves the comparison graph for the given true directed graph.DirectLingam.getComparisonGraph(Graph graph) Returns a comparison graph based on the given true directed graph.Fask.getComparisonGraph(Graph graph) Returns a comparison graph based on the true directed graph, if there is one.FaskOrig.getComparisonGraph(Graph graph) Returns a comparison graph based on the true directed graph, if there is one.IcaLingam.getComparisonGraph(Graph graph) Returns a comparison graph based on the true directed graph, if there is one.IcaLingD.getComparisonGraph(Graph graph) Retrieves the comparison graph of the provided true directed graph. -
Uses of Graph in edu.cmu.tetrad.algcomparison.algorithm.multi
Methods in edu.cmu.tetrad.algcomparison.algorithm.multi that return GraphModifier and TypeMethodDescriptionFaskConcatenated.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.FaskLofsConcatenated.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.FaskVote.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.FasLofs.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.FciIod.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.FgesConcatenated.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.Images.getComparisonGraph(Graph graph) Returns a comparison graph based on the true directed graph, if there is one.ImagesBoss.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.FaskConcatenated.search(DataModel dataSet, Parameters parameters) Runs the search.FaskConcatenated.search(List<DataModel> dataSets, Parameters parameters) Runs the search.FaskLofsConcatenated.search(DataModel dataSet, Parameters parameters) Runs the search.FaskLofsConcatenated.search(List<DataModel> dataModels, Parameters parameters) Runs the search.FaskVote.search(DataModel dataSet, Parameters parameters) Runs the search.FaskVote.search(List<DataModel> dataSets, Parameters parameters) Runs the search.FasLofs.search(DataModel dataSet, Parameters parameters) Runs the search.FciIod.search(DataModel dataSet, Parameters parameters) Runs the search.FciIod.search(List<DataModel> dataSets, Parameters parameters) Runs the search.FgesConcatenated.search(DataModel dataSet, Parameters parameters) Runs the search.FgesConcatenated.search(List<DataModel> dataModels, Parameters parameters) Runs the search.Images.search(DataModel dataSet, Parameters parameters) Searches for a graph using the given data set and parameters.Images.search(List<DataModel> dataSets, Parameters parameters) Searches for a graph using the given data sets and parameters.ImagesBoss.search(DataModel dataSet, Parameters parameters) Runs the search.ImagesBoss.search(List<DataModel> dataSets, Parameters parameters) Runs the search.Methods in edu.cmu.tetrad.algcomparison.algorithm.multi with parameters of type GraphModifier and TypeMethodDescriptionFaskConcatenated.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.FaskLofsConcatenated.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.FaskVote.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.FasLofs.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.FciIod.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.FgesConcatenated.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.Images.getComparisonGraph(Graph graph) Returns a comparison graph based on the true directed graph, if there is one.ImagesBoss.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to. -
Uses of Graph in edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag
Methods in edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag that return GraphModifier and TypeMethodDescriptionBoss.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.Cam.getComparisonGraph(Graph graph) Constructs and returns a comparison graph in the form of a completed partially directed acyclic graph (CPDAG).Cdnod.getComparisonGraph(Graph graph) Generates a comparison graph by converting a given graph into its completed partially directed acyclic graph (CPDAG) form.Cpc.getComparisonGraph(Graph graph) Deprecated.Retrieves the comparison graph for the given true directed graph.Cstar.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.Fas.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.Fges.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.FgesMb.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.Gin.getComparisonGraph(Graph graph) Grasp.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.IsFges.getComparisonGraph(Graph graph) Pc.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.Pcd.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.PcMax.getComparisonGraph(Graph graph) Deprecated.Returns that graph that the result should be compared to.PcMb.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.Pcmci.getComparisonGraph(Graph graph) Generates a comparison causal graph derived from the input graph by converting it to a completed partially directed acyclic graph (CPDAG).RestrictedBoss.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.SingleGraphAlg.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.Sp.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.TwoStep.getComparisonGraph(Graph graph) Deprecated.Returns the given graph for comparison purposes.Cstar.search(DataModel dataSet, Parameters parameters) Runs the search.Pcmci.search(DataModel dataModel, Parameters parameters) Executes the PCMCI (Peter and Clark Momentary Conditional Independence) causal discovery algorithm on a given data model using specified parameters.SingleGraphAlg.search(DataModel dataSet, Parameters parameters) Runs the search.Methods in edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag with parameters of type GraphModifier and TypeMethodDescriptionBoss.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.Cam.getComparisonGraph(Graph graph) Constructs and returns a comparison graph in the form of a completed partially directed acyclic graph (CPDAG).Cdnod.getComparisonGraph(Graph graph) Generates a comparison graph by converting a given graph into its completed partially directed acyclic graph (CPDAG) form.Cpc.getComparisonGraph(Graph graph) Deprecated.Retrieves the comparison graph for the given true directed graph.Cstar.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.Fas.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.Fges.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.FgesMb.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.Gin.getComparisonGraph(Graph graph) Grasp.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.IsFges.getComparisonGraph(Graph graph) Pc.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.Pcd.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.PcMax.getComparisonGraph(Graph graph) Deprecated.Returns that graph that the result should be compared to.PcMb.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.Pcmci.getComparisonGraph(Graph graph) Generates a comparison causal graph derived from the input graph by converting it to a completed partially directed acyclic graph (CPDAG).RestrictedBoss.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.SingleGraphAlg.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.Sp.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.TwoStep.getComparisonGraph(Graph graph) Deprecated.Returns the given graph for comparison purposes.Constructors in edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag with parameters of type Graph -
Uses of Graph in edu.cmu.tetrad.algcomparison.algorithm.oracle.pag
Methods in edu.cmu.tetrad.algcomparison.algorithm.oracle.pag that return GraphModifier and TypeMethodDescriptionBossFci.getComparisonGraph(Graph graph) Retrieves the comparison graph generated by applying the DAG-to-PAG transformation to the given true directed graph.BossPod.getComparisonGraph(Graph graph) Retrieves a comparison graph by transforming a true directed graph into a partially directed graph (PAG).Ccd.getComparisonGraph(Graph graph) Retrieves the comparison graph for the given true directed graph.Cfci.getComparisonGraph(Graph graph) Deprecated.Retrieves the comparison graph by converting the given true directed graph into a partially directed graph (PAG) using the DAG to PAG transformation.DmFcit.getComparisonGraph(Graph graph) Retrieves a comparison graph by transforming a true directed graph into a partially directed graph (PAG).DmFciT2.getComparisonGraph(Graph graph) Retrieves a comparison graph by transforming a true directed graph into a partially directed graph (PAG).DmPc.getComparisonGraph(Graph graph) Retrieves a comparison graph by transforming a true directed graph into a partially directed graph (PAG).Fci.getComparisonGraph(Graph graph) Returns the comparison graph based on the true directed graph, if there is one.FciCyclicPw.getComparisonGraph(Graph graph) Generates a comparison graph for the given graph by transforming it into a partially directed acyclic graph (PAG) representation.FciMax.getComparisonGraph(Graph graph) Deprecated.Returns the comparison graph transformed from the true directed graph.Fcit.getComparisonGraph(Graph graph) Retrieves a comparison graph by transforming a true directed graph into a partially directed graph (PAG).FgesFci.getComparisonGraph(Graph graph) Retrieves the comparison graph by transforming the true directed graph (if there is one) into a partially directed acyclic graph (PAG).Gfci.getComparisonGraph(Graph graph) Retrieves the comparison graph by transforming the true directed graph (if there is one) into a partially directed acyclic graph (PAG).GraspFci.getComparisonGraph(Graph graph) Retrieves a comparison graph by transforming a true directed graph into a partially directed graph (PAG).IsGfci.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.PagSampleRfci.getComparisonGraph(Graph graph) Returns the comparison graph based on the true directed graph.Rfci.getComparisonGraph(Graph graph) Returns a comparison graph based on the provided true directed graph.RfciBsc.getComparisonGraph(Graph graph) Retrieves the comparison graph from the true directed graph, if there is one.SpFci.getComparisonGraph(Graph graph) Returns the comparison graph created by converting a true directed graph into a partially directed acyclic graph (PAG).BossFci.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm using the given dataset and parameters and returns the resulting graph.BossPod.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm to find a graph structure based on a given data model and parameters.Ccd.runSearch(DataModel dataModel, Parameters parameters) Runs the CCD (Cyclic Causal Discovery) search algorithm on the given data set using the specified parameters.Cfci.runSearch(DataModel dataModel, Parameters parameters) Deprecated.Runs the search algorithm to discover the causal graph.DmFcit.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm to find a graph structure based on a given data model and parameters.DmFciT2.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm to find a graph structure based on a given data model and parameters.DmPc.runSearch(DataModel dataModel, Parameters parameters) Runs a search algorithm to find a graph structure based on a given data set and parameters.Fci.runSearch(DataModel dataModel, Parameters parameters) Runs a search algorithm to find a graph based on the given data model and parameters.FciCyclicPw.runSearch(DataModel dataModel, Parameters parameters) Executes the search algorithm on a given data model and set of parameters, producing a partially directed acyclic graph (PAG) that represents the causal structure inferred from the data.FciMax.runSearch(DataModel dataModel, Parameters parameters) Deprecated.Runs a search algorithm to discover the causal graph structure.Fcit.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm to find a graph structure based on a given data model and parameters.FgesFci.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm to infer the causal graph given a dataset and specified parameters.Gfci.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm to infer the causal graph given a dataset and specified parameters.GraspFci.runSearch(DataModel dataModel, Parameters parameters) Runs a search algorithm to find a graph structure based on a given data set and parameters.PagSampleRfci.runSearch(DataModel dataSet, Parameters parameters) Runs the search algorithm using the given data set and parameters.Rfci.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm on the given data model and parameters.RfciBsc.runSearch(DataModel dataModel, Parameters parameters) Runs a search algorithm using a given dataset and parameters.SpFci.runSearch(DataModel dataModel, Parameters parameters) Executes a search algorithm to infer the causal graph structure from a given data modelMethods in edu.cmu.tetrad.algcomparison.algorithm.oracle.pag with parameters of type GraphModifier and TypeMethodDescriptionBossFci.getComparisonGraph(Graph graph) Retrieves the comparison graph generated by applying the DAG-to-PAG transformation to the given true directed graph.BossPod.getComparisonGraph(Graph graph) Retrieves a comparison graph by transforming a true directed graph into a partially directed graph (PAG).Ccd.getComparisonGraph(Graph graph) Retrieves the comparison graph for the given true directed graph.Cfci.getComparisonGraph(Graph graph) Deprecated.Retrieves the comparison graph by converting the given true directed graph into a partially directed graph (PAG) using the DAG to PAG transformation.DmFcit.getComparisonGraph(Graph graph) Retrieves a comparison graph by transforming a true directed graph into a partially directed graph (PAG).DmFciT2.getComparisonGraph(Graph graph) Retrieves a comparison graph by transforming a true directed graph into a partially directed graph (PAG).DmPc.getComparisonGraph(Graph graph) Retrieves a comparison graph by transforming a true directed graph into a partially directed graph (PAG).Fci.getComparisonGraph(Graph graph) Returns the comparison graph based on the true directed graph, if there is one.FciCyclicPw.getComparisonGraph(Graph graph) Generates a comparison graph for the given graph by transforming it into a partially directed acyclic graph (PAG) representation.FciMax.getComparisonGraph(Graph graph) Deprecated.Returns the comparison graph transformed from the true directed graph.Fcit.getComparisonGraph(Graph graph) Retrieves a comparison graph by transforming a true directed graph into a partially directed graph (PAG).FgesFci.getComparisonGraph(Graph graph) Retrieves the comparison graph by transforming the true directed graph (if there is one) into a partially directed acyclic graph (PAG).Gfci.getComparisonGraph(Graph graph) Retrieves the comparison graph by transforming the true directed graph (if there is one) into a partially directed acyclic graph (PAG).GraspFci.getComparisonGraph(Graph graph) Retrieves a comparison graph by transforming a true directed graph into a partially directed graph (PAG).IsGfci.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.PagSampleRfci.getComparisonGraph(Graph graph) Returns the comparison graph based on the true directed graph.Rfci.getComparisonGraph(Graph graph) Returns a comparison graph based on the provided true directed graph.RfciBsc.getComparisonGraph(Graph graph) Retrieves the comparison graph from the true directed graph, if there is one.SpFci.getComparisonGraph(Graph graph) Returns the comparison graph created by converting a true directed graph into a partially directed acyclic graph (PAG). -
Uses of Graph in edu.cmu.tetrad.algcomparison.algorithm.other
Methods in edu.cmu.tetrad.algcomparison.algorithm.other that return GraphModifier and TypeMethodDescriptionFactorAnalysis.getComparisonGraph(Graph graph) Returns an undirected graph used for comparison.Glasso.getComparisonGraph(Graph graph) Retrieves a comparison graph for the given true directed graph.MimbuildBollen.getComparisonGraph(Graph graph) Returns an undirected graph used for comparison.MimbuildPca.getComparisonGraph(Graph graph) Returns an undirected graph used for comparison.FactorAnalysis.runSearch(DataModel dataModel, Parameters parameters) Executes a factor analysis search on the given data model using the provided parameters.Glasso.runSearch(DataModel dataModel, Parameters parameters) Runs a search algorithm to create a graph representation of the data.MimbuildBollen.search(DataModel dataModel, Parameters parameters) Executes a factor analysis search on the given data model using the provided parameters.MimbuildPca.search(DataModel dataModel, Parameters parameters) Executes a factor analysis search on the given data model using the provided parameters.Methods in edu.cmu.tetrad.algcomparison.algorithm.other with parameters of type GraphModifier and TypeMethodDescriptionFactorAnalysis.getComparisonGraph(Graph graph) Returns an undirected graph used for comparison.Glasso.getComparisonGraph(Graph graph) Retrieves a comparison graph for the given true directed graph.MimbuildBollen.getComparisonGraph(Graph graph) Returns an undirected graph used for comparison.MimbuildPca.getComparisonGraph(Graph graph) Returns an undirected graph used for comparison. -
Uses of Graph in edu.cmu.tetrad.algcomparison.algorithm.pairwise
Methods in edu.cmu.tetrad.algcomparison.algorithm.pairwise that return GraphModifier and TypeMethodDescriptionEb.getComparisonGraph(Graph graph) Returns a comparison graph based on the true directed graph, if there is one.FaskPw.getComparisonGraph(Graph graph) Returns a comparison graph based on the provided true directed graph.R1.getComparisonGraph(Graph graph) Returns a comparison graph based on the provided true directed graph.R2.getComparisonGraph(Graph graph) Returns a comparison graph for the given true directed graph.R3.getComparisonGraph(Graph graph) Generates a comparison graph based on the provided true directed graph.Rskew.getComparisonGraph(Graph graph) Returns a comparison graph based on the true directed graph.RskewE.getComparisonGraph(Graph graph) Returns a comparison graph based on the provided true directed graph.Skew.getComparisonGraph(Graph graph) Returns a comparison graph based on the true directed graph, if there is one.SkewE.getComparisonGraph(Graph graph) Returns a comparison graph based on the provided true directed graph.Tanh.getComparisonGraph(Graph graph) Returns a comparison graph for the given true directed graph, if there is one.Eb.runSearch(DataModel dataModel, Parameters parameters) Runs a search algorithm to orient the edges in a graph using the given data and parameters.FaskPw.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm using the given data model and parameters.R1.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm on the given data model with the provided parameters.R2.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm using the provided data model and parameters.R3.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm to orient edges in the input graph using the provided data.Rskew.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm using the provided data model and parameters.RskewE.runSearch(DataModel dataModel, Parameters parameters) Runs a search algorithm to find the orientation of edges in a graph using the given data model and parameters.Skew.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm to orient edges in the input graph using the given data model and parameters.SkewE.runSearch(DataModel dataModel, Parameters parameters) Executes the SkewE search algorithm.Tanh.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm using the given data model and parameters.Methods in edu.cmu.tetrad.algcomparison.algorithm.pairwise with parameters of type GraphModifier and TypeMethodDescriptionEb.getComparisonGraph(Graph graph) Returns a comparison graph based on the true directed graph, if there is one.FaskPw.getComparisonGraph(Graph graph) Returns a comparison graph based on the provided true directed graph.R1.getComparisonGraph(Graph graph) Returns a comparison graph based on the provided true directed graph.R2.getComparisonGraph(Graph graph) Returns a comparison graph for the given true directed graph.R3.getComparisonGraph(Graph graph) Generates a comparison graph based on the provided true directed graph.Rskew.getComparisonGraph(Graph graph) Returns a comparison graph based on the true directed graph.RskewE.getComparisonGraph(Graph graph) Returns a comparison graph based on the provided true directed graph.Skew.getComparisonGraph(Graph graph) Returns a comparison graph based on the true directed graph, if there is one.SkewE.getComparisonGraph(Graph graph) Returns a comparison graph based on the provided true directed graph.Tanh.getComparisonGraph(Graph graph) Returns a comparison graph for the given true directed graph, if there is one. -
Uses of Graph in edu.cmu.tetrad.algcomparison.graph
Methods in edu.cmu.tetrad.algcomparison.graph that return GraphModifier and TypeMethodDescriptionCyclic.createGraph(Parameters parameters) createGraph.ErdosRenyi.createGraph(Parameters parameters) createGraph.RandomForward.createGraph(Parameters parameters) Creates a random graph by adding forward edges.RandomGraph.createGraph(Parameters parameters) createGraph.RandomMim.createGraph(Parameters parameters) createGraph.RandomSingleFactorMim.createGraph(Parameters parameters) createGraph.RandomTwoFactorMim.createGraph(Parameters parameters) createGraph.ScaleFree.createGraph(Parameters parameters) createGraph.SingleGraph.createGraph(Parameters parameters) createGraph.Constructors in edu.cmu.tetrad.algcomparison.graph with parameters of type Graph -
Uses of Graph in edu.cmu.tetrad.algcomparison.independence
Methods in edu.cmu.tetrad.algcomparison.independence with parameters of type GraphModifier and TypeMethodDescriptionvoidSetter for the fieldgraph.voidsetGraph.Constructors in edu.cmu.tetrad.algcomparison.independence with parameters of type Graph -
Uses of Graph in edu.cmu.tetrad.algcomparison.score
Methods in edu.cmu.tetrad.algcomparison.score with parameters of type GraphModifier and TypeMethodDescriptionvoidSetter for the fieldgraph.Constructors in edu.cmu.tetrad.algcomparison.score with parameters of type Graph -
Uses of Graph in edu.cmu.tetrad.algcomparison.simulation
Methods in edu.cmu.tetrad.algcomparison.simulation that return GraphModifier and TypeMethodDescriptionAdditiveAnmSimulator.getTrueGraph(int index) Retrieves the true graph corresponding to the specified index.AdditiveNoiseSimulation.getTrueGraph(int index) Returns the true graph at the specified index.BayesNetSimulation.getTrueGraph(int index) Returns the true graph at the given index.ConditionalGaussianSimulation.getTrueGraph(int index) Returns the true graph at the given index.GeneralSemSimulation.getTrueGraph(int index) Returns the true graph at the specified index.GeneralSemSimulationSpecial1.getTrueGraph(int index) Returns the true graph at the given index.GpSemSimulation.getTrueGraph(int index) Returns the true graph at the given index.HybridCgSimulation.getTrueGraph(int index) Returns the true graph at the specified index.LeeHastieSimulation.getTrueGraph(int index) Returns the true graph at the given index.LgMnarSimulation.getTrueGraph(int index) Returns the true graph at the specified index.LinearFisherModel.getTrueGraph(int index) Returns the true graph at the given index.LinearSineSimulation.getTrueGraph(int index) Returns the true graph at the given index.NonlinearFunctionsOfLinear.getTrueGraph(int index) Returns the true graph at the specified index.PostnonlinearCausalModel.getTrueGraph(int index) Returns the true graph at the specified index.SemSimulation.getTrueGraph(int index) Returns the true graph at the specified index.SemThenDiscretize.getTrueGraph(int index) Returns the true graph at the given index.Simulation.getTrueGraph(int index) Returns the true graph at the given index.SingleDatasetSimulation.getTrueGraph(int index) Gets the true graph for the simulation at the specified index.StandardizedSemSimulation.getTrueGraph(int index) Returns the true graph at the given index.TimeSeriesSemSimulation.getTrueGraph(int index) Returns the true graph at the given index.static GraphLeeHastieSimulation.makeMixedGraph(Graph g, Map<String, Integer> m) makeMixedGraph.Methods in edu.cmu.tetrad.algcomparison.simulation with parameters of type GraphModifier and TypeMethodDescriptionstatic GeneralizedSemPmLeeHastieSimulation.GaussianCategoricalPm(Graph trueGraph, String paramTemplate) GaussianCategoricalPm.LeeHastieSimulation.getNodeDists(Graph g) getNodeDists.static GraphLeeHastieSimulation.makeMixedGraph(Graph g, Map<String, Integer> m) makeMixedGraph. -
Uses of Graph in edu.cmu.tetrad.algcomparison.statistic
Methods in edu.cmu.tetrad.algcomparison.statistic with parameters of type GraphModifier and TypeMethodDescriptionstatic booleanCommonAncestorTruePositiveBidirected.existsCommonAncestor(Graph trueGraph, Edge edge) Returns true if there is a common ancestor of X and Y in the graph.static booleanNumCommonMeasuredAncestorBidirected.existsCommonAncestor(Graph trueGraph, Edge edge) existsCommonAncestor.booleanNumDirectedEdgeNoMeasureAncestors.existsDirectedPathFromTo(Graph graph, Node node1, Node node2) existsDirectedPathFromTo.static booleanLatentCommonAncestorTruePositiveBidirected.existsLatentCommonAncestor(Graph trueGraph, Edge edge) existsLatentCommonAncestor.doubleAdjacencyFn.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleAdjacencyFp.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleAdjacencyFpr.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleAdjacencyPrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleAdjacencyRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleAdjacencyTn.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleAdjacencyTp.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleAdjacencyTpr.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleAncestorF1.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleAncestorPrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleAncestorRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleAncestralPrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleAncestralRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleArrowheadFn.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleArrowheadFp.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleArrowheadFpr.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleArrowheadPrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleArrowheadPrecisionCommonEdges.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleArrowheadRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleArrowheadRecallCommonEdges.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleArrowheadTn.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleArrowheadTp.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleAverageDegreeEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleAverageDegreeTrue.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleBicDiff.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleBicDiffPerRecord.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleBicEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleBicTrue.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleBidirectedEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleBidirectedFP.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleBidirectedLatentPrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the percentage of correctly identified bidirected edges in an estimated graph for which a latent confounder exists in the true graph.doubleBidirectedPrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleBidirectedRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleBidirectedTP.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleBidirectedTrue.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleCirclePrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the circle precision, which is the ratio of true positive arrows to the sum of true positive arrows and false positive arrows.doubleCircleRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the circle recall value for a given true graph, estimated graph, and data model.doubleCommonAncestorFalseNegativeBidirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleCommonAncestorFalsePositiveBidirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleCommonAncestorTruePositiveBidirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleCommonMeasuredAncestorRecallBidirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleCorrectSkeleton.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleDefiniteDirectedPathPrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleDefiniteDirectedPathRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleDensityEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleDensityTrue.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleElapsedCpuTime.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleF1Adj.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleF1All.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleF1Arrow.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleF1Circle.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleF1Tail.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleFalseNegativesAdjacencies.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleFalsePositiveAdjacencies.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleFBetaAdj.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleFractionDependentUnderAlternative.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleFractionDependentUnderNull.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleGraphExactlyRight.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleIdaAverageSquaredDistance.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the value of the IDA Average Squared Distance statistic.doubleIdaCheckAvgMaxSquaredDiffEstTrue.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the average maximum squared difference between the estimated and true values for a given data model and graphs.doubleIdaCheckAvgMinSquaredDiffEstTrue.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the average minimum squared difference between the estimated and true values for a given data model and graphs.doubleIdaCheckAvgSquaredDifference.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Retrieves the value of the statistic, which is the average squared difference between the estimated and true values for a given data model and graphs.doubleIdaMaximumSquaredDifference.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the value of the statistic "IDA Average Maximum Squared Difference".doubleIdaMinimumSquaredDifference.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the value of the statistic "IDA Average Minimum Squared Difference".doubleImpliedArrowOrientationRatioEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleImpliedArrowOrientationRatioEst2.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleImpliedOrientationRatioEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleImpliesLegalMag.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleKnowledgeSatisfied.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleLatentCommonAncestorFalseNegativeBidirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleLatentCommonAncestorFalsePositiveBidirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleLatentCommonAncestorRecallBidirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleLatentCommonAncestorTruePositiveBidirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleLegalCpdag.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the value indicating whether the estimated graph is a Legal CPDAG (1.0) or not (0.0).doubleLegalPag.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleLocalGraphPrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) This method calculates the Local Graph Precision.doubleLocalGraphRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) doubleMagCgScore.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleMagDgScore.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleMagSemScore.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleMarkovCheckAdPasses.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the Anderson Darling p-value > 0.05.doubleMarkovCheckAdPassesBestOf10.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the Anderson Darling p-value > 0.05.doubleMarkovCheckAndersonDarlingP.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the Anderson Darling P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).doubleMarkovCheckAndersonDarlingPBestOf10.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the Anderson Darling P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).doubleMarkovCheckBinomialP.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the Binomial P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).doubleMarkovCheckBinomialPBestOf10.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the Binomial P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).doubleMarkovCheckFractionDependentH0.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the Anderson Darling P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).doubleMarkovCheckFractionDependentH1.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the Anderson Darling P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).doubleMarkovCheckKolmogorovSmirnoffP.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the Kolmogorov-Smirnoff P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).doubleMarkovCheckKolmogorovSmirnoffPBestOf10.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the Kolmogorov-Smirnoff P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).doubleMarkovCheckKsPasses.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates whether Kolmogorov-Smirnoff P > 0.05.doubleMarkovCheckKsPassesBestOf10.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates whether Kolmogorov-Smirnoff P > 0.05.doubleMathewsCorrAdj.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleMathewsCorrArrow.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleMaximal.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Checks whether a PAG is maximal.doubleMaximalityCondition.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleMcGetNumTestsH0.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the number of tests done under the null hypothesis of independence for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).doubleMcGetNumTestsH1.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the number of tests done under the null hypothesis of independence for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).doubleNoAlmostCyclicPathsCondition.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNoCyclicPathsCondition.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNodesInCyclesPrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNodesInCyclesRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNonancestorPrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNonancestorRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNoSemidirectedF1.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNoSemidirectedPrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNoSemidirectedRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumAmbiguousTriples.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumberArrowsEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumberArrowsNotInUnshieldedCollidersEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumberCollidersEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumberEdgesEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumberEdgesInCollidersEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumberEdgesInUnshieldedCollidersEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumberEdgesTrue.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumberOfEdgesEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumberOfEdgesTrue.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumberTailsEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumberUnshieldedCollidersEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumBidirectedBothNonancestorAncestor.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumBidirectedEdgesEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumBidirectedEdgesTrue.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumColoredDD.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumColoredNL.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumColoredPD.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumColoredPL.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumCommonMeasuredAncestorBidirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumCompatibleDefiniteDirectedEdgeAncestors.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumCompatibleDirectedEdgeConfounded.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumCompatibleDirectedEdgeNonAncestors.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumCompatibleEdges.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumCompatiblePossiblyDirectedEdgeAncestors.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumCompatiblePossiblyDirectedEdgeNonAncestors.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumCompatibleVisibleNonancestors.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumCorrectBidirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the number of bidirected edges for which a latent confounder exists.doubleNumCorrectDDAncestors.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumCorrectPDAncestors.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumCorrectVisibleEdges.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumCoveringAdjacenciesInPag.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumDefinitelyDirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumDefinitelyNotDirectedPaths.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumDirectedEdgeAncestors.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumDirectedEdgeBnaMeasuredCounfounded.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumDirectedEdgeNoMeasureAncestors.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumDirectedEdgeNotAncNotRev.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumDirectedEdgeReversed.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumDirectedEdges.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumDirectedPathsEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumDirectedPathsTrue.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumDirectedShouldBePartiallyDirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumEdgeInEstInTrue.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumGenuineAdjacenciesInPag.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumIncorrectDDAncestors.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumIncorrectPDAncestors.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumIncorrectVisibleAncestors.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumLatentCommonAncestorBidirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumNondirectedEdges.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumParametersEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumPartiallyOrientedEdges.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumPossiblyDirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumUndirectedEdges.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumVisibleEdgeEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the number of X-->Y edges that are visible in the estimated PAG.doubleNumVisibleEdges.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumVisibleEdgeTrue.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Retrieves the number of X-->Y edges for which X-->Y is visible in the true PAG.doubleOrientationPrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleOrientationRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the Orientation Recall statistic, which measures the accuracy of the estimated orientation of edges in a graph compared to the true graph.doublePagAdjacencyPrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the adjacency precision of the estimated graph compared to the true graph.doublePagAdjacencyRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the adjacency recall compared to the true PAG (Partial Ancestral Graph).doubleParameterColumn.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doublePercentAmbiguous.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the percentage of ambiguous triples in the estimated graph compared to the true graph.doublePercentBidirectedEdges.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleProportionSemidirectedPathsNotReversedEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the proportion of semi(X, Y) in the estimated graph for which there is no semi(Y, X) in the true graph.doubleProportionSemidirectedPathsNotReversedTrue.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the proportion of semi(X, Y) paths in the true graph for which there is no semi(Y, Z) path in the estimated graph.doublePvalueDistanceToAlpha.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doublePvalueUniformityUnderNull.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleSemidirectedPathF1.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the F1 statistic for adjacencies.doubleSemidirectedPrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the semi-directed precision value.doubleSemidirectedRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the Semidirected-Rec statistic, which is the proportion of (X, Y) where if there is a semidirected path in the true graph, then there is also a semidirected path in the estimated graph.default doubleReturns the value of this statistic, given the true graph and the estimated graph.default doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleStatistic.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.default doubleStatistic.getValue(Graph trueGraph, Graph estGraph, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleStructuralHammingDistance.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleTailPrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the tail precision, which is the ratio of true positive arrows to the sum of true positive arrows and false positive arrows.doubleTailRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the tail recall value for a given true graph, estimated graph, and data model.doubleTrueDagFalseNegativesArrows.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the number of false negatives for arrows compared to the true DAG.doubleTrueDagFalseNegativesTails.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the number of false negatives for tails compared to the true DAG.doubleTrueDagFalsePositiveArrow.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the false positives for arrows compared to the true DAG.doubleTrueDagFalsePositiveTails.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the number of false positives for tails in the estimated graph compared to the true DAG.doubleTrueDagPrecisionArrow.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the proportion of X*->Y in the estimated graph for which there is no path Y~~>X in the true graph.doubleTrueDagPrecisionTails.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the proportion of X-->Y edges in the estimated graph for which there is a path X~~>Y in the true graph.doubleTrueDagRecallArrows.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleTrueDagRecallTails.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleTrueDagTruePositiveArrow.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the number of true positives for arrows compared to the true DAG.doubleTrueDagTruePositiveDirectedPathNonancestor.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the true positives for arrows compared to the true DAG.doubleTrueDagTruePositiveTails.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleTwoCycleFalseNegative.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleTwoCycleFalsePositive.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleTwoCyclePrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleTwoCycleRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleTwoCycleTruePositive.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph. -
Uses of Graph in edu.cmu.tetrad.algcomparison.statistic.utils
Constructors in edu.cmu.tetrad.algcomparison.statistic.utils with parameters of type GraphModifierConstructorDescriptionAdjacencyConfusion(Graph truth, Graph est) Constructs a new AdjacencyConfusion object from the given graphs.ArrowConfusion(Graph truth, Graph est) Constructs a new ArrowConfusion object.ArrowConfusion(Graph truth, Graph est, boolean truthAdj) Constructs a new ArrowConfusion object.BidirectedConfusion(Graph truth, Graph est) Constructs a new confusion matrix for bidirected edges.CircleConfusion(Graph truth, Graph est) Constructs a new CircleConfusion object.CircleConfusion(Graph truth, Graph est, boolean truthAdj) Constructs a new CircleConfusion object.LocalGraphConfusion(Graph trueGraph, Graph estGraph) Constructs a new LocalGraphConfusion object from the given graphs.OrientationConfusion(Graph truth, Graph est) Constructor for OrientationConfusion.TailConfusion(Graph truth, Graph est) Constructor for TailConfusion. -
Uses of Graph in edu.cmu.tetrad.bayes
Methods in edu.cmu.tetrad.bayes that return GraphModifier and TypeMethodDescriptionBayesIm.getDag()$DescriptionBayesPm.getDag()Returns the DAG.DirichletBayesIm.getDag()getDag.MlBayesIm.getDag()getDag.MlBayesImObs.getDag()getDag.UpdatedBayesIm.getDag()getDag.ApproximateUpdater.getManipulatedGraph()getManipulatedGraph.CptInvariantUpdater.getManipulatedGraph()getManipulatedGraph.Identifiability.getManipulatedGraph()getManipulatedGraph.JunctionTreeUpdater.getManipulatedGraph()Returns the manipulated graph.ManipulatingBayesUpdater.getManipulatedGraph()Returns the manipulated graph.RowSummingExactUpdater.getManipulatedGraph()getManipulatedGraph.static GraphCreate a moral graph.Methods in edu.cmu.tetrad.bayes that return types with arguments of type GraphModifier and TypeMethodDescriptionThis method takes an acyclic graph as input and returns a list of graphs each of which is a modification of the original graph with either an edge deleted, added or reversed.Methods in edu.cmu.tetrad.bayes with parameters of type GraphModifier and TypeMethodDescriptionstatic voidApply Tarjan and Yannakakis (1984) fill in algorithm for graph triangulation.This method takes an acyclic graph as input and returns a list of graphs each of which is a modification of the original graph with either an edge deleted, added or reversed.GraphTools.getCliques(Node[] ordering, Graph graph) Get cliques in a decomposable graph.BayesProperties.getLikelihoodRatioP(Graph graph0) Calculates the p-value of the graph with respect to the given data, against the complete model as an alternative.static Node[]GraphTools.getMaximumCardinalityOrdering(Graph graph) Perform Tarjan and Yannakakis (1984) maximum cardinality search (MCS) to get the maximum cardinality ordering.static GraphCreate a moral graph.voidSetter for the fieldgraph.Constructors in edu.cmu.tetrad.bayes with parameters of type GraphModifierConstructorDescriptionConstruct a new BayesPm using the given DAG, assigning each variable two values named "value1" and "value2" unless nodes are discrete variables with categories already defined.Constructs a new BayesPm from the given DAG, assigning each variable a random number of values betweenlowerBoundandupperBound.Constructs a new BayesPm using a given DAG, using as much information from the old BayesPm as possible.Constructs a new BayesPm from the given DAG, using as much information from the old BayesPm as possible.EmBayesProperties(DataSet dataSet, Graph graph) Constructor for EmBayesProperties.JunctionTreeAlgorithm(Graph graph, DataModel dataModel) Constructor for JunctionTreeAlgorithm. -
Uses of Graph in edu.cmu.tetrad.calibration
Methods in edu.cmu.tetrad.calibration that return GraphModifier and TypeMethodDescriptionDataForCalibrationRfci.learnBNRFCI(DataSet bootstrapSample, int depth, Graph truePag) learnBNRFCI.DataForCalibrationRfci.makeDAG(int numVars, double edgesPerNode, int numLatentConfounders) makeDAG.Methods in edu.cmu.tetrad.calibration with parameters of type GraphModifier and TypeMethodDescriptionDataForCalibrationRfci.learnBNRFCI(DataSet bootstrapSample, int depth, Graph truePag) learnBNRFCI. -
Uses of Graph in edu.cmu.tetrad.data
Methods in edu.cmu.tetrad.data with parameters of type GraphConstructors in edu.cmu.tetrad.data with parameters of type Graph -
Uses of Graph in edu.cmu.tetrad.data.simulation
Methods in edu.cmu.tetrad.data.simulation that return GraphModifier and TypeMethodDescriptionLoadContinuousDataAndGraphs.getTrueGraph(int index) Returns the true graph at the given index.LoadContinuousDataAndSingleGraph.getTrueGraph(int index) Returns the true graph at the given index.LoadContinuousDataSmithSim.getTrueGraph(int index) Returns the true graph at the given index.LoadDataAndGraphs.getTrueGraph(int index) Returns the true graph at the given index.LoadDataFromFileWithoutGraph.getTrueGraph(int index) Returns the true graph at the given index.readGraph. -
Uses of Graph in edu.cmu.tetrad.graph
Classes in edu.cmu.tetrad.graph that implement GraphModifier and TypeClassDescriptionfinal classRepresents a directed acyclic graph--that is, a graph containing only directed edges, with no cycles.classStores a graph a list of lists of edges adjacent to each node in the graph, with an additional list storing all of the edges in the graph.classImplements a graph allowing nodes in the getModel time lag to have parents taken from previous time lags.classEdgeListGraph subclass that applies anEdgeReplicationPolicywhenever edges are added/removed or endpoints are oriented.final classRepresents the graphical structure of a structural equation model.classRepresents a time series graph--that is, a graph with a fixed number S of lags, with edges into initial lags only--that is, into nodes in the first R lags, for some R.Methods in edu.cmu.tetrad.graph that return GraphModifier and TypeMethodDescriptionstatic GraphGraphUtils.bidirectedToUndirected(Graph graph) Converts a bidirected graph to an undirected graph.static GraphGraphTransforms.calcAdjacencyGraph(Graph dag) Calculates the adjacency graph for the given Directed Acyclic Graph (DAG).static GraphGraphUtils.completeGraph(Graph graph) completeGraph.static GraphRandomMim.constructRandomMim(List<RandomMim.LatentGroupSpec> specs, Integer metaEdgeCount, int numLatentMeasuredImpureParents, int numMeasuredMeasuredImpureParents, int numMeasuredMeasuredImpureAssociations, RandomMim.LatentLinkMode latentLinkMode, Random rng) Constructs a random meta-graph as a Multiple Indicator Model (MIM) with specified structural constraints.static GraphConverts a string spec of a graph--for example, "X1-->X2, X1---X3, X2o->X4, X3<->X4" to a Graph.default GraphGraph.copy()Creates and returns a copy of the current graph.static GraphGraphTransforms.dagFromCpdag(Graph graph) Converts a completed partially directed acyclic graph (CPDAG) into a directed acyclic graph (DAG).static GraphGraphTransforms.dagFromCpdag(Graph graph, boolean verbose) Converts a completed partially directed acyclic graph (CPDAG) into a directed acyclic graph (DAG).static GraphGraphTransforms.dagFromCpdag(Graph graph, boolean meekPreventCycles, boolean verbose) Converts a completed partially directed acyclic graph (CPDAG) into a directed acyclic graph (DAG).static GraphGraphTransforms.dagFromCpdag(Graph graph, Knowledge knowledge) dagFromCpdag.static GraphGraphTransforms.dagFromCpdag(Graph cpdag, Knowledge knowledge, boolean verbose) Returns a random DAG from the given CPDAG.static GraphGraphTransforms.dagToCpdag(Graph dag) Returns the completed partially directed acyclic graph (CPDAG) for a given directed acyclic graph (DAG).static @NotNull GraphConverts a Directed Acyclic Graph (DAG) to a Maximal Ancestral Graph (MAG) by adding arrows to the edges.static @NotNull GraphConverts a Directed Acyclic Graph (DAG) to a Partial Ancestral Graph (PAG) using the DagToPag algorithm.static GraphGraphUtils.emptyGraph(int numNodes) Creates an empty graph with the specified number of nodes.static @NotNull GraphGraphUtils.fixDirections(Graph graph) Processes the given graph by fixing the directions of edges to ensure consistency, flipping edges where necessary, and optionally preserving ancillary graph information.static GraphGraphUtils.getAdjacencySubgraphWithTargetNode(Graph graph, Node target) Calculates the subgraph over the adjacency of a target node for a DAG, CPDAG, MAG, or PAG.EdgeListGraph.getAncillaryGraph(String name) Returns the ancillary graph with the given name, or null if no ancillary graph by that name has been set.static GraphGraphUtils.getComparisonGraph(Graph graph, Parameters params) Returns a comparison graph based on the specified parameters.static GraphGenerates a directed acyclic graph (DAG) based on the given list of nodes using Raskutti and Uhler's method.RandomGraph.UniformGraphGenerator.getDag()Returns the parent matrix for the graph.Returns the parent matrix for the graph.static GraphGraphUtils.getGraphWithoutXToY(Graph G, Node x, Node y, GraphUtils.GraphType graphType) Returns a graph that is obtained by removing the edge from node x to node y from the input graph.static GraphGraphUtils.getMarkovBlanketSubgraphWithTargetNode(Graph graph, Node target) Calculates the subgraph over the Markov blanket of a target node for a DAG, CPDAG, MAG, or PAG.static GraphGraphUtils.getParentsSubgraphWithTargetNode(Graph graph, Node target) Calculates the subgraph over the parents of a target node for a DAG, CPDAG, MAG, or PAG.static GraphGraphUtils.guaranteePag(Graph pag, FciOrient fciOrient, Knowledge knowledge, Set<Triple> knownColliders, boolean verbose, Set<Node> selection) Guarantees the correctness of a Partial Ancestral Graph (PAG) by repairing faulty structures such as cycles, violations of maximality, and incorrectly oriented edges.static GraphloadGraph.static GraphGraphSaveLoadUtils.loadGraphAmatCpdag(File file) Loads a CPDAG in the "amat.cpdag" format of PCALG.static GraphGraphSaveLoadUtils.loadGraphAmatPag(File file) Loads a PAG in the "amat.pag" format of PCALG.static GraphGraphSaveLoadUtils.loadGraphBNTPcMatrix(List<Node> vars, DataSet dataSet) loadGraphBNTPcMatrix.static GraphGraphSaveLoadUtils.loadGraphJson(File file) loadGraphJson.static GraphGraphSaveLoadUtils.loadGraphRuben(File file) loadGraphRuben.static GraphGraphSaveLoadUtils.loadGraphTxt(File file) loadGraphTxt.static GraphGraphSaveLoadUtils.loadRSpecial(File file) loadRSpecial.static GraphConverts a maximal ancestral graph (MAG) into a partial ancestral graph (PAG).static GraphGraphUtils.markovBlanketSubgraph(Node target, Graph graph) Calculates the subgraph over the Markov blanket of a target node in a given DAG, CPDAG, MAG, or PAG.static GraphGraphFactoryUtil.newGraph(boolean replicating) Creates a new instance of a Graph with the specified replication policy.static GraphCreates a new instance of a Graph based on the given graph.static GraphCreates a new instance of a Graph initialized with the provided list of nodes.static GraphGraphUtils.nondirectedGraph(Graph graph) undirectedGraph.static GraphGraphSaveLoadUtils.parseGraphXml(nu.xom.Element graphElement, Map<String, Node> nodes) parseGraphXml.static GraphRandomGraph.randomCyclicGraph2(int numNodes, int numEdges, int maxDegree) Makes a cyclic graph by repeatedly adding cycles of length of 3, 4, or 5 to the graph, then finally adding two cycles.static GraphRandomGraph.randomCyclicGraph3(int numNodes, int numEdges, int maxDegree, double probCycle, double probTwoCycle) Makes a cyclic graph by repeatedly adding cycles of length of 3, 4, or 5 to the graph, then finally adding two cycles.static GraphRandomGraph.randomDag(int numNodes, int numLatentConfounders, int maxNumEdges, int maxDegree, int maxIndegree, int maxOutdegree, boolean connected) Generates a random Directed Acyclic Graph (DAG) with the specified parameters.static GraphRandomGraph.randomDag(int numNodes, int numLatentConfounders, int maxNumEdges, int maxDegree, int maxIndegree, int maxOutdegree, boolean connected, long seed) Generates a random Directed Acyclic Graph (DAG) based on specified constraints.static GraphRandomGraph.randomGraph(int numMeasures, int numLatentConfounders, int numEdges, int maxDegree, int maxIndegree, int maxOutdegree, boolean connected) Generates a random graph based on the given parameters.static GraphRandomGraph.randomGraph(int numMeasures, int numLatentConfounders, int numEdges, int maxDegree, int maxIndegree, int maxOutdegree, boolean connected, long seed) Generates a random graph based on the specified parameters.static GraphRandomGraph.randomGraph(List<Node> nodes, int numLatentConfounders, int maxNumEdges, int maxDegree, int maxIndegree, int maxOutdegree, boolean connected) Generates a random graph based on the given parameters.static GraphRandomGraph.randomGraph(List<Node> nodes, int numLatentConfounders, int maxNumEdges, int maxDegree, int maxIndegree, int maxOutdegree, boolean connected, long seed) Generates a random graph with the specified parameters and properties.static GraphRandomGraph.randomGraphRandomForwardEdges(int numNodes, int numLatentConfounders, int numEdges, int maxDegree, int maxIndegree, int maxOutdegree, boolean connected, long seed) Generates a random graph with the given parameters and random forward edges.static GraphRandomGraph.randomGraphRandomForwardEdges(List<Node> nodes, int numLatentConfounders, int numEdges, int maxDegree, int maxIndegree, int maxOutdegree, boolean connected) Generates a random graph with forward edges.static GraphRandomGraph.randomGraphRandomForwardEdges(List<Node> nodes, int numLatentConfounders, int numEdges, int maxDegree, int maxIndegree, int maxOutdegree, boolean connected, boolean layoutAsCircle, long seed) Generates a random graph with forward edges.static GraphRandomGraph.randomGraphRandomForwardEdges(List<Node> nodes, int numLatentConfounders, int numEdges, int maxDegree, int maxIndegree, int maxOutdegree, boolean connected, long seed) Generates a random directed acyclic graph with specified properties, including constraints on maximum degree, indegree, and outdegree, with random forward edges.static GraphRandomGraph.randomGraphUniform(List<Node> nodes, int numLatentConfounders, int maxNumEdges, int maxDegree, int maxIndegree, int maxOutdegree, boolean connected, int numIterations) Generates a random graph using UniformGraphGenerator with the specified parameters.static GraphRandomGraph.randomScaleFreeGraph(int numNodes, int numLatentConfounders, double alpha, double beta, double delta_in, double delta_out) Generates a random scale-free graph.static GraphGraphSaveLoadUtils.readerToGraphJson(Reader reader) readerToGraphJson.static GraphGraphSaveLoadUtils.readerToGraphRuben(Reader reader) readerToGraphRuben.static GraphGraphSaveLoadUtils.readerToGraphTxt(Reader reader) readerToGraphTxt.static GraphGraphSaveLoadUtils.readerToGraphTxt(String graphString) readerToGraphTxt.static GraphGraphUtils.removeBidirectedOrientations(Graph estCpdag) removeBidirectedOrientations.static GraphGraphUtils.replaceNodes(Graph originalGraph, List<Node> newVariables) Converts the given graph,originalGraph, to use the new variables (with the same names as the old).static GraphGraphUtils.restrictToMeasured(Graph graph) Removes all latent nodes from the graph and returns the modified graph.static GraphGraphTransforms.revertToUnshieldedColliders(Graph graph, boolean circles) Reverts the provided graph to its unshielded colliders, with other endpoints oriented either as circles (PAG case) or tails (CPDAG case).Returns a subgraph of the current graph consisting only of the specified nodes.Constructs and returns a subgraph consisting of a given subset of the nodes of this graph together with the edges between them.Constructs and returns a subgraph consisting of a given subset of the nodes of this graph together with the edges between them.Constructs and returns a subgraph consisting of a given subset of the nodes of this graph together with the edges between them.Constructs and returns a subgraph consisting of a given subset of the nodes of this graph together with the edges between them.Returns a subgraph of the current graph based on the provided nodes.static GraphTrims the given graph based on the specified trimming style.static GraphGraphUtils.undirectedGraph(Graph graph) undirectedGraph.static GraphGraphUtils.undirectedToBidirected(Graph graph) Converts an undirected graph to a bidirected graph.static GraphGraphTransforms.zhangMagFromPag(Graph pag) Transforms a partial ancestral graph (PAG) into a maximal ancestral graph (MAG) using Zhang's 2008 Theorem 2.Methods in edu.cmu.tetrad.graph that return types with arguments of type GraphModifier and TypeMethodDescriptionGraphTransforms.generateCpdagDags(Graph cpdag, boolean orientBidirectedEdges) Generates the list of DAGs in the given cpdag.GraphTransforms.getAllGraphsByDirectingUndirectedEdges(Graph skeleton) Returns a list of all possible graphs obtained by directing undirected edges in the given graph.GraphTransforms.getDagsInCpdagMeek(Graph cpdag, Knowledge knowledge) Retrieves a list of directed acyclic graphs (DAGs) within the given completed partially directed acyclic graph (CPDAG) using the Meek rules.Methods in edu.cmu.tetrad.graph with parameters of type GraphModifier and TypeMethodDescriptionstatic voidGraphUtils.addEdgeSpecializationMarkup(Graph graph) Adds markups for edge specializations for the edges in the given graph.static voidGraphUtils.addForbiddenReverseEdgesForDirectedEdges(Graph graph, Knowledge knowledge) Adds forbidden reverse edges for directed edges in the given graph based on the knowledge.static voidRandomGraph.addTwoCycles(Graph graph, int numTwoCycles) addTwoCycles.booleanTriple.alongPathIn(Graph graph) alongPathIn.GraphUtils.anteriority(Graph G, Node... x) Computes the anteriority of the given nodes in a graph.static voidLayoutUtil.arrangeByLayout(Graph graph, HashMap<String, PointXy> layout) arrangeByLayout.static booleanLayoutUtil.arrangeBySourceGraph(Graph resultGraph, Graph sourceGraph) Arranges the nodes in the result graph according to their positions in the source graph.static GraphGraphUtils.bidirectedToUndirected(Graph graph) Converts a bidirected graph to an undirected graph.static GraphGraphTransforms.calcAdjacencyGraph(Graph dag) Calculates the adjacency graph for the given Directed Acyclic Graph (DAG).static voidLayoutUtil.circleLayout(Graph graph) Arranges the nodes in the graph in a circle.static booleanDetermines if the collider is allowed.static GraphGraphUtils.completeGraph(Graph graph) completeGraph.static booleanGraphUtils.containsBidirectedEdge(Graph graph) Checks if a given graph contains a bidirected edge.static nu.xom.ElementGraphSaveLoadUtils.convertToXml(Graph graph) convertToXml.static intGraphUtils.countAdjErrors(Graph graph1, Graph graph2) Counts the adjacencies that are in graph1 but not in graph2.static GraphGraphTransforms.dagFromCpdag(Graph graph) Converts a completed partially directed acyclic graph (CPDAG) into a directed acyclic graph (DAG).static GraphGraphTransforms.dagFromCpdag(Graph graph, boolean verbose) Converts a completed partially directed acyclic graph (CPDAG) into a directed acyclic graph (DAG).static GraphGraphTransforms.dagFromCpdag(Graph graph, boolean meekPreventCycles, boolean verbose) Converts a completed partially directed acyclic graph (CPDAG) into a directed acyclic graph (DAG).static GraphGraphTransforms.dagFromCpdag(Graph graph, Knowledge knowledge) dagFromCpdag.static GraphGraphTransforms.dagFromCpdag(Graph cpdag, Knowledge knowledge, boolean verbose) Returns a random DAG from the given CPDAG.static GraphGraphTransforms.dagToCpdag(Graph dag) Returns the completed partially directed acyclic graph (CPDAG) for a given directed acyclic graph (DAG).static @NotNull GraphConverts a Directed Acyclic Graph (DAG) to a Maximal Ancestral Graph (MAG) by adding arrows to the edges.static @NotNull GraphConverts a Directed Acyclic Graph (DAG) to a Partial Ancestral Graph (PAG) using the DagToPag algorithm.static voidLayoutUtil.defaultLayout(Graph graph) Arranges the nodes in the graph in a circle if there are 20 or fewer nodes, otherwise arranges them in a square.static intCalculates the maximum degree of a graph.Calculates the district of a given node in a graph.Returns D-SEP(x, y) for a MAG G.Returns D-SEP(x, y) for a MAG G (or inducing path graph G, as in Causation, Prediction and Search).Returns D-SEP(x, y) for a MAG G.GraphUtils.dsepReachability(Node x, Node y, Graph G) Returns D-SEP(x, y) for a MAG G.static int[][]GraphUtils.edgeMisclassificationCounts(Graph leftGraph, Graph topGraph, boolean print) Computes the misclassification counts for each edge in the given graphs.static StringMisclassificationUtils.edgeMisclassifications(Graph estGraph, Graph refGraph) edgeMisclassifications.static StringMisclassificationUtils.endpointMisclassification(Graph estGraph, Graph refGraph) endpointMisclassification.static voidGraphUtils.fciOrientbk(Knowledge knowledge, Graph graph, List<Node> variables) Attempts to orient the edges in the graph based on the given knowledge.static @NotNull GraphGraphUtils.fixDirections(Graph graph) Processes the given graph by fixing the directions of edges to ensure consistency, flipping edges where necessary, and optionally preserving ancillary graph information.static voidRandomGraph.fixLatents1(int numLatentConfounders, Graph graph) fixLatents1.static voidRandomGraph.fixLatents4(int numLatentConfounders, Graph graph) fixLatents4.static voidLayoutUtil.fruchtermanReingoldLayout(Graph graph) fruchtermanReingoldLayout.GraphTransforms.generateCpdagDags(Graph cpdag, boolean orientBidirectedEdges) Generates the list of DAGs in the given cpdag.static GraphGraphUtils.getAdjacencySubgraphWithTargetNode(Graph graph, Node target) Calculates the subgraph over the adjacency of a target node for a DAG, CPDAG, MAG, or PAG.GraphTransforms.getAllGraphsByDirectingUndirectedEdges(Graph skeleton) Returns a list of all possible graphs obtained by directing undirected edges in the given graph.GraphUtils.getAmbiguousTriplesFromGraph(Node node, Graph graph) Retrieves the list of ambiguous triples from the given graph for a given node.static NodeGraphUtils.getAssociatedNode(Node errorNode, Graph graph) Returns the associated node for the given error node in the specified graph.GraphSaveLoadUtils.getCollidersFromGraph(Node node, Graph graph) getCollidersFromGraph.static GraphGraphUtils.getComparisonGraph(Graph graph, Parameters params) Returns a comparison graph based on the specified parameters.static GraphGenerates a directed acyclic graph (DAG) based on the given list of nodes using Raskutti and Uhler's method.GraphTransforms.getDagsInCpdagMeek(Graph cpdag, Knowledge knowledge) Retrieves a list of directed acyclic graphs (DAGs) within the given completed partially directed acyclic graph (CPDAG) using the Meek rules.static intReturns the maximum degree of a graph.GraphUtils.getDottedUnderlinedTriplesFromGraph(Node node, Graph graph) Retrieves the list of dotted and underlined triples from the given graph, with the specified node as the middle node.static GraphGraphUtils.getGraphWithoutXToY(Graph G, Node x, Node y, GraphUtils.GraphType graphType) Returns a graph that is obtained by removing the edge from node x to node y from the input graph.static intGraphUtils.getIndegree(Graph graph) Calculates the maximum indegree in a given graph.static GraphGraphUtils.getMarkovBlanketSubgraphWithTargetNode(Graph graph, Node target) Calculates the subgraph over the Markov blanket of a target node for a DAG, CPDAG, MAG, or PAG.static intGraphUtils.getNumCoveringAdjacenciesInPag(Graph trueGraph, Graph estGraph) Returns the number of covering edges in the given estimated partial ancestral graph (PAG) with respect to the given true PAG.static intGraphUtils.getNumInducedAdjacenciesInPag(Graph trueGraph, Graph estGraph) Calculates the number of induced adjacencies in the given estiamted Partial Ancestral (PAG) with respect to the given true PAG.Paths.getParents(List<Node> pi, int p, Graph g, boolean verbose, boolean allowSelectionBias) Returns the parents of the node at index p, calculated using Pearl's method.static GraphGraphUtils.getParentsSubgraphWithTargetNode(Graph graph, Node target) Calculates the subgraph over the parents of a target node for a DAG, CPDAG, MAG, or PAG.static NodeGraphUtils.getTrekSource(Graph graph, List<Node> trek) This method returns the source node of a given trek in a graph.static GraphUtils.TwoCycleErrorsGraphUtils.getTwoCycleErrors(Graph trueGraph, Graph estGraph) Returns the TwoCycleErrors object that represents errors for direct feedback loops.GraphUtils.getUnderlinedTriplesFromGraph(Node node, Graph graph) Retrieves the underlined triples from the given graph that involve the specified node.static StringGraphUtils.graphAttributesToText(Graph graph, String title) Converts the attributes of a given graph into a text format.static StringGraphUtils.graphEdgesToText(Graph graph, String title) Converts the edges of a graph to text representation.static StringGraphUtils.graphNodeAttributesToText(Graph graph, String title, char delimiter) Converts the attributes of nodes in a graph to text format.static StringGraphUtils.graphNodesToText(Graph graph, String title, char delimiter) Converts the nodes of a graph to a formatted text representation.static StringGraphSaveLoadUtils.graphRMatrixTxt(Graph graph) graphRMatrixTxt.static StringGraphSaveLoadUtils.graphToAmatCpag(Graph g) Converts a given graph into an adjacency matrix in CPAG format.static StringGraphSaveLoadUtils.graphToAmatPag(Graph g) Saves a PAG in the "amat.pag" format of PCALG.static StringGraphSaveLoadUtils.graphToDot(Graph graph) Converts a graph to a Graphviz .dot filestatic voidGraphSaveLoadUtils.graphToDot(Graph graph, File file) graphToDot.static StringGraphSaveLoadUtils.graphToLavaan(Graph g) graphToLavaan.static StringGraphSaveLoadUtils.graphToPcalg(Graph g) graphToPcalg.static StringGraphSaveLoadUtils.graphToXml(Graph graph) graphToXml.static GraphGraphUtils.guaranteePag(Graph pag, FciOrient fciOrient, Knowledge knowledge, Set<Triple> knownColliders, boolean verbose, Set<Node> selection) Guarantees the correctness of a Partial Ancestral Graph (PAG) by repairing faulty structures such as cycles, violations of maximality, and incorrectly oriented edges.static booleanGraphUtils.isClique(Collection<Node> set, Graph graph) Checks if the given set of nodes forms a clique in the specified graph.static booleanChecks if the given trek in a graph is a confounding trek.static booleanGraphUtils.isCorrectBidirectedEdge(Edge edge, Graph trueGraph) Determines if the given bidirected edge has a latent confounder in the true graph--that is, whether for X <-> Y there is a latent node Z such that X <- (Z) -> Y.static booleanGraphUtils.isCoveringAdjacency(Graph trueGraph, Graph estGraph, Node x, Node y) Determines whether an edge between two nodes in the estimated graph is covering a collider or noncollider in the true graph.static booleanDetermines if the given graph is a directed acyclic graph (DAG).booleanCheck to see if a set of variables Z satisfies the back-door criterion relative to node x and node y.static voidLayoutUtil.kamadaKawaiLayout(Graph graph, boolean randomlyInitialized, double naturalEdgeLength, double springConstant, double stopEnergy) kamadaKawaiLayout.static voidLayoutUtil.layoutByCausalOrder(Graph graph) layoutByCausalOrder.static LinkedList<Triple> GraphUtils.listColliderTriples(Graph graph) Generates a list of triples where a node acts as a collider in a given graph.static StringGraphSaveLoadUtils.loadGraphRMatrix(Graph graph) loadGraphRMatrix.static StringGraphSaveLoadUtils.loadGraphTxt(Graph graph, boolean pagEdgeSpecializationMarked) Converts a given graph to human-readable text format.static doubleGraphUtils.localMarkovInitializePValues(Graph dag, boolean preserveMarkov, IndependenceTest test, Map<org.apache.commons.lang3.tuple.Pair<Node, Node>, Set<Double>> pValues) Initializes and evaluates p-values for local Markov properties in a given graph.static GraphConverts a maximal ancestral graph (MAG) into a partial ancestral graph (PAG).GraphUtils.markovBlanket(Node x, Graph G) Returns a Markov blanket of a node for a DAG, CPDAG, MAG, or PAG.static GraphGraphUtils.markovBlanketSubgraph(Node target, Graph graph) Calculates the subgraph over the Markov blanket of a target node in a given DAG, CPDAG, MAG, or PAG.GraphUtils.maximalCliques(Graph graph, List<Node> nodes) Finds all maximal cliques in a given graph.static GraphCreates a new instance of a Graph based on the given graph.static GraphGraphUtils.nondirectedGraph(Graph graph) undirectedGraph.static voidGraphUtils.orientCollider(Graph g, Node x, Node z, Node y) Orients the edges of the given graph by setting both specified nodes as arrow endpoints directed towards the specified target node.static StringGraphUtils.pathString(Graph graph, Node... x) Generates a string representation of a path in a given graph, starting from the specified nodes.static StringGraphUtils.pathString(Graph graph, List<Node> path, boolean showBlocked) Constructs a string representation of a path in a graph.static StringReturns a string representation of the given path in the graph, considering the conditioning variables.static StringGraphUtils.pathString(Graph graph, List<Node> path, Set<Node> conditioningVars, boolean showBlocked, boolean allowSelectionBias) Returns a string representation of the given path in the graph, with additional information about conditioning variables.static StringTriple.pathString(Graph graph, Node x, Node y, Node z) pathString.static voidGraphUtils.recallInitialColliders(Graph pag, Set<Triple> initialColliders, Knowledge knowledge) Recall unshielded triples in a given graph.static GraphGraphUtils.removeBidirectedOrientations(Graph estCpdag) removeBidirectedOrientations.static voidGraphUtils.removeNonSkeletonEdges(Graph graph, Knowledge knowledge) Removes non-skeleton edges from the given graph based on the provided knowledge.static voidGraphUtils.reorientWithCircles(Graph pag, boolean verbose) Reorients all edges in a Graph as o-o.static booleanGraphUtils.repairMaximality(Graph pag, boolean verbose, Set<Node> selection, FciOrient fciOrient, Knowledge knowledge, Set<Triple> knownColliders) Repairs the maximality of a PAG (Partial Ancestral Graph) by ensuring that any inducing path between two nodes not currently adjacent in the graph results in an added non-directed edge.static GraphGraphUtils.replaceNodes(Graph originalGraph, List<Node> newVariables) Converts the given graph,originalGraph, to use the new variables (with the same names as the old).GraphUtils.replaceNodes(List<Node> originalNodes, Graph graph) Converts the given list of nodes,originalNodes, to use the replacement nodes for them by the same name in the givengraph.static voidLayoutUtil.repositionLatents(Graph graph) Repositions latent nodes in the given graph based on their non-latent neighbors.static GraphGraphUtils.restrictToMeasured(Graph graph) Removes all latent nodes from the graph and returns the modified graph.static GraphGraphTransforms.revertToUnshieldedColliders(Graph graph, boolean circles) Reverts the provided graph to its unshielded colliders, with other endpoints oriented either as circles (PAG case) or tails (CPDAG case).static voidsaveGraph.voidEdgeListGraph.setAncillaryGraph(String name, Graph graph) Sets an ancillary graph with the given name.static voidLayoutUtil.squareLayout(Graph graph) squareLayout.GraphUtils.stronglyConnectedComponents(Graph g) Compute strongly connected components (SCCs) of a directed graph.voidDag.transferAttributes(Graph graph) Transfers attributes from the given graph to the current graph.voidEdgeListGraph.transferAttributes(Graph graph) transferAttributes.voidGraph.transferAttributes(Graph graph) transferAttributes.voidLagGraph.transferAttributes(Graph graph) transferAttributes.voidSemGraph.transferAttributes(Graph graph) transferAttributes.voidTimeLagGraph.transferAttributes(Graph graph) Transfers attributes from the given graph to the current graph.voidDag.transferNodesAndEdges(Graph graph) Transfers nodes and edges from the given graph to the current graph.voidEdgeListGraph.transferNodesAndEdges(Graph graph) Transfers nodes and edges from one graph to another.voidGraph.transferNodesAndEdges(Graph graph) Transfers nodes and edges from one graph to another.voidLagGraph.transferNodesAndEdges(Graph graph) Transfers nodes and edges from one graph to another.voidSemGraph.transferNodesAndEdges(Graph graph) Transfers nodes and edges from one graph to another.voidTimeLagGraph.transferNodesAndEdges(Graph graph) Transfers nodes and edges from the given graph to the current graph.static voidGraphTransforms.transformCpdagIntoDag(Graph graph, Knowledge knowledge, boolean verbose) Transforms a completed partially directed acyclic graph (CPDAG) into a directed acyclic graph (DAG) by orienting the undirected edges in the CPDAG.static GraphTrims the given graph based on the specified trimming style.static booleanChecks if three nodes are connected in a graph.static GraphGraphUtils.undirectedGraph(Graph graph) undirectedGraph.static GraphGraphUtils.undirectedToBidirected(Graph graph) Converts an undirected graph to a bidirected graph.GraphUtils.visibleEdgeAdjustments1(Graph G, Node x, Node y, int numSmallestSizes, GraphUtils.GraphType graphType) Calculates visual-edge adjustments given graph G between two nodes x and y that are subsets of MB(X).GraphUtils.visibleEdgeAdjustments3(Graph G, Node x, Node y, int numSmallestSizes, GraphUtils.GraphType graphType) This method calculates visible-edge adjustments for a given graph, two nodes, a number of smallest sizes, and a graph type.static GraphGraphTransforms.zhangMagFromPag(Graph pag) Transforms a partial ancestral graph (PAG) into a maximal ancestral graph (MAG) using Zhang's 2008 Theorem 2.Method parameters in edu.cmu.tetrad.graph with type arguments of type GraphModifier and TypeMethodDescriptionstatic StringGraphUtils.getIntersectionComparisonString(List<Graph> graphs) Generates a comparison string for the intersection of multiple graphs.Constructors in edu.cmu.tetrad.graph with parameters of type GraphModifierConstructorDescriptionConstructs a new directed acyclic graph from the given graph object.EdgeListGraph(Graph graph) Constructs a EdgeListGraph using the nodes and edges of the given graph.FruchtermanReingoldLayout(Graph graph) Constructs a new FruchtermanReingoldLayout for the given graph.KamadaKawaiLayout(Graph graph) Constructs a new Kamada-Kawai layout for the given graph.Constructor for Paths.ReplicatingGraph(Graph g, EdgeReplicationPolicy policy) Creates a newReplicatingGraphby copying the structure and attributes from the provided graph and applying the specified edge replication policy.Constructs a new SemGraph from the nodes and edges of the given graph.Underlines(Graph graph) Constructor for Underlines. -
Uses of Graph in edu.cmu.tetrad.hybridcg
Methods in edu.cmu.tetrad.hybridcg that return GraphModifier and TypeMethodDescriptionHybridCgModel.HybridCgPm.getGraph()Retrieves the directed acyclic graph (DAG) associated with this model.Constructors in edu.cmu.tetrad.hybridcg with parameters of type GraphModifierConstructorDescriptionHybridCgPm(Graph dag, List<Node> nodeOrder, Map<Node, Boolean> discreteFlags, Map<Node, List<String>> categoryMap) Constructs a HybridCgPm instance based on the provided directed acyclic graph (DAG), node ordering, discrete flags for nodes, and a mapping of node categories. -
Uses of Graph in edu.cmu.tetrad.regression
Methods in edu.cmu.tetrad.regression that return GraphModifier and TypeMethodDescriptionRegression.getGraph()getGraph.RegressionCovariance.getGraph()Getter for the fieldgraph.RegressionDataset.getGraph()Getter for the fieldgraph.Methods in edu.cmu.tetrad.regression with parameters of type Graph -
Uses of Graph in edu.cmu.tetrad.search
Fields in edu.cmu.tetrad.search declared as GraphModifier and TypeFieldDescriptionfinal GraphTwoStep.Result.graphA directed graph representing the relationships between variables as inferred from the coefficient matrix after pruning.Methods in edu.cmu.tetrad.search that return GraphModifier and TypeMethodDescriptionRlcdCore.applyGinOrientations(CovarianceMatrix cov, Graph cpdag, int N) Applies GIN (General Independence Network) orientation rules to the given CPDAG (Completed Partially Directed Acyclic Graph) using the specified covariance matrix and sample size.RlcdCore.buildCpdagFromConstraints(List<Node> vars, RlcdCore.Stage1Output s1) Constructs a CPDAG (Completed Partially Directed Acyclic Graph) from the given variables and constraints.MimbuildTrek.getFullGraph()Deprecated.The full graph discovered.@NotNull GraphGrasp.getGraph(boolean cpDag) Retrieves a graph based on specified parameters.Grasp.getGraph(boolean cpDag, boolean replicating) Returns the graph based on the specified parameters.static GraphConstruct a graph given a specification of the parents for each node.static GraphPermutationSearch.getGraph(List<Node> nodes, Map<Node, Set<Node>> parents, Knowledge knowledge, boolean cpDag) Constructs a graph given a specification of the parents for each node.static GraphPermutationSearch.getGraph(List<Node> nodes, Map<Node, Set<Node>> parents, Knowledge knowledge, boolean cpDag, boolean replicating) Constructs a graph given a specification of the parents for each node.BossFci.getMarkovCpdag()Executes the Markov CPDAG search algorithm using the BOSS (Best Order Score Search) method and returns the resulting graph.FgesFci.getMarkovCpdag()Gfci.getMarkovCpdag()Executes the FGES algorithm to compute the Markov equivalence class in the form of a completed partially directed acyclic graph (CPDAG) based on the provided score and algorithm configuration.@NotNull GraphGraspFci.getMarkovCpdag()SpFci.getMarkovCpdag()abstract GraphStarFci.getMarkovCpdag()Returns a Markov CPDAG to use as the initial graph in the Star-FCI search.Cstar.makeGraph(List<Cstar.Record> records) Makes a graph of the estimated predictors to the effect.static @NotNull GraphConstructs a directed graph based on the input binary adjacency matrix and a list of nodes.Lofs.orient()Orients the graph and returns the oriented graph.LatentPurifier.purify()Purifies the graph by ensuring that each measured variable has at most one latent parent and removes latent variables that have no measured children.PcMb.resultGraph()Returns the result graph.BossPod.search()Run the search and return s a PAG.Cam.search()Executes the CAM (Causal Additive Model) algorithm to search for an optimal directed acyclic graph (DAG) structure that best fits the data.Ccd.search()Executes the CCD search algorithm to infer a causal graph based on statistical independence tests.Cdnod.search()Cfci.search()Deprecated.Performs the search and returns the PAG.Dagma.search()Performs a search algorithm to find a graph representation.DirectLingam.search()Performs the search.DmPc.search()Executes the Directed Maximal PC (DmPc) algorithm to identify a causal graph structure that represents the relationships between observed and latent variables.Fas.search()Performs a conditional independence graph search using the default set of variables from the initialized independence test.Searches for conditional independence relationships in a graph constructed from the given list of nodes.Fasd.search()Discovers all adjacencies in data.Fask.search()Executes the FASK (Fast Adjacency Skewness) algorithm to search for a causal graph based on the provided dataset, knowledge, and configurations.FaskOrig.search()Runs the search on the concatenated data, returning a graph, possibly cyclic, possibly with two-cycles.Fci.search()Searches and retrieves a graph using the specified algorithm.Executes the search process using the provided `IFas` implementation and performs various graph orientation and refinement steps based on the FCI algorithm.FciMax.search()Deprecated.Performs the search and returns the PAG.Fcit.search()Run the search and return a PAG.Fges.search()Greedy equivalence search: Start from the empty graph, add edges tillsetre the model is significant.Greedy equivalence search: Start from the empty graph, add edges till the model is significant.Gfci.search()Runs the graph and returns the search PAG.Searches and constructs a causal graph representation using the provided dataset.IFas.search()Run adjacency search and return the skeleton graph.IGraphSearch.search()Runs the search and returns a graph.IsGFci.search()Executes the FCI algorithm using the provided independence test, score, and population graph, and returns the resulting graph with edges oriented according to the algorithm's rules.MimbuildBollen.search()Executes a search operation to build and optimize a graphical structure based on the covariance of latent and measured variables.MimbuildPca.search()Executes a search algorithm to identify a structural dependency graph based on block-specific data and principal components analysis (PCA).MimbuildTrek.search(List<List<Node>> clustering, List<String> latentNames, ICovarianceMatrix measuresCov) Deprecated.Does the search and returns the graph.Pc.search()Performs a search operation based on the test variables associated with the instance.Performs a search to generate a graph structure based on the provided list of nodes.Pcd.search()Runs PC starting with a complete graph over all nodes of the given conditional independence test, using the given independence test and knowledge and returns the resultant graph.Searches for a graph using the given IFas instance and list of nodes.Runs PC starting with a complete graph over the given list of nodes, using the given independence test and knowledge and returns the resultant graph.PcMb.search()Searches for the Markov blanket CPDAG for the given targets.Searches for the MB CPDAG for the given targets.Pcmci.search()Executes the PCMCI (Peter and Clark Momentary Conditional Independence) algorithm to discover causal relationships in time series data.PermutationSearch.search()Performs a search for a graph using the default options.PermutationSearch.search(boolean cpdag) Performe the search and return a CPDAG.Rfci.search()Runs the search and returns the RFCI PAG.Runs the search and returns the RFCI PAG.Searches of a specific sublist of nodes.StarFci.search()Runs the graph and returns the search PAG.Methods in edu.cmu.tetrad.search with parameters of type GraphModifier and TypeMethodDescriptionRlcdCore.applyGinOrientations(CovarianceMatrix cov, Graph cpdag, int N) Applies GIN (General Independence Network) orientation rules to the given CPDAG (Completed Partially Directed Acyclic Graph) using the specified covariance matrix and sample size.SepsetFinder.blockPathsLocalMarkov(Graph graph, Node x) Returns a set of nodes that are the parents of the given node in the graph.RecursiveBlocking.blockPathsRecursively(Graph graph, Node x, Node y, Set<Node> containing, Set<Node> notFollowed, int maxPathLength) Attempts to construct a candidate blocking set Z between nodes x and y under PAG semantics.RecursiveBlocking.blockPathsRecursively(Graph graph, Node x, Node y, Set<Node> containing, Set<Node> notFollowed, int maxPathLength, Knowledge knowledge) Variant ofRecursiveBlocking.blockPathsRecursively(Graph, Node, Node, Set, Set, int)that additionally accepts an optionalKnowledgeobject.RecursiveBlockingChokePointA.blockPathsRecursively(Graph G, Node x, Node y, Set<Node> forbidden, int maxPathLength) Identifies and blocks paths between two nodes in a graph recursively, ensuring that all possible open paths between the nodes are restricted by adding blocking nodes to a set.RecursiveBlockingChokePointB.blockPathsRecursively(Graph G, Node x, Node y, Set<Node> forbidden, int maxPathLength) Identifies and blocks paths in the given graph by iteratively finding and addressing chokepoints and eligible non-collider nodes.SepsetFinder.blockPathsWithMarkovBlanket(Node x, Graph G) Identifies the set of nodes that form the Markov Blanket for a given node in a graph.RecursiveDiscriminatingPathRule.findDdpSepsetRecursive(IndependenceTest test, Graph pag, Node x, Node y, FciOrient fciOrient, int maxBlockingPathLength, int maxDdpPathLength, PreserveMarkov preserveMarkovHelper, int depth) Finds the set of nodes (separator set) for the Recursive Discriminating Path rule in a graph.static RecursiveBlocking.BlockableRecursiveBlocking.findPathToTarget(Graph graph, Node a, Node b, Node y, Set<Node> path, Set<Node> z, int maxPathLength, Set<Node> notFollowed, Map<Node, Set<Node>> descendantsMap) Evaluates whether all paths from a→b onward to y can be blocked by the current candidate set Z, possibly augmented with b.SepsetFinder.findSepsetSubsetOfAdjxOrAdjy(Graph graph, Node x, Node y, Set<Node> containing, IndependenceTest test, int depth) Returns the sepset that contains the greedy test for variables x and y in the given graph.CheckKnowledge.forbiddenViolations(Graph graph, Knowledge knowledge) Returns a sorted list of edges that violate the given knowledge.Pc.getAmbiguousTriples(Graph g) Identifies and returns a list of ambiguous triples from the given graph.MarkovCheck.getAndersonDarlingTestAcceptsRejectsNodesForAllNodes(IndependenceTest independenceTest, Graph graph, Double threshold, Double shuffleThreshold) Calculates the Anderson-Darling test and classifies nodes as accepted or rejected based on the given threshold.MarkovCheck.getAndersonDarlingTestAcceptsRejectsNodesForAllNodesPlotData(IndependenceTest independenceTest, Graph estimatedCpdag, Graph trueGraph, Double threshold, Double shuffleThreshold, Double lowRecallBound) Get accepts and rejects nodes for all nodes from Anderson-Darling test and generate the plot data for confusion statistics.MarkovCheck.getAndersonDarlingTestAcceptsRejectsNodesForAllNodesPlotData2(IndependenceTest independenceTest, Graph estimatedCpdag, Graph trueGraph, Double threshold, Double shuffleThreshold, Double lowRecallBound) Get accepts and rejects nodes for all nodes from Anderson-Darling test and generate the plot data for confusion statistics.Pc.getColliderTriples(Graph g) Retrieves all colliders from the provided graph based on specific criteria.double[][]CpdagParentDistancesFromTrue.getDistances(Graph outputCpdag, double[][] trueEdgeStrengths, DataSet dataSet, CpdagParentDistancesFromTrue.DistanceType distanceType) Calculates the distance matrix for the edges in the given CPDAG (outputCpdag).MarkovCheck.getF1StatsForTargetNodeAdjacencySubgraph(Node x, Graph estimatedGraph, Graph trueGraph) Calculates F1 statistics for a target node's adjacency subgraph in terms of adjacency, arrow types, circle types, and tail types.MarkovCheck.getF1StatsForTargetNodeMBSubgraph(Node x, Graph estimatedGraph, Graph trueGraph) Computes the F1 statistics for the Markov blanket subgraph with the target node in the given estimated graph and true graph.MarkovCheck.getF1StatsForTargetNodeParentsSubgraph(Node x, Graph estimatedGraph, Graph trueGraph) Computes the F1 statistics (F1-Adjacency, F1-Arrow, F1-Circle, F1-Tail) between the parents subgraph of a given target node in the estimated graph and the corresponding parents subgraph in the true graph.MarkovCheck.getF1StatsForWholeGraph(Graph estimatedGraph, Graph trueGraph) Calculates the F1 statistics for the entire graph by comparing an estimated graph to the true graph.static Set<IndependenceFact> Computes the ordered local Markov property for a maximal ancestral graph (MAG).Pc.getNoncolliderTriples(Graph g) Identifies and retrieves all noncollider triples from the given graph.MarkovCheck.getPrecisionAndRecallGraphPlotData(Node x, Graph estimatedGraph, Graph trueGraph, ConditioningSetType conditioningSetType, String subgraphFeature) Computes the precision and recall values for a specified subgraph structure between an estimated graph and a true graph.voidMarkovCheck.getPrecisionAndRecallOnMarkovBlanketGraph(Node x, Graph estimatedGraph, Graph trueGraph) Calculates the precision and recall on the Markov Blanket graph for a given node.voidMarkovCheck.getPrecisionAndRecallOnMarkovBlanketGraph2(Node x, Graph estimatedGraph, Graph trueGraph) Calculates the precision and recall using LocalGraphConfusion (which calculates the combination of Adjacency and ArrowHead) on the Markov Blanket graph for a given node.MarkovCheck.getPrecisionAndRecallOnMarkovBlanketGraphPlotData(Node x, Graph estimatedGraph, Graph trueGraph) Calculates the precision and recall on the markov blanket graph plot data.MarkovCheck.getPrecisionAndRecallOnMarkovBlanketGraphPlotData2(Node x, Graph estimatedGraph, Graph trueGraph) This method calculates the precision and recall of a target node's Markov Blanket in the given estimated graph.voidMarkovCheck.getPrecisionAndRecallWholeGraph(Graph estimatedGraph, Graph trueGraph) Calculates and prints precision and recall metrics for the whole graph, comparing an estimated graph to the true graph.SepsetFinder.getSepsetContainingGreedySubsetMb(Graph graph, Graph cpdag, Node x, Node y, Set<Node> containing, IndependenceTest test, int depth) Identifies a separating set (sepset) containing a given subset of nodes between two nodes x and y in a graph using a greedy approach and subsets of (adj(x) U adu(y)) \ {x, y}.SepsetFinder.getSepsetContainingMaxPHybrid(Graph graph, Node x, Node y, Set<Node> containing, IndependenceTest test, int depth) Returns the set of nodes that act as a separating set between two given nodes (x and y) in a graph.SepsetFinder.getSepsetContainingMinPHybrid(Graph graph, Node x, Node y, IndependenceTest test, int depth) Returns the sepset containing the minimum p-value for the given variables x and y.SepsetFinder.getSmallestSubset(Node x, Node y, Set<Node> blocking, Set<Node> containing, Graph graph, boolean isPag) Finds a smallest subset S ofblockingthat renders two nodes x and y conditionally d-separated conditional on S in the given graph.static org.ejml.simple.SimpleMatrixTwoStep.maskFromUndirected(Graph skeleton, List<Node> vars) Deprecated.Constructs a mask matrix from an undirected graph, indicating the adjacency relationships between a given list of nodes.voidIsGFci.modifiedR0(Graph fgesGraph) Modifies the given FGES graph based on the FCI algorithm rules, reorienting edges and potentially identifying and orienting definite colliders.CheckKnowledge.requiredViolations(Graph graph, Knowledge knowledge) Returns a sorted list of edges that are required by knowledge but which do not appear in the graph.Computes the score of a given data set and graph by evaluating the Bayesian Information Criterion (BIC), stability of the system, and the number of parameters used.doubleScores a Directed Acyclic Graph (DAG) based on its structure.doubleScores the given directed acyclic graph (DAG).Gfci.sepsetSubsetOfAdjxOrAdjy(Graph graph, Node x, Node y, Set<Node> containing, IndependenceTest test, int depth, List<Node> order, boolean useMaxP) Finds a separating set that is a subset of the adjacency of nodes x or y in the input graph.StarFci.sepsetSubsetOfAdjxOrAdjy(Graph graph, Node x, Node y, Set<Node> containing, IndependenceTest test, int depth, List<Node> order, boolean useMaxP) Finds a separating set that is a subset of the adjacency of nodes x or y in the input graph.voidFges.setBoundGraph(Graph boundGraph) If non-null, edges not adjacent in this graph will not be added.voidFgesMb.setBoundGraph(Graph boundGraph) If non-null, edges not adjacent in this graph will not be added.voidFasd.setExternalGraph(Graph externalGraph) Sets the external graph.voidFask.setExternalGraph(Graph externalGraph) Sets the external graph for the FASK algorithm.voidFaskOrig.setExternalGraph(Graph externalGraph) Sets the external graph to use.voidFges.setInitialGraph(Graph initialGraph) Sets the initial graph for the application.voidFgesMb.setInitialGraph(Graph initialGraph) Sets the initial graph for the software.voidIsFges.setPopulationGraph(Graph pop) Sets the population graph for the current instance.Constructors in edu.cmu.tetrad.search with parameters of type GraphModifierConstructorDescriptionRepresents a graph used in Dijkstra's algorithm.Constructor.Constructs a new IDA check for the given MPDAG and data set.Constructor for the LatentPurifier class, which implements the purification step of Silva et al.'s BuildPureClusters algorithm.Constructor.MarkovCheck(Graph graph, IndependenceTest independenceTest, ConditioningSetType setType) Constructor.Constructs a Result object that encapsulates the output of the TwoStep algorithm. -
Uses of Graph in edu.cmu.tetrad.search.score
Methods in edu.cmu.tetrad.search.score that return GraphModifier and TypeMethodDescriptionGraphScore.getDag()Returns a copy of the DAG being searched over.ScoredGraph.getGraph()Returns the graph.Methods in edu.cmu.tetrad.search.score with parameters of type GraphModifier and TypeMethodDescriptionstatic doubleScores the given DAG using the given data model, usimg a BIC score.static doubleSemBicScorer.scoreDag(Graph dag, DataModel data, double penaltyDiscount, boolean precomputeCovariances) Scores the given DAG using the given data model, usimg a BIC score.Constructors in edu.cmu.tetrad.search.score with parameters of type GraphModifierConstructorDescriptionGraphScore(Graph dag) Constructs a GraphScore from a DAG.ScoredGraph(Graph graph, Double score) Constructs a scored graph. -
Uses of Graph in edu.cmu.tetrad.search.test
Methods in edu.cmu.tetrad.search.test that return GraphModifier and TypeMethodDescriptionstatic GraphIndTestFdrWrapper.doFdrLoop(IGraphSearch search, boolean negativelyCorrelated, double alpha, double fdrQ, boolean verbose) Executes a loop for controlling the false discovery rate (FDR) as part of a graph search process.MsepTest.getGraph()Returns the underlying graph that is being used to calculate d-separation relationships.Constructors in edu.cmu.tetrad.search.test with parameters of type Graph -
Uses of Graph in edu.cmu.tetrad.search.unmix
Fields in edu.cmu.tetrad.search.unmix with type parameters of type GraphModifier and TypeFieldDescriptionUnmixResult.clusterGraphsA list of optional graphical representations of clusters, where each graph corresponds to a specific cluster.CausalUnmixer.Config.perClusterGraphFnA function that generates a cluster-specific graph creation method.CausalUnmixer.Config.pooledGraphFnA function that generates a pooled graph model based on a given configuration and dataset.ParentSupersetBuilder.Config.shallowSearchIf provided, called on each subsample to get a shallow graph (e.g., PC-Max depth 1)Methods in edu.cmu.tetrad.search.unmix with parameters of type GraphModifier and TypeMethodDescriptionstatic UnmixDiagnostics.GraphDiffUnmixDiagnostics.compareClusterGraphsCpdag(Graph g1, Graph g2) Compares two clustering graphs by transforming them into CPDAGs (Completed Partially Directed Acyclic Graphs), and calculates the adjacency F1 score, arrow F1 score, and Structural Hamming Distance (SHD) between the graphs.static double[][]ResidualUtils.residualMatrix(DataSet data, Graph g, ResidualRegressor reg) Constructs a residual matrix where each column corresponds to a variable in the dataset and contains the residuals obtained after regressing that variable on its parents as specified by the given graph.Method parameters in edu.cmu.tetrad.search.unmix with type arguments of type GraphModifier and TypeMethodDescriptionstatic UnmixDiagnostics.BicDeltaUnmixDiagnostics.computeBicDeltaK1K2(DataSet data, EmUnmix.Config baseCfg, ResidualRegressor regressor, Function<DataSet, Graph> pooled, Function<DataSet, Graph> perCluster) Computes the Bayesian Information Criterion (BIC) for mixture models with K=1 and K=2 clusters, and calculates the BIC difference (delta) between them.static UnmixResultEmUnmix.run(DataSet data, EmUnmix.Config cfg, ResidualRegressor regressor, Function<DataSet, Graph> pooledSearch, Function<DataSet, Graph> perClusterSearch) Executes the unmixing process on the given dataset using the specified configuration, residual regressor, and optional graph search functions.static UnmixResultEmUnmix.selectK(DataSet data, int Kmin, int Kmax, ResidualRegressor regressor, Function<DataSet, Graph> pooledSearch, Function<DataSet, Graph> perClusterSearch, EmUnmix.Config base) Selects the optimal number of clusters (K) for unmixing a dataset within the specified range [Kmin, Kmax].UnmixDiagnostics.stabilityAcrossRestarts(DataSet data, EmUnmix.Config cfg, ResidualRegressor regressor, Function<DataSet, Graph> pooled, Function<DataSet, Graph> perCluster, int repeats, long seedBase) Evaluates the stability of clustering results across multiple independent runs of the EM algorithm by calculating the average Adjusted Rand Index (ARI) and its standard deviation between all pairs of runs. -
Uses of Graph in edu.cmu.tetrad.search.utils
Methods in edu.cmu.tetrad.search.utils that return GraphModifier and TypeMethodDescriptionMagToPag.convert(boolean checkMag) This method does the conversion of MAG to PAG.TsDagToPag.convert()convert.FgesOrienter.getAdjacencies()Getter for the fieldadjacencies.TsUtils.VarResult.getCollapsedVarGraph()Getter for the fieldcollapsedVarGraph.DagSepsets.getDag()Returns the DAG being analyzed.SepsetsGreedy.getDag()Retrieves the Directed Acyclic Graph (DAG) produced by the Sepsets algorithm.SepsetsGreedyMb.getDag()Retrieves the Directed Acyclic Graph (DAG) produced by the Sepsets algorithm.SepsetsMaxP.getDag()Retrieves the Directed Acyclic Graph (DAG) produced by the Sepset algorithm.SepsetsMinP.getDag()Retrieves the Directed Acyclic Graph (DAG) produced by the Sepsets algorithm.FgesOrienter.getExternalGraph()Getter for the fieldexternalGraph.TeyssierScorer.getGraph(boolean cpDag) Returns the DAG build for the current permutation, or its CPDAG.static GraphMbUtils.getOneMbDag(Graph mbCpdag) Returns an example DAG from the given MB CPDAG.PossibleMConnectingPath.getPag()Getter for the fieldpag.TsDagToPag.getTruePag()Getter for the fieldtruePag.DagInCpcagIterator.next()Successive calls to this method return successive DAGs in the CPDAG, in a more or less natural enumeration of them in which an arbitrary undirected edge is picked, oriented one way, Meek rules applied, then a remaining unoriented edge is picked, oriented one way, and so on, until a DAG is obtained, and then by backtracking the other orientation of each chosen edge is tried.DagIterator.next()Successive calls to this method return successive DAGs in the CPDAG, in a more or less natural enumeration of them in which an arbitrary undirected edge is picked, oriented one way, Meek rules applied, then a remaining unoriented edge is picked, oriented one way, and so on, until a DAG is obtained, and then by backtracking the other orientation of each chosen edge is tried.FgesOrienter.search()Greedy equivalence search: Start from the empty graph, add edges till model is significant.Methods in edu.cmu.tetrad.search.utils that return types with arguments of type GraphModifier and TypeMethodDescriptionMbUtils.generateMbDags(Graph mbCPDAG, boolean orientBidirectedEdges, IndependenceTest test, int depth, Node target) Generates the list of MB DAGs consistent with the MB CPDAG returned by the previous search.Methods in edu.cmu.tetrad.search.utils with parameters of type GraphModifier and TypeMethodDescriptionstatic voidGraphSearchUtils.arrangeByKnowledgeTiers(Graph graph) arrangeByKnowledgeTiers.static voidGraphSearchUtils.arrangeByKnowledgeTiers(Graph graph, Knowledge knowledge) arrangeByKnowledgeTiers.static voidGraphSearchUtils.basicCpdag(Graph graph) Get a graph and direct only the unshielded colliders.static voidGraphSearchUtils.basicCpdagRestricted2(Graph graph, Node node) basicCpdagRestricted2.voidRuns BES for a graph over the given list of variablesvoidRuns BES.static R0R4StrategyR0R4StrategyTestBased.defaultConfiguration(Graph dag, Knowledge knowledge) Returns a default configuration of the FciOrientDataExaminationStrategy object.org.apache.commons.lang3.tuple.Pair<DiscriminatingPath, Boolean> R0R4Strategy.doDiscriminatingPathOrientation(DiscriminatingPath discriminatingPath, Graph graph, Set<Node> vNodes) Does a discriminating path orientation based on an examination of the data.org.apache.commons.lang3.tuple.Pair<DiscriminatingPath, Boolean> R0R4StrategyTestBased.doDiscriminatingPathOrientation(DiscriminatingPath discriminatingPath, Graph graph, Set<Node> vNodes) Does a discriminating path orientation.booleanChecks this discriminating path construct to make sure it is a discriminating path in the given graph.static booleanTsDagToPag.existsInducingPathInto(Node x, Node y, Graph graph, Knowledge knowledge) existsInducingPathInto.static booleanTsDagToPag.existsInducingPathVisitts(Graph graph, Node a, Node b, Node x, Node y, LinkedList<Node> path, Knowledge knowledge) existsInducingPathVisitts.voidFciOrient.fciOrientbk(Knowledge bk, Graph graph, List<Node> variables) Orient the edges of a graph based on the given knowledge.voidFciOrient.finalOrientation(Graph graph) Orients the graph (in place) according to rules in the graph (FCI step D).static List<PossibleMConnectingPath> PossibleMConnectingPath.findMConnectingPaths(Graph pag, Node x, Node y, Collection<Node> z) Finds all possible D-connection undirectedPaths as sub-graphs of the pag given at construction time from x to y given z.static List<PossibleMConnectingPath> PossibleMConnectingPath.findMConnectingPathsOfLength(Graph pag, Node x, Node y, Collection<Node> z, Integer length) Finds all possible D-connection undirectedPaths as sub-graphs of the pag given at construction time from x to y given z for a particular path length.MbUtils.generateMbDags(Graph mbCPDAG, boolean orientBidirectedEdges, IndependenceTest test, int depth, Node target) Generates the list of MB DAGs consistent with the MB CPDAG returned by the previous search.Returns a map of nodes to bidirected edges for them.GraphSearchUtils.getCpcTripleType(Node x, Node y, Node z, IndependenceTest test, int depth, Graph graph) getCpcTripleType.static StringGraphSearchUtils.getEdgewiseComparisonString(String trueGraphName, Graph trueGraph, String targetGraphName, Graph targetGraph) getEdgewiseComparisonString.static R0R4StrategyTestBasedMagToPag.getFinalStrategyUsingDsep(Graph mag, Knowledge knowledge, boolean verbose) Returns the final strategy for finding a PAG using D-SEP.static GraphUtils.GraphComparisonGraphSearchUtils.getGraphComparison(Graph trueGraph, Graph targetGraph) Just counts arrowhead errors--for cyclic edges counts an arrowhead at each node.static KnowledgeTsUtils.getKnowledge(Graph graph) getKnowledge.static @NotNull DataSetLgMnarDataSimulator.getMnarData(Graph graph, int numVariablesWithMissing, int numExtraInfluences, double threshold, int numRows) Generates a dataset with Missing Not At a Random (MNAR) data mechanism applied to specific variables in a graph.static GraphMbUtils.getOneMbDag(Graph mbCpdag) Returns an example DAG from the given MB CPDAG.GraphSearchUtils.getReachableNodes(List<Node> initialNodes, LegalPairs legalPairs, List<Node> c, List<Node> d, Graph graph, int maxPathLength) getReachableNodes.doublegetScore.static int[][]GraphSearchUtils.graphComparison(Graph trueCpdag, Graph estCpdag, PrintStream out) graphComparison.static booleanGraphInPag.graphInPagStep0(Graph pag, Graph dag) This method implements step (1) of the definition.static booleanGraphInPag.graphInPagStep1(Graph pag, Graph dag) graphInPagStep1.static booleanGraphInPag.graphInPagStep2(Graph pag, Graph dag) graphInPagStep2.static booleanGraphInPag.graphInPagStep3(Graph pag, Graph dag) graphInPagStep3.static booleanGraphInPag.graphInPagStep4(Graph pag, Graph dag) graphInPagStep4.static booleanGraphInPag.graphInPagStep5(Graph pag, Graph dag) graphInPagStep5.static TimeLagGraphTsUtils.graphToLagGraph(Graph _graph, int numLags) graphToLagGraph.static booleanFciOrient.isArrowheadAllowed(Node x, Node y, Graph graph, Knowledge K) Determines if an arrowhead can be placed at node Y in the given graph, based on the adjacency relationships, endpoint types, and any provided prior knowledge constraints.GraphLegalityCheck.isLegalMag(Graph mag, Set<Node> selection) Determines whether the given graph is a legal Mixed Ancestral Graph (MAG).static booleanGraphLegalityCheck.isLegalMagQuiet(Graph mag, Set<Node> selection) Determines whether the given graph is a legal Mixed Ancestral Graph (MAG) without providing detailed error messages.GraphLegalityCheck.isLegalPag(Graph pag, Set<Node> selection) Checks if the provided Directed Acyclic Graph (PAG) is a legal PAG.static booleanGraphLegalityCheck.isLegalPagQuiet(Graph pag, Set<Node> selection) Determines whether the provided Partial Ancestral Graph (PAG) is a legal PAG without providing detailed error messages.booleanR0R4Strategy.isUnshieldedCollider(Graph graph, Node a, Node b, Node c) Determines if a given triple is an unshielded collider based on an examination of the data.booleanR0R4StrategyTestBased.isUnshieldedCollider(Graph graph, Node i, Node j, Node k) Checks if a collider is unshielded or not.static Set<DiscriminatingPath> FciOrient.listDiscriminatingPaths(Graph graph, int maxDiscriminatingPathLength, boolean checkXyNonadjacency) Lists all the discriminating paths in the given graph.static Set<DiscriminatingPath> FciOrient.listDiscriminatingPaths(Graph graph, Node w, Node y, int maxDiscriminatingPathLength, boolean checkEcNonadjacency) Lists the discriminating paths for <w, y> in the graph.PreserveMarkov.markovAdjustPValues(Graph graph, boolean preserveMarkov, IndependenceTest test, Map<org.apache.commons.lang3.tuple.Pair<Node, Node>, Set<Double>> pValues, org.apache.commons.lang3.tuple.Pair<Node, Node> withoutPair) Adjusts the p-values for a local Markov condition in a given constraint-based partially directed acyclic graph (CPDAG).voidPerforms FCI orientation on the given graph, including R0 and either the Spirtes or Zhang final orientation rules.voidorient.static voidGraphSearchUtils.orientCollidersUsingSepsets(SepsetMap set, Knowledge knowledge, Graph graph, boolean verbose, boolean enforceCpdag) Step C of PC; orients colliders using specified sepset.MeekRules.orientImplied(Graph graph) Uses the Meek rules to do as many orientations in the given graph as possible.static voidGraphSearchUtils.pcdOrientC(IndependenceTest test, Knowledge knowledge, Graph graph) Performs step C of the algorithm, as indicated on page xxx of CPS, with the modification that X--W--Y is oriented as X-->W<--Y if W is *determined by* the sepset of (X, Y), rather than W just being *in* the sepset of (X, Y).static voidGraphSearchUtils.pcOrientbk(Knowledge bk, Graph graph, List<Node> nodes, boolean verbose) Orients according to background knowledge.voidAlmostCycleRemover.recallUnshieldedTriples(Graph pag) Recalls unshielded triples in the given graph.booleanAlmostCycleRemover.removeAlmostCycles(Graph pag) Removes almost cycles from the Graph.booleanAlmostCycleRemover.removeCycles(Graph pag) Removes cycles from the Graph.voidOrients unshielded colliders in the graph.voidR1: If α *→ β o––* γ, and α and γ are not adjacent, then orient the triple as α *→ β → γ.voidR10 Suppose α oâ γ, β â γ â θ, p1 is an uncovered potentially directed (semidirected) path from α to β, and p2 is an uncovered p.d.voidR2: If α → β ∘→ γ or α ∘→ β → γ, and α ∘–o γ, then orient α ∘–o γ as α ∘→ γ.voidR3: If α *→ β ←* γ, α *–o θ o–* γ, α and γ are not adjacent, and θ *–o β, then orient θ *–o β as θ *→ β.voidR4 If u = <θ ,...,α,β,γ> is a discriminating path between θ and γ for β, and β oâââ γ; then if β â Sepset(θ,γ), orient β oâââ γ as β â γ; otherwise orient the triple <α,β,γ> as α â β â γ.voidR5 For every (remaining) α oââo β, if there is an uncovered circle path p = <α,γ,...,θ,β> between α and β s.t.voidR6 If α â- β oâââ γ (α and γ may or may not be adjacent), then orient β oâââ γ as β âââ γ.voidR7 If α ââo β oâââ γ, and α, γ are not adjacent, then orient β oâââ γ as β âââ γ.booleanR8 If α â β â γ or αâââ¦Î² â γ, and α oâ γ, orient α oâ γ as α â γ.booleanR9 If α oâ γ, and p = <α,β,θ,...,γ> is an uncovered potentialy directed path from α to γ such that γ and β are not adjacent, then orient α oâ γ as α â γ.voidFciOrient.rulesR1R2cycle(Graph graph) Apply rules R1 and R2 in cycles for a given graph.voidFciOrient.rulesR8R9R10(Graph graph) Implements Zhang's rules R8, R9, R10, applies them over the graph once.doublescoreDag.doublescoreDag.voidFgesOrienter.setAdjacencies(Graph adjacencies) Sets the set of preset adjacenies for the algorithm; edges not in this adjacencies graph will not be added.voidDefaultSetEndpointStrategy.setEndpoint(Graph graph, Node a, Node b, Endpoint endpoint) Sets the endpoint of a graph given the two nodes and the desired endpoint.voidSetEndpointStrategy.setEndpoint(Graph graph, Node a, Node b, Endpoint arrow) Sets the endpoint of a graph given the two nodes and the desired endpoint.voidFgesOrienter.setExternalGraph(Graph externalGraph) Sets the initial graph.voidvoidSets the graph for the SepsetProducer object.voidSets the graph for the Sepsets object.voidSets the graph for the Sepsets object.voidSets the graph for the SepsetsMaxP object.voidSets the graph for the Sepsets object.voidvoidvoidFgesOrienter.setTrueGraph(Graph trueGraph) If the true graph is set, askterisks will be printed in log output for the true edges.voidIPurify.setTrueGraph(Graph mim) setTrueGraph.voidPurifyTetradBased.setTrueGraph(Graph mim) setTrueGraph.voidTsDagToPag.setTruePag(Graph truePag) Setter for the fieldtruePag.static voidLogUtilsSearch.stampWithBic(Graph graph, DataModel dataModel) stampWithBic.static voidLogUtilsSearch.stampWithScore(Graph graph, Score score) stampWithScore.static intGraphSearchUtils.structuralhammingdistance(Graph trueGraph, Graph estGraph, boolean useTrueCpdag) Originally, Tsamardinos, I., Brown, L.static voidMbUtils.trimEdgesAmongParents(Graph graph, Node target) Removes edges among the parents of the target.static voidMbUtils.trimEdgesAmongParentsOfChildren(Graph graph, Node target) Removes edges among the parents of children of the target.static voidMbUtils.trimToAdjacents(Graph graph, Node target) Trims the graph to just the adjacents of the target.static voidMbUtils.trimToMbNodes(Graph graph, Node target, boolean includeBidirected) Trims the graph to the target, the parents and children of the target, and the parents of the children of the target.Constructors in edu.cmu.tetrad.search.utils with parameters of type GraphModifierConstructorDescriptionDagInCpcagIterator(Graph CPDAG) The given CPDAG must be a CPDAG.DagInCpcagIterator(Graph CPDAG, Knowledge knowledge) The given CPDAG must be a CPDAG.DagInCpcagIterator(Graph CPDAG, Knowledge knowledge, boolean allowArbitraryOrientations, boolean allowNewColliders) The given CPDAG must be a CPDAG.DagIterator(Graph CPDAG) The given CPDAG must be a CPDAG.DagSepsets(Graph dag) Constructs a new DagSepsets object for the given DAG.Graph(Graph graph, R5R9Dijkstra.Rule rule) Represents a graph for Dijkstra's algorithm.Constructs a new FCI search for the given independence test and background knowledge.MsepVertexCutFinder(Graph graph) Constructs an instance of the MsepVertexCutFinder class with the specified graph.PossibleDsepFci(Graph graph, IndependenceTest test) Creates a new SepSet and assumes that none of the variables have yet been checked.PreserveMarkov(Graph graph, IndependenceTest test, boolean preserveMarkov) Constructs an PreserveMarkov class for a given Markov graph.SepsetsGreedy(Graph graph, IndependenceTest independenceTest, int depth) Constructor for Sepsets.SepsetsGreedyMb(Graph graph, Graph cpdag, IndependenceTest independenceTest, int depth) Constructor for Sepsets.SepsetsMaxP(Graph graph, IndependenceTest independenceTest, int depth) Constructs a SepsetsMaxP object with the given graph, independence test, and depth.SepsetsMinP(Graph graph, IndependenceTest independenceTest, int depth) Initializes a new instance of the SepsetsMinP class.SepsetsPossibleDsep(Graph graph, IndependenceTest test, Knowledge knowledge, int depth, int maxDiscriminatingPathLength) Constructor for SepsetsPossibleDsep.TsDagToPag(Graph dag) Constructs a new FCI search for the given independence test and background knowledge.Constructs a new result. -
Uses of Graph in edu.cmu.tetrad.search.work_in_progress
Methods in edu.cmu.tetrad.search.work_in_progress that return GraphModifier and TypeMethodDescriptionOutputs a new PAG, a copy of the input excepting the applied changes of this object.@NotNull GraphGraspTol.getGraph(boolean cpDag) getGraph.HbsmsBeam.getGraph()Getter for the fieldgraph.HbsmsGes.getGraph()Getter for the fieldgraph.HbsmsGes.GraphWithPValue.getGraph()Getter for the fieldgraph.SampleVcpc.getGraph()The graph that's constructed during the search.SampleVcpcFast.getGraph()The graph that's constructed during the search.VcPc.getGraph()The graph that's constructed during the search.VcPcAlt.getGraph()The graph that's constructed during the search.VcPcFast.getGraph()The graph that's constructed during the search.MagCgBicScore.getMag()Returns the wrapped MAG.MagDgBicScore.getMag()Returns the wrapped MAG.MagSemBicScore.getMag()Returns the wrapped MAG.DMSearch.LatentStructure.latentStructToEdgeListGraph(DMSearch.LatentStructure structure) latentStructToEdgeListGraph.HbsmsBeam.removeZeroEdges(Graph bestGraph) removeZeroEdges.BpcTetradPurifyWashdown.search()Runs the search and returns a graph.DMSearch.search()search.FaskVote.search(Parameters parameters) Does the search.FasLofs.search()Runs the search on the concatenated data, returning a graph, possibly cyclic, possibly with two-cycles.Hbsms.search()search.HbsmsBeam.search()search.HbsmsGes.search()search.InverseCorrelation.search()search.Kpc.search()Deprecated.Runs PC starting with a complete graph over all nodes of the given conditional independence test, using the given independence test and knowledge and returns the resultant graph.Deprecated.Runs PC starting with a commplete graph over the given list of nodes, using the given independence test and knowledge and returns the resultant graph.Mmhc.search()Runs PC starting with a fully connected graph over all of the variables in the domain of the independence test.SampleVcpc.search()search.SampleVcpcFast.search()search.VcFas.search()Discovers all adjacencies in data.VcPc.search()search.VcPcAlt.search()search.VcPcFast.search()search.Washdown.search()Runs the Washdown algorithm and return a graph.Methods in edu.cmu.tetrad.search.work_in_progress that return types with arguments of type GraphModifier and TypeMethodDescriptionDci.search()Begins the DCI search procedure, described at each stepIon.search()Runs the ION search and returns a list of compatible graphs.Methods in edu.cmu.tetrad.search.work_in_progress with parameters of type GraphModifier and TypeMethodDescriptionDMSearch.applyDmSearch(Graph pattern, Set<String> inputString, double penalty) applyDmSearch.Outputs a new PAG, a copy of the input excepting the applied changes of this object.static voidSampleVcpc.futureNodeVisit(Graph graph, Node b, LinkedList<Node> path, Set<Node> futureNodes) futureNodeVisit.static voidSampleVcpcFast.futureNodeVisit(Graph graph, Node b, LinkedList<Node> path, Set<Node> futureNodes) futureNodeVisit.static voidVcPc.futureNodeVisit(Graph graph, Node b, LinkedList<Node> path, Set<Node> futureNodes) futureNodeVisit.static voidVcPcAlt.futureNodeVisit(Graph graph, Node b, LinkedList<Node> path, Set<Node> futureNodes) futureNodeVisit.static voidVcPcFast.futureNodeVisit(Graph graph, Node b, LinkedList<Node> path, Set<Node> futureNodes) futureNodeVisit.VcPc.getPopulationTripleType(Node x, Node y, Node z, IndependenceTest test, int depth, Graph graph, boolean verbose) getPopulationTripleType.VcPcFast.getPopulationTripleType(Node x, Node y, Node z, IndependenceTest test, int depth, Graph graph, boolean verbose) getPopulationTripleType.HbsmsBeam.removeZeroEdges(Graph bestGraph) removeZeroEdges.scoreDag.HbsmsBeam.scoreGraph(Graph graph) scoreGraph.HbsmsGes.scoreGraph(Graph graph) scoreGraph.voidVcFas.setExternalGraph(Graph externalGraph) Setter for the fieldexternalGraph.voidSetter for the fieldgraph.voidSetter for the fieldgraph.voidSetter for the fieldgraph.voidSetter for the fieldgraph.voidSetter for the fieldgraph.voidSets the MAG to wrap.voidSets the MAG to wrap.voidSets the MAG to wrap.treks.Constructors in edu.cmu.tetrad.search.work_in_progress with parameters of type GraphModifierConstructorDescriptionFasDci(Graph graph, IndependenceTest independenceTest) Constructs a new FastAdjacencySearch for DCI.FasDci(Graph graph, IndependenceTest independenceTest, ResolveSepsets.Method method, List<Set<Node>> marginalVars, List<IndependenceTest> independenceTests, SepsetMapDci knownIndependencies, SepsetMapDci knownAssociations) Constructs a new FastAdjacencySearch for DCI with independence test pooling to resolve inconsistencies.GraphWithPValue(Graph graph, double pValue) Constructor for GraphWithPValue.HbsmsBeam(Graph graph, CovarianceMatrix cov, Knowledge knowledge) Constructor for HbsmsBeam.Constructor for HbsmsBeam.Constructor for HbsmsGes.Constructor parameters in edu.cmu.tetrad.search.work_in_progress with type arguments of type Graph -
Uses of Graph in edu.cmu.tetrad.sem
Methods in edu.cmu.tetrad.sem that return GraphModifier and TypeMethodDescriptionLargeScaleSimulation.getGraph()Getter for the fieldgraph.SemUpdater.getManipulatedGraph()getManipulatedGraph.Methods in edu.cmu.tetrad.sem with parameters of type GraphModifier and TypeMethodDescriptioncliques.LargeScaleSimulation.getKnowledge(Graph graph) getKnowledge.ReidentifyVariables.getLatents(Graph graph) getLatents.static voidCyclicStableUtils.initializeInternalEdgesRandom(SemIm im, Graph g, List<Node> scc, double low, double high) Randomize existing internal edges (that already exist in the graph) within [low, high], positive.ReidentifyVariables.reidentifyVariables1(List<List<Node>> partition, Graph trueGraph) reidentifyVariables1.reidentifyVariables2.Ricf.ricf2(Graph mag, ICovarianceMatrix covMatrix, double tolerance) Same as above but takes a Graph instead of a SemGraphstatic voidCyclicStableUtils.scaleInternalEdges(SemIm im, Graph g, List<Node> scc, double factor) Scale all internal edges of an SCC by a factor.doubleScores the given DAG using the implemented algorithm.doublescore.static @NotNull SemIm.ResultSemIm.simulatePossibleShrinkage(Parameters params, Graph g) Simulates possible shrinkage scenarios for a given graph and parameters.static SemIm.CyclicSimResultCyclicStableUtils.simulateStableFixedRadius(Graph g, int n, double s, double coefLow, double coefHigh, long seed, Parameters params) Simulate from an arbitrary graph with SCC-wise fixed spectral radius s.static SemIm.CyclicSimResultCyclicStableUtils.simulateStableProductCapped(Graph g, int n, double maxProd, double coefLow, double coefHigh, long seed, Parameters params) Simulate from an arbitrary graph with SCC-wise radius capped by sqrt(maxProd).static doubleCyclicStableUtils.spectralRadiusAbs(SemIm im, Graph g, List<Node> scc) Computes the spectral radius of the absolute value of the coefficient matrix of the given strongly connected component (SCC) in a graph.static voidCyclicStableUtils.stabilizeAllSccsFixedRadius(SemIm im, Graph g, double s, double coefLow, double coefHigh) Stabilize an existing SemIm in-place: enforce per-SCC spectral radius target s.static voidCyclicStableUtils.stabilizeAllSccsFixedRadiusScaleOnly(SemIm im, Graph g, double s) Stabilizes all strongly connected components (SCCs) of a given graph by scaling internal edges such that the spectral radius of each SCC does not exceed the given target value s.CyclicStableUtils.stronglyConnectedComponents(Graph g) Kosaraju's algorithm for strongly connected components.Constructors in edu.cmu.tetrad.sem with parameters of type GraphModifierConstructorDescriptionAdditiveAnmSimulator(Graph graph, int numSamples, org.apache.commons.math3.distribution.RealDistribution noiseDistribution) Constructs an instance of the AdditiveAnmSimulator.AdditiveNoiseDjl(Graph graph, int numSamples, org.apache.commons.math3.distribution.RealDistribution noiseDistribution, double rescaleMin, double rescaleMax, List<Integer> hiddenDimensions, double inputScale, Function<Double, Double> activationFunction) Constructs a AdditiveNoiseSimulation that operates on a directed acyclic graph (DAG) to model causal relationships with post-nonlinear causal mechanisms and custom activation functions.AdditiveNoiseSimulation(Graph graph, int numSamples, org.apache.commons.math3.distribution.RealDistribution noiseDistribution, double rescaleMin, double rescaleMax, int[] hiddenDimensions, double inputScale, Function<Double, Double> activationFunction) Creates a AdditiveNoiseSimulation for generating data with a causal structure based on the provided graph.AdditiveNoiseSimulationOld(Graph graph, int numSamples, org.apache.commons.math3.distribution.RealDistribution noiseDistribution, double rescaleMin, double rescaleMax, int[] hiddenDimensions, double inputScale, Function<Double, Double> activationFunction) Constructs an AdditiveNoiseSimulation that operates on a directed acyclic graph (DAG) to model causal relationships with post-nonlinear causal mechanisms and custom activation functions.GeneralizedSemPm(Graph graph) Constructs a BayesPm from the given Graph, which must be convertible first into a ProtoSemGraph and then into a SemGraph.LargeScaleSimulation(Graph graph) Constructor for LargeScaleSimulation.LargeScaleSimulation(Graph graph, List<Node> nodes, int[] tierIndices) Constructor for LargeScaleSimulation.NonlinearFunctionOfLinear(Graph graph, int numSamples, org.apache.commons.math3.distribution.RealDistribution noiseDistribution, double rescaleMin, double rescaleMax, double coefLow, double coefHigh, boolean coefSymmetric, int hiddenDimension, double inputScale) Constructs a NonlinearFunctionOfLinear instance, which generates synthetic data based on a directed acyclic graph (DAG) using post-nonlinear causal relationships and associated modeling parameters.PostnonlinearCausalModel(Graph graph, int numSamples, org.apache.commons.math3.distribution.RealDistribution noiseDistribution, double rescaleMin, double rescaleMax, int hiddenDimension, double inputScale, double coefLow, double coefHigh, boolean coefSymmetric) Constructs a PostnonlinearCausalModel object.Constructs a BayesPm from the given Graph, which must be convertible first into a ProtoSemGraph and then into a SemGraph. -
Uses of Graph in edu.cmu.tetrad.simulation
Methods in edu.cmu.tetrad.simulation that return GraphModifier and TypeMethodDescriptionstatic GraphevalEdges.static GraphHsimUtils.mkRandSEMDAG(int numVars, int numEdges) mkRandSEMDAG.Methods in edu.cmu.tetrad.simulation with parameters of type GraphModifier and TypeMethodDescriptiondistances.static double[]errorEval.static GraphevalEdges.HsimUtils.getAllParents(Graph inputgraph, Set<Node> inputnodes) getAllParents. -
Uses of Graph in edu.cmu.tetrad.study.performance
Methods in edu.cmu.tetrad.study.performance that return GraphModifier and TypeMethodDescriptionComparisonResult.getCorrectResult()Getter for the fieldcorrectResult.ComparisonResult.getResultGraph()Getter for the fieldresultGraph.ComparisonResult.getTrueDag()Getter for the fieldtrueDag.Methods in edu.cmu.tetrad.study.performance with parameters of type GraphModifier and TypeMethodDescriptionstatic StringPerformanceTests.endpointMisclassification(List<Node> _nodes, Graph estGraph, Graph refGraph) endpointMisclassification.static KnowledgeComparison2.getKnowledge(Graph graph) getKnowledge.voidComparisonResult.setCorrectResult(Graph correctResult) Setter for the fieldcorrectResult.voidComparisonResult.setResultGraph(Graph graph) Setter for the fieldresultGraph.voidComparisonResult.setTrueDag(Graph trueDag) Setter for the fieldtrueDag. -
Uses of Graph in edu.cmu.tetrad.util
Methods in edu.cmu.tetrad.util that return GraphModifier and TypeMethodDescriptionstatic GraphGraphSampling.createDisplayGraph(Graph graph, ResamplingEdgeEnsemble ensemble) Create a graph for displaying and print out.static GraphGraphSampling.createGraphWithHighProbabilityEdges(List<Graph> graphs) Combine all the edges from the list of graphs onto one graph with the edge type that has the highest frequency probability.static GraphGraphSampling.createGraphWithoutNullEdges(Graph graph) Create a graph from the given graph that contains no null edges.Returns the Directed Acyclic Graph (DAG) corresponding to the given graph if it is a PAG that has previously been converted from a DAG.@NotNull GraphReturns the PAG (Partial Ancestral Graph) corresponding to the given DAG (Directed Acyclic Graph).Returns the PAG (Partial Ancestral Graph) corresponding to the given DAG (Directed Acyclic Graph).static GraphJsonUtils.parseJSONObjectToTetradGraph(String jsonResponse) parseJSONObjectToTetradGraph.static GraphJsonUtils.parseJSONObjectToTetradGraph(org.json.JSONObject jObj) parseJSONObjectToTetradGraph.Methods in edu.cmu.tetrad.util with parameters of type GraphModifier and TypeMethodDescriptionstatic GraphGraphSampling.createDisplayGraph(Graph graph, ResamplingEdgeEnsemble ensemble) Create a graph for displaying and print out.static GraphGraphSampling.createGraphWithoutNullEdges(Graph graph) Create a graph from the given graph that contains no null edges.Returns the Directed Acyclic Graph (DAG) corresponding to the given graph if it is a PAG that has previously been converted from a DAG.@NotNull GraphReturns the PAG (Partial Ancestral Graph) corresponding to the given DAG (Directed Acyclic Graph).Returns the PAG (Partial Ancestral Graph) corresponding to the given DAG (Directed Acyclic Graph).JsonUtils.parseJSONArrayToTetradEdges(Graph graph, org.json.JSONArray jArray) parseJSONArrayToTetradEdges.static EdgeJsonUtils.parseJSONObjectToTetradEdge(Graph graph, org.json.JSONObject jObj) parseJSONObjectToTetradEdge.Method parameters in edu.cmu.tetrad.util with type arguments of type GraphModifier and TypeMethodDescriptionstatic GraphGraphSampling.createGraphWithHighProbabilityEdges(List<Graph> graphs) Combine all the edges from the list of graphs onto one graph with the edge type that has the highest frequency probability. -
Uses of Graph in edu.pitt.csb.stability
Methods in edu.pitt.csb.stability that return Graph -
Uses of Graph in edu.pitt.dbmi.algo.bayesian.constraint.search
Methods in edu.pitt.dbmi.algo.bayesian.constraint.search that return GraphModifier and TypeMethodDescriptionRfciBsc.getGraphRBD()Returns the graph that was learned using the BSC-D method.RfciBsc.getGraphRBI()Returns the graph that was learned using the BSC-I method.PagSamplingRfci.search()Runs the search and returns a graph.RfciBsc.search()Runs the search and returns a graph.