Uses of Interface
edu.cmu.tetrad.data.DataModel
Packages that use DataModel
Package
Description
Contains classes for searching for (mostly structural) causal models given data.
Contains classes for various sorts of scores for running score-based algorithms.
Contains classes for running conditional independence tests for various sorts of data.
Contains some utility classes for search algorithms.
Contains some classes that aren't ready for prime time.
-
Uses of DataModel in edu.cmu.tetrad.algcomparison
Methods in edu.cmu.tetrad.algcomparison with parameters of type DataModelModifier and TypeMethodDescriptionstatic String
CompareTwoGraphs.getStatsListTable
(Graph trueGraph, Graph targetGraph, DataModel dataModel, long elapsedTime) Returns a string representing a table of statistics that can be printed. -
Uses of DataModel in edu.cmu.tetrad.algcomparison.algorithm
Methods in edu.cmu.tetrad.algcomparison.algorithm with parameters of type DataModelModifier and TypeMethodDescriptionabstract long
ExternalAlgorithm.getElapsedTime
(DataModel dataSet, Parameters parameters) getElapsedTime.int
getIndex.AbstractBootstrapAlgorithm.search
(DataModel dataModel, Parameters parameters) Runs the search.Algorithm.search
(DataModel dataSet, Parameters parameters) Runs the search.FirstInflection.search
(DataModel dataSet, Parameters parameters) Runs the search.StabilitySelection.search
(DataModel dataSet, Parameters parameters) Runs the search.StARS.search
(DataModel dataSet, Parameters parameters) Runs the search.Method parameters in edu.cmu.tetrad.algcomparison.algorithm with type arguments of type DataModelModifier and TypeMethodDescriptionMultiDataSetAlgorithm.search
(List<DataModel> dataSets, Parameters parameters) Runs the search. -
Uses of DataModel in edu.cmu.tetrad.algcomparison.algorithm.cluster
Methods in edu.cmu.tetrad.algcomparison.algorithm.cluster with parameters of type DataModelModifier and TypeMethodDescriptionFofc.runSearch
(DataModel dataModel, Parameters parameters) Runs the search algorithm and returns the resulting graph.Ftfc.runSearch
(DataModel dataSet, Parameters parameters) Runs the search algorithm to find a causal graph.Bpc.search
(DataModel dataModel, Parameters parameters) Runs the search algorithm to build a graph using the given data model and parameters. -
Uses of DataModel in edu.cmu.tetrad.algcomparison.algorithm.continuous.dag
Methods in edu.cmu.tetrad.algcomparison.algorithm.continuous.dag with parameters of type DataModelModifier and TypeMethodDescriptionDagma.runSearch
(DataModel dataModel, Parameters parameters) Runs the DAGMA algorithm to search for a directed acyclic graph (DAG) in the given data model with the specified parameters.DirectLingam.runSearch
(DataModel dataModel, Parameters parameters) Runs the Direct LiNGAM search algorithm on the given data model with the specified parameters.Fask.runSearch
(DataModel dataModel, Parameters parameters) Runs the Fask search algorithm on the given data model with the specified parameters.FaskOrig.runSearch
(DataModel dataModel, Parameters parameters) Runs the Fask search algorithm on the given data model with the specified parameters.IcaLingam.runSearch
(DataModel dataSet, Parameters parameters) Searches for a graph structure based on the given data set and parameters.IcaLingD.runSearch
(DataModel dataSet, Parameters parameters) Runs a search on the provided data set using the given parameters. -
Uses of DataModel in edu.cmu.tetrad.algcomparison.algorithm.mixed
Methods in edu.cmu.tetrad.algcomparison.algorithm.mixed with parameters of type DataModelModifier and TypeMethodDescriptionMgm.runSearch
(DataModel dataModel, Parameters parameters) Runs the MGM search algorithm. -
Uses of DataModel in edu.cmu.tetrad.algcomparison.algorithm.multi
Methods in edu.cmu.tetrad.algcomparison.algorithm.multi with parameters of type DataModelModifier and TypeMethodDescriptionFaskConcatenated.search
(DataModel dataSet, Parameters parameters) Runs the search.FaskLofsConcatenated.search
(DataModel dataSet, Parameters parameters) Runs the search.FaskVote.search
(DataModel dataSet, Parameters parameters) Runs the search.FasLofs.search
(DataModel dataSet, Parameters parameters) Runs the search.FciIod.search
(DataModel dataSet, Parameters parameters) Runs the search.FgesConcatenated.search
(DataModel dataSet, Parameters parameters) Runs the search.Images.search
(DataModel dataSet, Parameters parameters) Searches for a graph using the given data set and parameters.ImagesBoss.search
(DataModel dataSet, Parameters parameters) Runs the search.Method parameters in edu.cmu.tetrad.algcomparison.algorithm.multi with type arguments of type DataModelModifier and TypeMethodDescriptionFaskConcatenated.search
(List<DataModel> dataSets, Parameters parameters) Runs the search.FaskLofsConcatenated.search
(List<DataModel> dataModels, Parameters parameters) Runs the search.FaskVote.search
(List<DataModel> dataSets, Parameters parameters) Runs the search.FciIod.search
(List<DataModel> dataSets, Parameters parameters) Runs the search.FgesConcatenated.search
(List<DataModel> dataModels, Parameters parameters) Runs the search.Images.search
(List<DataModel> dataSets, Parameters parameters) Searches for a graph using the given data sets and parameters.ImagesBoss.search
(List<DataModel> dataSets, Parameters parameters) Runs the search. -
Uses of DataModel in edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag
Methods in edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag with parameters of type DataModelModifier and TypeMethodDescriptionCstar.search
(DataModel dataSet, Parameters parameters) Runs the search.SingleGraphAlg.search
(DataModel dataSet, Parameters parameters) Runs the search. -
Uses of DataModel in edu.cmu.tetrad.algcomparison.algorithm.oracle.pag
Methods in edu.cmu.tetrad.algcomparison.algorithm.oracle.pag with parameters of type DataModelModifier and TypeMethodDescriptionBfci.runSearch
(DataModel dataModel, Parameters parameters) Runs the search algorithm using the given dataset and parameters and returns the resulting graph.BossDumb.runSearch
(DataModel dataModel, Parameters parameters) Runs the search algorithm to find a graph structure based on a given data model and parameters.BossPag.runSearch
(DataModel dataModel, Parameters parameters) Runs the search algorithm to find a graph structure based on a given data model and parameters.Ccd.runSearch
(DataModel dataModel, Parameters parameters) Runs the CCD (Cyclic Causal Discovery) search algorithm on the given data set using the specified parameters.Cfci.runSearch
(DataModel dataModel, Parameters parameters) Runs the search algorithm to discover the causal graph.Fci.runSearch
(DataModel dataModel, Parameters parameters) Runs a search algorithm to find a graph based on the given data model and parameters.FciMax.runSearch
(DataModel dataModel, Parameters parameters) Runs a search algorithm to discover the causal graph structure.Gfci.runSearch
(DataModel dataModel, Parameters parameters) Runs the search algorithm to infer the causal graph given a dataset and specified parameters.GraspFci.runSearch
(DataModel dataModel, Parameters parameters) Runs a search algorithm to find a graph structure based on a given data set and parameters.LvLite.runSearch
(DataModel dataModel, Parameters parameters) Runs the search algorithm to find a graph structure based on a given data model and parameters.PagSampleRfci.runSearch
(DataModel dataSet, Parameters parameters) Runs the search algorithm using the given data set and parameters.Rfci.runSearch
(DataModel dataModel, Parameters parameters) Runs the search algorithm on the given data model and parameters.RfciBsc.runSearch
(DataModel dataModel, Parameters parameters) Runs a search algorithm using a given dataset and parameters.SpFci.runSearch
(DataModel dataModel, Parameters parameters) Executes a search algorithm to infer the causal graph structure from a given data modelSvarFci.runSearch
(DataModel dataModel, Parameters parameters) Executes the search algorithm to find a graph structure that best fits the given dataset and parameters.SvarGfci.runSearch
(DataModel dataModel, Parameters parameters) Runs a search algorithm on the given data set using the specified parameters. -
Uses of DataModel in edu.cmu.tetrad.algcomparison.algorithm.other
Methods in edu.cmu.tetrad.algcomparison.algorithm.other with parameters of type DataModelModifier and TypeMethodDescriptionFactorAnalysis.runSearch
(DataModel dataModel, Parameters parameters) Executes a factor analysis search on the given data model using the provided parameters.Glasso.runSearch
(DataModel dataModel, Parameters parameters) Runs a search algorithm to create a graph representation of the data. -
Uses of DataModel in edu.cmu.tetrad.algcomparison.algorithm.pairwise
Methods in edu.cmu.tetrad.algcomparison.algorithm.pairwise with parameters of type DataModelModifier and TypeMethodDescriptionEb.runSearch
(DataModel dataModel, Parameters parameters) Runs a search algorithm to orient the edges in a graph using the given data and parameters.FaskPw.runSearch
(DataModel dataModel, Parameters parameters) Runs the search algorithm using the given data model and parameters.R1.runSearch
(DataModel dataModel, Parameters parameters) Runs the search algorithm on the given data model with the provided parameters.R2.runSearch
(DataModel dataModel, Parameters parameters) Runs the search algorithm using the provided data model and parameters.R3.runSearch
(DataModel dataModel, Parameters parameters) Runs the search algorithm to orient edges in the input graph using the provided data.Rskew.runSearch
(DataModel dataModel, Parameters parameters) Runs the search algorithm using the provided data model and parameters.RskewE.runSearch
(DataModel dataModel, Parameters parameters) Runs a search algorithm to find the orientation of edges in a graph using the given data model and parameters.Skew.runSearch
(DataModel dataModel, Parameters parameters) Runs the search algorithm to orient edges in the input graph using the given data model and parameters.SkewE.runSearch
(DataModel dataModel, Parameters parameters) Executes the SkewE search algorithm.Tanh.runSearch
(DataModel dataModel, Parameters parameters) Runs the search algorithm using the given data model and parameters. -
Uses of DataModel in edu.cmu.tetrad.algcomparison.independence
Methods in edu.cmu.tetrad.algcomparison.independence with parameters of type DataModelModifier and TypeMethodDescriptionBasisFunctionBicTest.getTest
(DataModel dataSet, Parameters parameters) Returns an instance of IndependenceTest for the Basis Function BIC test.BdeuTest.getTest
(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.CciTest.getTest
(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.ChiSquare.getTest
(DataModel dataSet, Parameters parameters) Retrieves an instance of the IndependenceTest interface that performs a Chi Square Test for independence.ConditionalGaussianLRT.getTest
(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.DegenerateGaussianLRT.getTest
(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.DiscreteBicTest.getTest
(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.FisherZ.getTest
(DataModel dataModel, Parameters parameters) Gets an independence test based on the given data model and parameters.GICScoreTests.getTest
(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.GSquare.getTest
(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.IndependenceWrapper.getTest
(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.Kci.getTest
(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.MagSemBicTest.getTest
(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.Mnlrlrt.getTest
(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.MSeparationTest.getTest
(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.MultinomialLogisticRegressionWald.getTest
(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.Mvplrt.getTest
(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.PoissonPriorTest.getTest
(DataModel dataSet, Parameters parameters) Returns an instance of IndependenceTest for the Poisson Prior test.PositiveCorr.getTest
(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.ProbabilisticTest.getTest
(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.SemBicDTest.getTest
(DataModel dataSet, Parameters parameters) Retrieves an IndependenceTest object for testing independence against a given data set and parameters.SemBicTest.getTest
(DataModel dataSet, Parameters parameters) Returns an instance of IndependenceTest for the SEM BIC test. -
Uses of DataModel in edu.cmu.tetrad.algcomparison.score
Methods in edu.cmu.tetrad.algcomparison.score with parameters of type DataModelModifier and TypeMethodDescriptionBasisFunctionBicScore.getScore
(DataModel dataSet, Parameters parameters) Returns true, iff x and y are independent, conditional on z for the given data set.BdeuScore.getScore
(DataModel dataSet, Parameters parameters) Returns true, iff x and y are independent, conditional on z for the given data set.ConditionalGaussianBicScore.getScore
(DataModel dataSet, Parameters parameters) Returns true, iff x and y are independent, conditional on z for the given data set.DegenerateGaussianBicScore.getScore
(DataModel dataSet, Parameters parameters) Returns true, iff x and y are independent, conditional on z for the given data set.DiscreteBicScore.getScore
(DataModel dataSet, Parameters parameters) Returns true, iff x and y are independent, conditional on z for the given data set.EbicScore.getScore
(DataModel dataSet, Parameters parameters) Returns true, iff x and y are independent, conditional on z for the given data set.FisherZScore.getScore
(DataModel dataSet, Parameters parameters) Returns true, iff x and y are independent, conditional on z for the given data set.GicScores.getScore
(DataModel dataSet, Parameters parameters) Returns true, iff x and y are independent, conditional on z for the given data set.MagDgBicScore.getScore
(DataModel dataSet, Parameters parameters) Returns true, iff x and y are independent, conditional on z for the given data set.MSeparationScore.getScore
(DataModel dataSet, Parameters parameters) Returns true, iff x and y are independent, conditional on z for the given data set.MVPBicScore.getScore
(DataModel dataSet, Parameters parameters) Returns true, iff x and y are independent, conditional on z for the given data set.PoissonPriorScore.getScore
(DataModel dataSet, Parameters parameters) Returns true, iff x and y are independent, conditional on z for the given data set.PositiveCorrScore.getScore
(DataModel dataSet, Parameters parameters) Returns true, iff x and y are independent, conditional on z for the given data set.ScoreWrapper.getScore
(DataModel dataSet, Parameters parameters) Returns true, iff x and y are independent, conditional on z for the given data set.SemBicScore.getScore
(DataModel dataSet, Parameters parameters) Returns true, iff x and y are independent, conditional on z for the given data set.SemBicScoreDeterministic.getScore
(DataModel dataSet, Parameters parameters) Returns true, iff x and y are independent, conditional on z for the given data set.ZhangShenBoundScore.getScore
(DataModel dataSet, Parameters parameters) Calculates the score based on the given data set and parameters. -
Uses of DataModel in edu.cmu.tetrad.algcomparison.simulation
Methods in edu.cmu.tetrad.algcomparison.simulation that return DataModelModifier and TypeMethodDescriptionBayesNetSimulation.getDataModel
(int index) Returns the number of data sets to simulate.ConditionalGaussianSimulation.getDataModel
(int index) Returns the number of data sets to simulate.GeneralSemSimulation.getDataModel
(int index) Returns the data model at the specified index.GeneralSemSimulationSpecial1.getDataModel
(int index) Returns the number of data sets to simulate.LeeHastieSimulation.getDataModel
(int index) Returns the number of data sets to simulate.LinearFisherModel.getDataModel
(int index) Returns the number of data sets to simulate.LinearSineSimulation.getDataModel
(int index) Returns the number of data sets to simulate.NLSemSimulation.getDataModel
(int index) Returns the number of data sets to simulate.SemSimulation.getDataModel
(int index) Returns the data model at the specified index.SemThenDiscretize.getDataModel
(int index) Returns the number of data sets to simulate.Simulation.getDataModel
(int index) Returns the number of data sets to simulate.SingleDatasetSimulation.getDataModel
(int index) Retrieves the data model at the specified index from this simulation.StandardizedSemSimulation.getDataModel
(int index) Returns the number of data sets to simulate.TimeSeriesSemSimulation.getDataModel
(int index) Returns the number of data sets to simulate.Constructor parameters in edu.cmu.tetrad.algcomparison.simulation with type arguments of type DataModelModifierConstructorDescriptionLinearFisherModel
(RandomGraph graph, List<DataModel> shocks) Constructor for LinearFisherModel. -
Uses of DataModel in edu.cmu.tetrad.algcomparison.statistic
Methods in edu.cmu.tetrad.algcomparison.statistic with parameters of type DataModelModifier and TypeMethodDescriptiondouble
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Calculates the percentage of correctly identified bidirected edges in an estimated graph for which a latent confounder exists in the true graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
CommonAncestorFalseNegativeBidirected.getValue
(Graph trueGraph, Graph estGraph, DataModel dataModel) Returns the value of this statistic, given the true graph and the estimated graph.double
CommonAncestorFalsePositiveBidirected.getValue
(Graph trueGraph, Graph estGraph, DataModel dataModel) Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
CommonMeasuredAncestorRecallBidirected.getValue
(Graph trueGraph, Graph estGraph, DataModel dataModel) Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Calculates the value of the IDA Average Squared Distance statistic.double
Calculates the average maximum squared difference between the estimated and true values for a given data model and graphs.double
Calculates the average minimum squared difference between the estimated and true values for a given data model and graphs.double
Retrieves the value of the statistic, which is the average squared difference between the estimated and true values for a given data model and graphs.double
Calculates the value of the statistic "IDA Average Maximum Squared Difference".double
Calculates the value of the statistic "IDA Average Minimum Squared Difference".double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
LatentCommonAncestorFalseNegativeBidirected.getValue
(Graph trueGraph, Graph estGraph, DataModel dataModel) Returns the value of this statistic, given the true graph and the estimated graph.double
LatentCommonAncestorFalsePositiveBidirected.getValue
(Graph trueGraph, Graph estGraph, DataModel dataModel) Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
LatentCommonAncestorTruePositiveBidirected.getValue
(Graph trueGraph, Graph estGraph, DataModel dataModel) Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
This method calculates the Local Graph Precision.double
double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Calculates the Anderson Darling p-value > 0.05.double
Calculates the Anderson Darling p-value > 0.05.double
Calculates the Anderson Darling P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).double
Calculates the Anderson Darling P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).double
Calculates the Binomial P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).double
Calculates the Binomial P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).double
Calculates the Kolmogorov-Smirnoff P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).double
MarkovCheckKolmogorovSmirnoffPBestOf10.getValue
(Graph trueGraph, Graph estGraph, DataModel dataModel) Calculates the Kolmogorov-Smirnoff P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).double
Calculates whether Kolmogorov-Smirnoff P > 0.05.double
Calculates whether Kolmogorov-Smirnoff P > 0.05.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Checks whether a PAG is maximal.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
NumberArrowsNotInUnshieldedCollidersEst.getValue
(Graph trueGraph, Graph estGraph, DataModel dataModel) Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
NumCompatibleDefiniteDirectedEdgeAncestors.getValue
(Graph trueGraph, Graph estGraph, DataModel dataModel) Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
NumCompatibleDirectedEdgeNonAncestors.getValue
(Graph trueGraph, Graph estGraph, DataModel dataModel) Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
NumCompatiblePossiblyDirectedEdgeAncestors.getValue
(Graph trueGraph, Graph estGraph, DataModel dataModel) Returns the value of this statistic, given the true graph and the estimated graph.double
NumCompatiblePossiblyDirectedEdgeNonAncestors.getValue
(Graph trueGraph, Graph estGraph, DataModel dataModel) Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the number of bidirected edges for which a latent confounder exists.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
NumDirectedEdgeBnaMeasuredCounfounded.getValue
(Graph trueGraph, Graph estGraph, DataModel dataModel) Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the number of X-->Y edges that are visible in the estimated PAG.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Retrieves the number of X-->Y edges for which X-->Y is visible in the true PAG.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Calculates the Orientation Recall statistic, which measures the accuracy of the estimated orientation of edges in a graph compared to the true graph.double
Calculates the adjacency precision of the estimated graph compared to the true graph.double
Calculates the adjacency recall compared to the true PAG (Partial Ancestral Graph).double
Returns the value of this statistic, given the true graph and the estimated graph.double
Calculates the percentage of ambiguous triples in the estimated graph compared to the true graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
ProportionSemidirectedPathsNotReversedEst.getValue
(Graph trueGraph, Graph estGraph, DataModel dataModel) Calculates the proportion of semi(X, Y) in the estimated graph for which there is no semi(Y, X) in the true graph.double
ProportionSemidirectedPathsNotReversedTrue.getValue
(Graph trueGraph, Graph estGraph, DataModel dataModel) Calculates the proportion of semi(X, Y) paths in the true graph for which there is no semi(Y, Z) path in the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Calculates the F1 statistic for adjacencies.double
Calculates the semi-directed precision value.double
Calculates the Semidirected-Rec statistic, which is the proportion of (X, Y) where if there is a semidirected path in the true graph, then there is also a semidirected path in the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Calculates the tail precision, which is the ratio of true positive arrows to the sum of true positive arrows and false positive arrows.double
Calculates the tail recall value for a given true graph, estimated graph, and data model.double
Calculates the number of false negatives for arrows compared to the true DAG.double
Calculates the number of false negatives for tails compared to the true DAG.double
Calculates the false positives for arrows compared to the true DAG.double
Calculates the number of false positives for tails in the estimated graph compared to the true DAG.double
Calculates the proportion of X*->Y in the estimated graph for which there is no path Y~~>X in the true graph.double
Calculates the proportion of X-->Y edges in the estimated graph for which there is a path X~~>Y in the true graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Calculates the number of true positives for arrows compared to the true DAG.double
TrueDagTruePositiveDirectedPathNonancestor.getValue
(Graph trueGraph, Graph estGraph, DataModel dataModel) Calculates the true positives for arrows compared to the true DAG.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph.double
Returns the value of this statistic, given the true graph and the estimated graph. -
Uses of DataModel in edu.cmu.tetrad.bayes
Constructors in edu.cmu.tetrad.bayes with parameters of type DataModelModifierConstructorDescriptionJunctionTreeAlgorithm
(Graph graph, DataModel dataModel) Constructor for JunctionTreeAlgorithm. -
Uses of DataModel in edu.cmu.tetrad.data
Subinterfaces of DataModel in edu.cmu.tetrad.dataModifier and TypeInterfaceDescriptioninterface
Implements a rectangular data set, in the sense of being a dataset with a fixed number of columns and a fixed number of rows, the length of each column being constant.interface
Interface for covariance matrices.Classes in edu.cmu.tetrad.data that implement DataModelModifier and TypeClassDescriptionfinal class
Wraps a DataBox in such a way that mixed data sets can be stored.final class
Stores a correlation matrix together with variable names and sample size; intended as a representation of a data set.class
Stores a covariance matrix together with variable names and sample size, intended as a representation of a data set.class
Stores a covariance matrix together with variable names and sample size, intended as a representation of a data set.class
Stores a covariance matrix together with variable names and sample size, intended as a representation of a data set.final class
Stores a list of data models and keeps track of which one is selected.class
Stores a list of independence facts.final class
Wraps a 2D array of Number objects in such a way that mixed data sets can be stored.final class
Stores time series data as a list of continuous columns.Methods in edu.cmu.tetrad.data that return DataModelModifier and TypeMethodDescriptionCorrelationMatrixOnTheFly.copy()
copy.CovarianceMatrix.copy()
copy.CovarianceMatrixOnTheFly.copy()
copy.DataModel.copy()
copy.DataModelList.copy()
copy.IndependenceFacts.copy()
copy.TimeSeriesData.copy()
copy.DataModelList.get
(int index) DataModelList.getSelectedModel()
Getter for the fieldselectedModel
.DataModelList.remove
(int index) Methods in edu.cmu.tetrad.data that return types with arguments of type DataModelMethods in edu.cmu.tetrad.data with parameters of type DataModelModifier and TypeMethodDescriptionvoid
Adds the given DataModel to the list at the given index.static DataSet
SimpleDataLoader.getContinuousDataSet
(DataModel dataSet) Returns the datamodel case to DataSet if it is continuous.static ICovarianceMatrix
SimpleDataLoader.getCovarianceMatrix
(DataModel dataModel, boolean precomputeCovariances) Returns the model cast to ICovarianceMatrix if already a covariance matric, or else returns the covariance matrix for a dataset.static DataSet
SimpleDataLoader.getDiscreteDataSet
(DataModel dataSet) Returns the datamodel case to DataSet if it is discrete.static DataSet
SimpleDataLoader.getMixedDataSet
(DataModel dataSet) Returns the datamodel case to DataSet if it is mixed.void
DataModelList.setSelectedModel
(DataModel model) Setter for the fieldselectedModel
. -
Uses of DataModel in edu.cmu.tetrad.data.simulation
Methods in edu.cmu.tetrad.data.simulation that return DataModelModifier and TypeMethodDescriptionLoadContinuousDataAndGraphs.getDataModel
(int index) Returns the number of data sets to simulate.LoadContinuousDataAndSingleGraph.getDataModel
(int index) Returns the number of data sets to simulate.LoadContinuousDataSmithSim.getDataModel
(int index) Returns the number of data sets to simulate.LoadDataAndGraphs.getDataModel
(int index) Returns the number of data sets to simulate.LoadDataFromFileWithoutGraph.getDataModel
(int index) Returns the number of data sets to simulate. -
Uses of DataModel in edu.cmu.tetrad.search
Methods in edu.cmu.tetrad.search that return DataModel -
Uses of DataModel in edu.cmu.tetrad.search.score
Methods in edu.cmu.tetrad.search.score that return DataModelModifier and TypeMethodDescriptionPoissonPriorScore.getData()
Returns the data set.SemBicScore.getData()
Returns the data model.SemBicScore.getDataModel()
Returns the data model.Methods in edu.cmu.tetrad.search.score with parameters of type DataModelModifier and TypeMethodDescriptionstatic double
Scores the given DAG using the given data model, usimg a BIC score.static double
SemBicScorer.scoreDag
(Graph dag, DataModel data, double penaltyDiscount, boolean precomputeCovariances) Scores the given DAG using the given data model, usimg a BIC score. -
Uses of DataModel in edu.cmu.tetrad.search.test
Methods in edu.cmu.tetrad.search.test that return DataModelModifier and TypeMethodDescriptionIndTestIndependenceFacts.getData()
Returns the facts supplied in the constructor, which constutite a data model.IndTestProbabilistic.getData()
Returns the data model associated with this instance.Kci.getData()
Returns The data model for the independence test.ScoreIndTest.getData()
Retrieves the data model associated with this object.Constructors in edu.cmu.tetrad.search.test with parameters of type DataModelModifierConstructorDescriptionScoreIndTest
(Score score, DataModel data) Constructor for ScoreIndTest. -
Uses of DataModel in edu.cmu.tetrad.search.utils
Methods in edu.cmu.tetrad.search.utils with parameters of type DataModelModifier and TypeMethodDescriptionstatic void
LogUtilsSearch.stampWithBic
(Graph graph, DataModel dataModel) stampWithBic.Constructors in edu.cmu.tetrad.search.utils with parameters of type DataModelModifierConstructorDescriptionClusterSignificance
(List<Node> variables, DataModel dataModel) Constructs a new cluster significance object.Constructor parameters in edu.cmu.tetrad.search.utils with type arguments of type DataModel -
Uses of DataModel in edu.cmu.tetrad.search.work_in_progress
Methods in edu.cmu.tetrad.search.work_in_progress that return DataModel -
Uses of DataModel in edu.cmu.tetrad.util
Methods in edu.cmu.tetrad.util that return DataModelModifier and TypeMethodDescriptionstatic DataModel
MultidataUtils.combineDataset
(List<DataModel> dataModels) combineDataset.static DataModel
DataConvertUtils.toContinuousDataModel
(ContinuousData dataset) toContinuousDataModel.static DataModel
DataConvertUtils.toCovarianceMatrix
(CovarianceData dataset) toCovarianceMatrix.static DataModel
DataConvertUtils.toDataModel
(Data data) toDataModel.static DataModel
DataConvertUtils.toDataModel
(Data data, Metadata metadata) toDataModel.static DataModel
DataConvertUtils.toMixedDataBox
(MixedTabularData dataset) toMixedDataBox.static DataModel
DataConvertUtils.toMixedDataBox
(MixedTabularData dataset, Metadata metadata) Converting using metadatastatic DataModel
DataConvertUtils.toVerticalDiscreteDataModel
(VerticalDiscreteTabularData dataset) toVerticalDiscreteDataModel.static DataModel
DataConvertUtils.toVerticalDiscreteDataModel
(VerticalDiscreteTabularData dataset, Metadata metatdata) Converting using metadataMethods in edu.cmu.tetrad.util with parameters of type DataModelModifier and TypeMethodDescriptionstatic int
MultidataUtils.getNumberOfColumns
(DataModel dataModel) getNumberOfColumns.Method parameters in edu.cmu.tetrad.util with type arguments of type DataModelModifier and TypeMethodDescriptionstatic void
MultidataUtils.combineContinuousData
(List<DataModel> dataModels, double[][] combinedData) combineContinuousData.static DataModel
MultidataUtils.combineDataset
(List<DataModel> dataModels) combineDataset.static void
MultidataUtils.combineDiscreteDataToDiscreteVerticalData
(List<DataModel> dataModels, List<Node> variables, int[][] combinedData, int numOfRows, int numOfColumns) combineDiscreteDataToDiscreteVerticalData.static void
MultidataUtils.combineMixedContinuousData
(List<DataModel> dataModels, List<Node> variables, double[][] combinedData, int numOfRows, int numOfColumns) combineMixedContinuousData.static void
MultidataUtils.combineMixedDiscreteData
(List<DataModel> dataModels, List<Node> variables, int[][] combinedData, int numOfRows, int numOfColumns) combineMixedDiscreteData.static void
MultidataUtils.combineVariables
(List<DataModel> dataModels, List<Node> variables) Combine the list of variables from each of data model in the list into one variable list.static int[]
MultidataUtils.getRowCounts
(List<DataModel> dataModels) getRowCounts.