Class LgMnarDataSimulator

java.lang.Object
edu.cmu.tetrad.search.utils.LgMnarDataSimulator

public class LgMnarDataSimulator extends Object
The MNARDataSimulator class provides functionality to simulate Missing Not at Random (MNAR) data.
  • Method Summary

    Modifier and Type
    Method
    Description
    static @NotNull DataSet
    getMnarData(Graph graph, int numVariablesWithMissing, int numExtraInfluences, double threshold, int numRows)
    Generates a dataset with Missing Not At a Random (MNAR) data mechanism applied to specific variables in a graph.
    static void
    main(String[] args)
    The entry point for the application.

    Methods inherited from class java.lang.Object

    equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
  • Method Details

    • getMnarData

      @NotNull public static @NotNull DataSet getMnarData(Graph graph, int numVariablesWithMissing, int numExtraInfluences, double threshold, int numRows)
      Generates a dataset with Missing Not At a Random (MNAR) data mechanism applied to specific variables in a graph. The method modifies the input graph to include missingness indicators and simulates data based on the modified graph. Certain data entries are set to missing based on their corresponding indicators.
      Parameters:
      graph - The input graph defining the relationships between variables.
      numVariablesWithMissing - The number of variables to have missing values.
      numExtraInfluences - The number of additional edges influencing missingness.
      threshold - The threshold value to determine missingness, used to produce binary indicators.
      numRows - The number of rows to simulate in the generated dataset.
      Returns:
      A DataSet object with simulated data, including MNAR modification.
    • main

      public static void main(String[] args)
      The entry point for the application. This method generates a random graph, applies a Missing Not At Random (MNAR) mechanism to introduce missing data into a dataset, and displays the dataset along with the associated graph.
      Parameters:
      args - Command-line arguments (not used for this program).