Interface Statistic

All Superinterfaces:
Serializable
All Known Implementing Classes:
AdjacencyFn, AdjacencyFp, AdjacencyFpr, AdjacencyPrecision, AdjacencyRecall, AdjacencyTn, AdjacencyTp, AdjacencyTpr, AncestorF1, AncestorPrecision, AncestorRecall, AncestralPrecision, AncestralRecall, ArrowheadFn, ArrowheadFp, ArrowheadFpr, ArrowheadPrecision, ArrowheadPrecisionCommonEdges, ArrowheadRecall, ArrowheadRecallCommonEdges, ArrowheadTn, ArrowheadTp, AverageDegreeEst, AverageDegreeTrue, BicDiff, BicDiffPerRecord, BicEst, BicTrue, BidirectedEst, BidirectedFP, BidirectedLatentPrecision, BidirectedPrecision, BidirectedRecall, BidirectedTP, BidirectedTrue, CirclePrecision, CircleRecall, CommonAncestorFalseNegativeBidirected, CommonAncestorFalsePositiveBidirected, CommonAncestorTruePositiveBidirected, CommonMeasuredAncestorRecallBidirected, CorrectSkeleton, DefiniteDirectedPathPrecision, DefiniteDirectedPathRecall, DensityEst, DensityTrue, ElapsedCpuTime, F1Adj, F1All, F1Arrow, F1Circle, F1Tail, FalseNegativesAdjacencies, FalsePositiveAdjacencies, FBetaAdj, FractionDependentUnderAlternative, FractionDependentUnderNull, GraphExactlyRight, IdaAverageSquaredDistance, IdaCheckAvgMaxSquaredDiffEstTrue, IdaCheckAvgMinSquaredDiffEstTrue, IdaCheckAvgSquaredDifference, IdaMaximumSquaredDifference, IdaMinimumSquaredDifference, ImpliedArrowOrientationRatioEst, ImpliedArrowOrientationRatioEst2, ImpliedOrientationRatioEst, ImpliesLegalMag, KnowledgeSatisfied, LatentCommonAncestorFalseNegativeBidirected, LatentCommonAncestorFalsePositiveBidirected, LatentCommonAncestorRecallBidirected, LatentCommonAncestorTruePositiveBidirected, LegalCpdag, LegalPag, LocalGraphPrecision, LocalGraphRecall, MagCgScore, MagDgScore, MagSemScore, MarkovCheckAdPasses, MarkovCheckAdPassesBestOf10, MarkovCheckAndersonDarlingP, MarkovCheckAndersonDarlingPBestOf10, MarkovCheckBinomialP, MarkovCheckBinomialPBestOf10, MarkovCheckFractionDependentH0, MarkovCheckFractionDependentH1, MarkovCheckKolmogorovSmirnoffP, MarkovCheckKolmogorovSmirnoffPBestOf10, MarkovCheckKsPasses, MarkovCheckKsPassesBestOf10, MathewsCorrAdj, MathewsCorrArrow, Maximal, MaximalityCondition, McGetNumTestsH0, McGetNumTestsH1, NoAlmostCyclicPathsCondition, NoCyclicPathsCondition, NodesInCyclesPrecision, NodesInCyclesRecall, NonancestorPrecision, NonancestorRecall, NoSemidirectedF1, NoSemidirectedPrecision, NoSemidirectedRecall, NumAmbiguousTriples, NumberArrowsEst, NumberArrowsNotInUnshieldedCollidersEst, NumberCollidersEst, NumberEdgesEst, NumberEdgesInCollidersEst, NumberEdgesInUnshieldedCollidersEst, NumberEdgesTrue, NumberOfEdgesEst, NumberOfEdgesTrue, NumberTailsEst, NumberUnshieldedCollidersEst, NumBidirectedBothNonancestorAncestor, NumBidirectedEdgesEst, NumBidirectedEdgesTrue, NumColoredDD, NumColoredNL, NumColoredPD, NumColoredPL, NumCommonMeasuredAncestorBidirected, NumCompatibleDefiniteDirectedEdgeAncestors, NumCompatibleDirectedEdgeConfounded, NumCompatibleDirectedEdgeNonAncestors, NumCompatibleEdges, NumCompatiblePossiblyDirectedEdgeAncestors, NumCompatiblePossiblyDirectedEdgeNonAncestors, NumCompatibleVisibleNonancestors, NumCorrectBidirected, NumCorrectDDAncestors, NumCorrectPDAncestors, NumCorrectVisibleEdges, NumCoveringAdjacenciesInPag, NumDefinitelyDirected, NumDefinitelyNotDirectedPaths, NumDirectedEdgeAncestors, NumDirectedEdgeBnaMeasuredCounfounded, NumDirectedEdgeNoMeasureAncestors, NumDirectedEdgeNotAncNotRev, NumDirectedEdgeReversed, NumDirectedEdges, NumDirectedPathsEst, NumDirectedPathsTrue, NumDirectedShouldBePartiallyDirected, NumEdgeInEstInTrue, NumGenuineAdjacenciesInPag, NumIncorrectDDAncestors, NumIncorrectPDAncestors, NumIncorrectVisibleAncestors, NumLatentCommonAncestorBidirected, NumNondirectedEdges, NumParametersEst, NumPartiallyOrientedEdges, NumPossiblyDirected, NumUndirectedEdges, NumVisibleEdgeEst, NumVisibleEdges, NumVisibleEdgeTrue, OrientationPrecision, OrientationRecall, PagAdjacencyPrecision, PagAdjacencyRecall, ParameterColumn, PercentAmbiguous, PercentBidirectedEdges, ProportionSemidirectedPathsNotReversedEst, ProportionSemidirectedPathsNotReversedTrue, PvalueDistanceToAlpha, PvalueUniformityUnderNull, SemidirectedPathF1, SemidirectedPrecision, SemidirectedRecall, StructuralHammingDistance, TailPrecision, TailRecall, TrueDagFalseNegativesArrows, TrueDagFalseNegativesTails, TrueDagFalsePositiveArrow, TrueDagFalsePositiveTails, TrueDagPrecisionArrow, TrueDagPrecisionTails, TrueDagRecallArrows, TrueDagRecallTails, TrueDagTruePositiveArrow, TrueDagTruePositiveDirectedPathNonancestor, TrueDagTruePositiveTails, TwoCycleFalseNegative, TwoCycleFalsePositive, TwoCyclePrecision, TwoCycleRecall, TwoCycleTruePositive

public interface Statistic extends Serializable
The interface that each statistic needs to implement.
Version:
$Id: $Id
Author:
josephramsey
  • Field Summary

    Fields
    Modifier and Type
    Field
    Description
    static final long
    Constant serialVersionUID=23L
  • Method Summary

    Modifier and Type
    Method
    Description
    The abbreviation for the statistic.
    Returns a short one-line description of this statistic.
    double
    getNormValue(double value)
    Returns a mapping of the statistic to the interval [0, 1], with higher being better.
    default double
    getValue(Graph trueGraph, Graph estGraph)
    Returns the value of this statistic, given the true graph and the estimated graph.
    default double
    getValue(Graph trueGraph, Graph estGraph, DataModel dataModel)
    Returns the value of this statistic, given the true graph and the estimated graph.
    double
    getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters)
    Returns the value of this statistic, given the true graph and the estimated graph.
    default double
    getValue(Graph trueGraph, Graph estGraph, Parameters parameters)
    Returns the value of this statistic, given the true graph and the estimated graph.
  • Field Details

    • serialVersionUID

      static final long serialVersionUID
      Constant serialVersionUID=23L
      See Also:
  • Method Details

    • getAbbreviation

      String getAbbreviation()
      The abbreviation for the statistic. This will be printed at the top of each column.
      Returns:
      This abbreviation.
    • getDescription

      String getDescription()
      Returns a short one-line description of this statistic. This will be printed at the beginning of the report.
      Returns:
      This description.
    • getValue

      double getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters)
      Returns the value of this statistic, given the true graph and the estimated graph.
      Parameters:
      trueGraph - The true graph (DAG, CPDAG, PAG_of_the_true_DAG).
      estGraph - The estimated graph (same type).
      dataModel - The data model (can be null).
      parameters - The parameters (can be null).
      Returns:
      The value of the statistic.
    • getValue

      default double getValue(Graph trueGraph, Graph estGraph, DataModel dataModel)
      Returns the value of this statistic, given the true graph and the estimated graph.
      Parameters:
      trueGraph - The true graph (DAG, CPDAG, PAG_of_the_true_DAG).
      estGraph - The estimated graph (same type).
      dataModel - The data model (can be null).
      Returns:
      The value of the statistic.
    • getValue

      default double getValue(Graph trueGraph, Graph estGraph, Parameters parameters)
      Returns the value of this statistic, given the true graph and the estimated graph.
      Parameters:
      trueGraph - The true graph (DAG, CPDAG, PAG_of_the_true_DAG).
      estGraph - The estimated graph (same type).
      parameters - The parameters (can be null).
      Returns:
      The value of the statistic.
    • getValue

      default double getValue(Graph trueGraph, Graph estGraph)
      Returns the value of this statistic, given the true graph and the estimated graph.
      Parameters:
      trueGraph - The true graph (DAG, CPDAG, PAG_of_the_true_DAG).
      estGraph - The estimated graph (same type).
      Returns:
      The value of the statistic.
    • getNormValue

      double getNormValue(double value)
      Returns a mapping of the statistic to the interval [0, 1], with higher being better. This is used for a calculation of a utility for an algorithm. If the statistic is already between 0 and 1, you can just return the statistic.
      Parameters:
      value - The value of the statistic.
      Returns:
      The weight of the statistic, 0 to 1, higher is better.