Uses of Interface
edu.cmu.tetrad.data.DataSet
Packages that use DataSet
Package
Description
Contains classes for searching for (mostly structural) causal models given data.
Contains classes for various sorts of scores for running score-based algorithms.
Contains classes for running conditional independence tests for various sorts of data.
Contains some utility classes for search algorithms.
Contains some classes that aren't ready for prime time.
-
Uses of DataSet in edu.cmu.tetrad.algcomparison.simulation
Constructors in edu.cmu.tetrad.algcomparison.simulation with parameters of type DataSetModifierConstructorDescriptionSingleDatasetSimulation
(DataSet dataSet) ASimulation
implementation that returns a single supplied data set. -
Uses of DataSet in edu.cmu.tetrad.bayes
Methods in edu.cmu.tetrad.bayes that return DataSetModifier and TypeMethodDescriptionInterpolates the given data set, producing a data set with no missing values.Interpolates the given data set, producing a data set with no missing values.CellTableProbs.getDataSet()
Getter for the fielddataSet
.DataSetProbs.getDataSet()
Getter for the fielddataSet
.DirichletDataSetProbs.getDataSet()
Getter for the fielddataSet
.FactoredBayesStructuralEM.getDataSet()
Getter for the fielddataSet
.IntAveDataSetProbs.getDataSet()
Getter for the fielddataSet
.EmBayesEstimator.getMixedDataSet()
getMixedDataSet.BayesIm.simulateData
(int sampleSize, boolean latentDataSaved) Simulates a data set with the specified number of rows.BayesIm.simulateData
(DataSet dataSet, boolean latentDataSaved) Simulates data based on the provided data set and saves the latent data if specified.DirichletBayesIm.simulateData
(int sampleSize, boolean latentDataSaved) Simulates a data set with the specified number of rows.DirichletBayesIm.simulateData
(DataSet dataSet, boolean latentDataSaved) Simulates data based on the provided data set and saves the latent data if specified.MlBayesIm.simulateData
(int sampleSize, boolean latentDataSaved) Simulates a data set.MlBayesIm.simulateData
(int sampleSize, boolean latentDataSaved, int[] tiers) Simulates a sample with the given sample size.MlBayesIm.simulateData
(DataSet dataSet, boolean latentDataSaved) Simulates data for the given data set.MlBayesIm.simulateData
(DataSet dataSet, boolean latentDataSaved, int[] tiers) simulateData.MlBayesImObs.simulateData
(int sampleSize, boolean latentDataSaved) Simulates a data set with the specified number of rows.MlBayesImObs.simulateData
(DataSet dataSet, boolean latentDataSaved) Simulates data based on the provided data set and saves the latent data if specified.UpdatedBayesIm.simulateData
(int sampleSize, boolean latentDataSaved) Simulates a data set with the specified number of rows.UpdatedBayesIm.simulateData
(DataSet dataSet, boolean latentDataSaved) Simulates data based on the provided data set and saves the latent data if specified.Methods in edu.cmu.tetrad.bayes with parameters of type DataSetModifier and TypeMethodDescriptionstatic DirichletBayesIm
DirichletEstimator.estimate
(DirichletBayesIm prior, DataSet dataSet) estimate.estimate.Estimates parameters of the given Bayes net from the given data using maximum likelihood method.33 Estimates a Bayes IM using the variables, graph, and parameters in the given Bayes PM and the data columns in the given data set.Interpolates the given data set, producing a data set with no missing values.Interpolates the given data set, producing a data set with no missing values.BayesIm.simulateData
(DataSet dataSet, boolean latentDataSaved) Simulates data based on the provided data set and saves the latent data if specified.DirichletBayesIm.simulateData
(DataSet dataSet, boolean latentDataSaved) Simulates data based on the provided data set and saves the latent data if specified.MlBayesIm.simulateData
(DataSet dataSet, boolean latentDataSaved) Simulates data for the given data set.MlBayesIm.simulateData
(DataSet dataSet, boolean latentDataSaved, int[] tiers) simulateData.MlBayesImObs.simulateData
(DataSet dataSet, boolean latentDataSaved) Simulates data based on the provided data set and saves the latent data if specified.UpdatedBayesIm.simulateData
(DataSet dataSet, boolean latentDataSaved) Simulates data based on the provided data set and saves the latent data if specified.Constructors in edu.cmu.tetrad.bayes with parameters of type DataSetModifierConstructorDescriptionBayesProperties
(DataSet dataSet) Constructs a new BayesProperties object for the given data set.BdeMetricCache
(DataSet dataSet, BayesPm bayesPm) Constructs a BdeMetricCache object for a given dataset and BayesPm.CellTableProbs
(DataSet dataSet) Creates a cell count table for the given data set.CptMapCounts
(DataSet data) Constructs a new CptMap based on counts from a given dataset.DataSetProbs
(DataSet dataSet) Creates a cell count table for the given data set.DirichletDataSetProbs
(DataSet dataSet, double symmValue) Creates a cell count table for the given data set.EmBayesEstimator
(BayesIm inputBayesIm, DataSet dataSet) Constructor for EmBayesEstimator.EmBayesEstimator
(BayesPm bayesPm, DataSet dataSet) Provides methods for estimating a Bayes IM from an existing BayesIM and a discrete dataset using EM (Expectation Maximization).EmBayesProperties
(DataSet dataSet, Graph graph) Constructor for EmBayesProperties.FactoredBayesStructuralEM
(DataSet dataSet, BayesPm bayesPmM0) Constructor for FactoredBayesStructuralEM.IntAveDataSetProbs
(DataSet dataSet) Creates a cell count table for the given data set. -
Uses of DataSet in edu.cmu.tetrad.calculator
Methods in edu.cmu.tetrad.calculator with parameters of type DataSet -
Uses of DataSet in edu.cmu.tetrad.calibration
Methods in edu.cmu.tetrad.calibration that return DataSetModifier and TypeMethodDescriptionDataForCalibrationRfci.bootStrapSampling
(DataSet data, int bootsrapSampleSize) bootStrapSampling.Methods in edu.cmu.tetrad.calibration with parameters of type DataSetModifier and TypeMethodDescriptionDataForCalibrationRfci.bootStrapSampling
(DataSet data, int bootsrapSampleSize) bootStrapSampling.DataForCalibrationRfci.learnBNRFCI
(DataSet bootstrapSample, int depth, Graph truePag) learnBNRFCI. -
Uses of DataSet in edu.cmu.tetrad.classify
Methods in edu.cmu.tetrad.classify that return DataSetModifier and TypeMethodDescriptionClassifierBayesUpdaterDiscrete.getTestData()
Returns the test data being used.Constructors in edu.cmu.tetrad.classify with parameters of type DataSetModifierConstructorDescriptionClassifierBayesUpdaterDiscrete
(BayesIm bayesIm, DataSet testData) The constructor sets the values of the private member variables. -
Uses of DataSet in edu.cmu.tetrad.data
Classes in edu.cmu.tetrad.data that implement DataSetModifier and TypeClassDescriptionfinal class
Wraps a DataBox in such a way that mixed data sets can be stored.final class
Wraps a 2D array of Number objects in such a way that mixed data sets can be stored.Methods in edu.cmu.tetrad.data that return DataSetModifier and TypeMethodDescriptionstatic DataSet
DataTransforms.addMissingData
(DataSet inData, double[] probs) Adds missing data values to cases in accordance with probabilities specified in a double array which has as many elements as there are columns in the input dataset.static DataSet
Subtracts the mean of each column from each datum that column.static DataSet
DataUtils.choleskySimulation
(CovarianceMatrix cov) choleskySimulation.static DataSet
DataTransforms.concatenate
(DataSet... dataSets) concatenate.static DataSet
DataTransforms.concatenate
(DataSet dataSet1, DataSet dataSet2) concatenate.static DataSet
DataTransforms.concatenate
(List<DataSet> dataSets) concatenate.static DataSet
DataTransforms.convertNumericalDiscreteToContinuous
(DataSet dataSet) convertNumericalDiscreteToContinuous.BoxDataSet.copy()
Returns a copy of this dataset.DataSet.copy()
Returns a copy of this dataset.NumberObjectDataSet.copy()
Returns a copy of this dataset.static DataSet
DataUtils.discreteSerializableInstance()
A discrete data set used to construct some other serializable instances.static DataSet
DataTransforms.discretize
(DataSet dataSet, int numCategories, boolean variablesCopied) discretize.Discretizer.discretize()
discretize.Interpolates the given data set, producing a data set with no missing values.Interpolates the given data set, producing a data set with no missing values.Interpolates the given data set, producing a data set with no missing values.static DataSet
DataTransforms.getBootstrapSample
(DataSet data, int sampleSize) getBootstrapSample.static DataSet
DataTransforms.getBootstrapSample
(DataSet data, int sampleSize, org.apache.commons.math3.random.RandomGenerator randomGenerator) Get dataset sampled with replacement.static DataSet
SimpleDataLoader.getContinuousDataSet
(DataModel dataSet) Returns the datamodel case to DataSet if it is continuous.Histogram.getDataSet()
Getter for the fielddataSet
.static DataSet
SimpleDataLoader.getDiscreteDataSet
(DataModel dataSet) Returns the datamodel case to DataSet if it is discrete.static DataSet
SimpleDataLoader.getMixedDataSet
(DataModel dataSet) Returns the datamodel case to DataSet if it is mixed.static DataSet
DataTransforms.getNonparanormalTransformed
(DataSet dataSet) getNonparanormalTransformed.static DataSet
DataTransforms.getResamplingDataset
(DataSet data, int sampleSize) getResamplingDataset.static DataSet
DataTransforms.getResamplingDataset
(DataSet data, int sampleSize, org.apache.commons.math3.random.RandomGenerator randomGenerator) Get dataset sampled without replacement.BoxDataSet.like()
Returns a dataset with the same dimensions as this dataset, but with no data.DataSet.like()
Returns a dataset with the same dimensions as this dataset, but with no data.NumberObjectDataSet.like()
Returns a dataset with the same dimensions as this dataset, but with no data.static @NotNull DataSet
SimpleDataLoader.loadContinuousData
(File file, String commentMarker, char quoteCharacter, String missingValueMarker, boolean hasHeader, Delimiter delimiter, boolean excludeFirstColumn) Loads a continuous dataset from a file.static @NotNull DataSet
SimpleDataLoader.loadDiscreteData
(File file, String commentMarker, char quoteCharacter, String missingValueMarker, boolean hasHeader, Delimiter delimiter, boolean excludeFirstColumn) Loads a discrete dataset from a file.static @NotNull DataSet
SimpleDataLoader.loadMixedData
(File file, String commentMarker, char quoteCharacter, String missingValueMarker, boolean hasHeader, int maxNumCategories, Delimiter delimiter, boolean excludeFirstColumn) Loads a mixed dataset from a file.static DataSet
Log or unlog datastatic DataSet
DataTransforms.removeConstantColumns
(DataSet dataSet) removeConstantColumns.static DataSet
DataTransforms.removeRandomColumns
(DataSet dataSet, double aDouble) removeRandomColumns.static DataSet
DataTransforms.replaceMissingWithRandom
(DataSet inData) replaceMissingWithRandom.static DataSet
DataTransforms.restrictToMeasured
(DataSet fullDataSet) restrictToMeasured.This method takes a dataset and a sample size and creates a new dataset containing that number of samples by drawing with replacement from the original dataset.static DataSet
This method takes a dataset and a sample size and creates a new dataset containing that number of samples by drawing with replacement from the original dataset.static DataSet
Scales the continuous variables in the given DataSet to have values in the range [-1, 1].static DataSet
static DataSet
DataTransforms.shuffleColumns
(DataSet dataModel) shuffleColumns.Simulator.simulateData
(int sampleSize, boolean latentDataSaved) Simulates data from the model associated with this object.static DataSet
DataTransforms.standardizeData
(DataSet dataSet) standardizeData.BoxDataSet.subsetColumns
(int[] indices) Creates a new DataSet object containing only the specified columns.BoxDataSet.subsetColumns
(List<Node> vars) Creates and returns a dataset consisting of those variables in the list vars.DataSet.subsetColumns
(int[] columns) subsetColumns.DataSet.subsetColumns
(List<Node> vars) Creates and returns a dataset consisting of those variables in the list vars.NumberObjectDataSet.subsetColumns
(int[] indices) subsetColumns.NumberObjectDataSet.subsetColumns
(List<Node> vars) Creates and returns a dataset consisting of those variables in the list vars.BoxDataSet.subsetRows
(int[] rows) Creates a subset of rows from the existing DataSet.DataSet.subsetRows
(int[] rows) subsetRows.NumberObjectDataSet.subsetRows
(int[] rows) subsetRows.BoxDataSet.subsetRowsColumns
(int[] rows, int[] columns) Generates a subset of the current DataSet by selecting specified rows and columns.DataSet.subsetRowsColumns
(int[] rows, int[] columns) Generates a subset of the current DataSet by selecting specified rows and columns.NumberObjectDataSet.subsetRowsColumns
(int[] rows, int[] columns) Generates a subset of the current DataSet by selecting specified rows and columns.Methods in edu.cmu.tetrad.data that return types with arguments of type DataSetModifier and TypeMethodDescriptioncenter.DataSampling.createDataSamples
(DataSet dataSet, Parameters parameters) Create a list of dataset resampled from the given dataset.DataSampling.createDataSamples
(DataSet dataSet, Parameters parameters, org.apache.commons.math3.random.RandomGenerator randomGenerator) Create a list of dataset resampled from the given dataset.DataTransforms.shuffleColumns2
(List<DataSet> dataSets) shuffleColumns2.split.DataTransforms.standardizeData
(List<DataSet> dataSets) standardizeData.Methods in edu.cmu.tetrad.data with parameters of type DataSetModifier and TypeMethodDescriptionstatic DataSet
DataTransforms.addMissingData
(DataSet inData, double[] probs) Adds missing data values to cases in accordance with probabilities specified in a double array which has as many elements as there are columns in the input dataset.static DataSet
Subtracts the mean of each column from each datum that column.static DataSet
DataTransforms.concatenate
(DataSet... dataSets) concatenate.static DataSet
DataTransforms.concatenate
(DataSet dataSet1, DataSet dataSet2) concatenate.static boolean
DataUtils.containsMissingValue
(DataSet data) containsMissingValue.static DataSet
DataTransforms.convertNumericalDiscreteToContinuous
(DataSet dataSet) convertNumericalDiscreteToContinuous.static void
DataTransforms.copyColumn
(Node node, DataSet source, DataSet dest) copyColumn.static ICovarianceMatrix
DataTransforms.covarianceNonparanormalDrton
(DataSet dataSet) covarianceNonparanormalDrton.DataSampling.createDataSamples
(DataSet dataSet, Parameters parameters) Create a list of dataset resampled from the given dataset.DataSampling.createDataSamples
(DataSet dataSet, Parameters parameters, org.apache.commons.math3.random.RandomGenerator randomGenerator) Create a list of dataset resampled from the given dataset.static DataSet
DataTransforms.discretize
(DataSet dataSet, int numCategories, boolean variablesCopied) discretize.Interpolates the given data set, producing a data set with no missing values.Interpolates the given data set, producing a data set with no missing values.Interpolates the given data set, producing a data set with no missing values.static DataSet
DataTransforms.getBootstrapSample
(DataSet data, int sampleSize) getBootstrapSample.static DataSet
DataTransforms.getBootstrapSample
(DataSet data, int sampleSize, org.apache.commons.math3.random.RandomGenerator randomGenerator) Get dataset sampled with replacement.DataTransforms.getConstantColumns
(DataSet dataSet) getConstantColumns.static @NotNull ICovarianceMatrix
SimpleDataLoader.getCorrelationMatrix
(DataSet dataSet) getCorrelationMatrix.static @NotNull ICovarianceMatrix
SimpleDataLoader.getCovarianceMatrix
(DataSet dataSet, boolean precomputeCovariances) getCovarianceMatrix.static DataSet
DataTransforms.getNonparanormalTransformed
(DataSet dataSet) getNonparanormalTransformed.static DataSet
DataTransforms.getResamplingDataset
(DataSet data, int sampleSize) getResamplingDataset.static DataSet
DataTransforms.getResamplingDataset
(DataSet data, int sampleSize, org.apache.commons.math3.random.RandomGenerator randomGenerator) Get dataset sampled without replacement.static boolean
States whether the given column of the given data set is binary.static DataSet
Log or unlog datastatic DataSet
DataTransforms.removeConstantColumns
(DataSet dataSet) removeConstantColumns.static DataSet
DataTransforms.removeRandomColumns
(DataSet dataSet, double aDouble) removeRandomColumns.static DataSet
DataTransforms.replaceMissingWithRandom
(DataSet inData) replaceMissingWithRandom.static DataSet
DataTransforms.restrictToMeasured
(DataSet fullDataSet) restrictToMeasured.This method takes a dataset and a sample size and creates a new dataset containing that number of samples by drawing with replacement from the original dataset.static DataSet
This method takes a dataset and a sample size and creates a new dataset containing that number of samples by drawing with replacement from the original dataset.static DataSet
Scales the continuous variables in the given DataSet to have values in the range [-1, 1].static DataSet
static DataSet
DataTransforms.shuffleColumns
(DataSet dataModel) shuffleColumns.split.static DataSet
DataTransforms.standardizeData
(DataSet dataSet) standardizeData.static void
DataWriter.writeRectangularData
(DataSet dataSet, Writer out, char separator) Writes a dataset to file.Method parameters in edu.cmu.tetrad.data with type arguments of type DataSetModifier and TypeMethodDescriptioncenter.static DataSet
DataTransforms.concatenate
(List<DataSet> dataSets) concatenate.DataTransforms.shuffleColumns2
(List<DataSet> dataSets) shuffleColumns2.DataTransforms.standardizeData
(List<DataSet> dataSets) standardizeData.Constructors in edu.cmu.tetrad.data with parameters of type DataSetModifierConstructorDescriptionCellTableAdTree
(DataSet dataSet, int[] testIndices) Constructs a new CellTableAdTree using the provided data set and test indices.CellTableAdTree
(DataSet dataSet, int[] testIndices, List<Integer> rows) Constructs a new cell table using the given array for dimensions, initializing all cells in the table to zero.CellTableCountSample
(DataSet dataSet, int[] testIndices) Constructs a new cell table using the given array for dimensions, initializing all cells in the table to zero.CellTableCountSample
(DataSet dataSet, int[] testIndices, List<Integer> rows) Constructs a new cell table using the given array for dimensions, initializing all cells in the table to zero.CorrelationMatrix
(DataSet dataSet) Constructs a new correlation matrix from the the given DataSet.CovarianceMatrix
(DataSet dataSet) Constructs a new covariance matrix from the given data set.CovarianceMatrix
(DataSet dataSet, boolean biasCorrected) Constructor for CovarianceMatrix.CovarianceMatrixOnTheFly
(DataSet dataSet) Constructs a new covariance matrix from the given data set.CovarianceMatrixOnTheFly
(DataSet dataSet, boolean verbose) Constructor for CovarianceMatrixOnTheFly.Discretizer
(DataSet dataSet) Constructs a new discretizer that discretizes every variable as binary, using evenly distributed values.Discretizer
(DataSet dataSet, Map<Node, DiscretizationSpec> specs) Constructor for Discretizer.This histogram is for variables in a particular data set. -
Uses of DataSet in edu.cmu.tetrad.graph
Methods in edu.cmu.tetrad.graph with parameters of type DataSetModifier and TypeMethodDescriptionstatic Graph
GraphSaveLoadUtils.loadGraphBNTPcMatrix
(List<Node> vars, DataSet dataSet) loadGraphBNTPcMatrix. -
Uses of DataSet in edu.cmu.tetrad.regression
Methods in edu.cmu.tetrad.regression that return DataSetMethods in edu.cmu.tetrad.regression with parameters of type DataSetConstructors in edu.cmu.tetrad.regression with parameters of type DataSetModifierConstructorDescriptionLogisticRegression
(DataSet dataSet) A mixed data set.RegressionDataset
(DataSet data) Constructs a linear regression model for the given tabular data set. -
Uses of DataSet in edu.cmu.tetrad.search
Methods in edu.cmu.tetrad.search that return DataSetMethods in edu.cmu.tetrad.search that return types with arguments of type DataSetModifier and TypeMethodDescriptionIndependenceTest.getDataSets()
Returns the datasets for this testMethods in edu.cmu.tetrad.search with parameters of type DataSetModifier and TypeMethodDescriptionstatic Matrix
Estimates the W matrix using FastICA.static Matrix
IcaLingD.estimateW
(DataSet data, int fastIcaMaxIter, double fastIcaTolerance, double fastIcaA, boolean verbose) Estimates the W matrix using FastICA.Fits an ICA-LiNGAM model to the given dataset using a default method for estimating W.Fits a LiNG-D model to the given dataset using a default method for estimating W.double[][]
CpdagParentDistancesFromTrue.getDistances
(Graph outputCpdag, double[][] trueEdgeStrengths, DataSet dataSet, CpdagParentDistancesFromTrue.DistanceType distanceType) Calculates the distance matrix for the edges in the given CPDAG (outputCpdag).Cstar.getRecords
(DataSet dataSet, List<Node> possibleCauses, List<Node> possibleEffects, int topBracket, String path) Returns records for a set of variables with expected number of false positives bounded by q.Constructors in edu.cmu.tetrad.search with parameters of type DataSetModifierConstructorDescriptionBossLingam
(Graph cpdag, DataSet dataSet) Constructor.Bpc
(DataSet dataSet, double alpha, BpcTestType sigTestType) Constructor.Constructor.DirectLingam
(DataSet dataset, Score score) Constructor.FactorAnalysis
(DataSet dataSet) Constructor.Constructs a new instance of the FaskOrig class with the given DataSet and Score objects.FaskOrig
(DataSet dataSet, Score score, IndependenceTest test) Constructor.Fofc
(DataSet dataSet, BpcTestType testType, Fofc.Algorithm algorithm, double alpha) Conctructor.Ftfc
(DataSet dataSet, Ftfc.Algorithm algorithm, double alpha) Conctructor.Constructor.Constructs a new IDA check for the given MPDAG and data set.Constructor parameters in edu.cmu.tetrad.search with type arguments of type DataSet -
Uses of DataSet in edu.cmu.tetrad.search.score
Methods in edu.cmu.tetrad.search.score that return DataSetModifier and TypeMethodDescriptionBdeScore.getDataSet()
Returns the DataSet associated with this method.BdeuScore.getDataSet()
Retrieves the dataset associated with this BdeuScore object.DiscreteBicScore.getDataSet()
Returns the dataset.DiscreteBicScoreAdTree.getDataSet()
Returns the dataset.DiscreteScore.getDataSet()
Returns the dataset.GicScores.getDataSet()
Returns the dataset.IndTestScore.getDataSet()
Returns the data set.Methods in edu.cmu.tetrad.search.score with parameters of type DataSetModifier and TypeMethodDescriptionstatic Matrix
Computes the covariance matrix for the given subset of rows and columns in the provided data set.Constructors in edu.cmu.tetrad.search.score with parameters of type DataSetModifierConstructorDescriptionBasisFunctionBicScore
(DataSet dataSet, boolean precomputeCovariances, int truncationLimit, int basisType, double basisScale) Constructs a BasisFunctionBicScore object with the specified parameters.Constructs a BDe score for the given dataset.Constructs a BDe score for the given dataset.ConditionalGaussianLikelihood
(DataSet dataSet) Constructs the score using a covariance matrix.ConditionalGaussianScore
(DataSet dataSet, double penaltyDiscount, boolean discretize) Constructs the score using a covariance matrix.DegenerateGaussianScore
(DataSet dataSet, boolean precomputeCovariances) Constructs the score using a dataset.DiscreteBicScore
(DataSet dataSet) Constructs the score using a dataset.DiscreteBicScoreAdTree
(DataSet dataSet) Constructs the score using a dataset.Constructs the score using a covariance matrix.Constructs the score using a covariance matrix.MvpLikelihood
(DataSet dataSet, double structurePrior, int fDegree, boolean discretize) Constructs the score using a data set.Constructor.PoissonPriorScore
(DataSet dataSet, boolean precomputeCovariances) Constructs the score using a covariance matrix.SemBicScore
(DataSet dataSet, boolean precomputeCovariances) Constructs the score using a covariance matrix.Constructs the score using a covariance matrix. -
Uses of DataSet in edu.cmu.tetrad.search.test
Methods in edu.cmu.tetrad.search.test that return DataSetModifier and TypeMethodDescriptionIndTestChiSquare.getData()
Returns the data being analyzed.IndTestConditionalCorrelation.getData()
Returns the data set being analyzed.IndTestConditionalGaussianLrt.getData()
Returns the data.IndTestDegenerateGaussianLrt.getData()
Returns the dataset being analyzed.IndTestFisherZ.getData()
Returns the data set being analyzed.IndTestFisherZConcatenateResiduals.getData()
Returns the concatenated data.IndTestFisherZFisherPValue.getData()
Returns the concatenated data.IndTestGSquare.getData()
Returns the data.IndTestHsic.getData()
Returns the data set being analyzed.IndTestMulti.getData()
Retrieves the data set.IndTestMvpLrt.getData()
Returns the data.IndTestRegression.getData()
Returns the data used.IndTestTrekSep.getData()
Gets the data set used for the independence test.MsepTest.getData()
Returns the data set used for the test.Methods in edu.cmu.tetrad.search.test that return types with arguments of type DataSetModifier and TypeMethodDescriptionIndTestFisherZ.getDataSets()
Returns the (singleton) list of datasets being analyzed.IndTestTrekSep.getDataSets()
Returns the data sets used for the independence test.Kci.getDataSets()
Returns a list consisting of the dataset for this test.ScoreIndTest.getDataSets()
Constructors in edu.cmu.tetrad.search.test with parameters of type DataSetModifierConstructorDescriptionChiSquareTest
(DataSet dataSet, double alpha, ChiSquareTest.TestType testType, List<Integer> rows) Constructs a test using the given data set and significance level.ConditionalCorrelationIndependence
(DataSet dataSet, int basisType, double basisScale, int numFunctions) Initializes a new instance of the ConditionalCorrelationIndependence class using the provided DataSet.IndTestChiSquare
(DataSet dataSet, double alpha) Constructs a new independence checker to check conditional independence facts for discrete data using a g square test.IndTestConditionalCorrelation
(DataSet dataSet, double alpha, double scalingFactor, int basisType, int numFunctions, double basisScale) Constructs a new Independence test which checks independence facts based on the correlation data implied by the given data set (must be continuous).IndTestConditionalGaussianLrt
(DataSet data, double alpha, boolean discretize) Constructor.IndTestDegenerateGaussianLrt
(DataSet dataSet) Constructs the score using a covariance matrix.IndTestFisherZ
(DataSet dataSet, double alpha) Constructs a new Independence test which checks independence facts based on the correlation matrix implied by the given data set (must be continuous).IndTestGSquare
(DataSet dataSet, double alpha) Constructs a new independence checker to check conditional independence facts for discrete data using a g square test.IndTestHsic
(DataSet dataSet, double alpha) Constructs a new HSIC Independence test.IndTestMvpLrt
(DataSet data, double alpha, int fDegree, boolean discretize) Constructor.IndTestProbabilistic
(DataSet dataSet) Initializes the test using a discrete data sets.IndTestRegression
(DataSet dataSet, double alpha) Constructs a new Independence test which checks independence facts based on the correlation matrix implied by the given data set (must be continuous).Constructor.Constructor parameters in edu.cmu.tetrad.search.test with type arguments of type DataSetModifierConstructorDescriptionIndTestFisherZConcatenateResiduals
(List<DataSet> dataSets, double alpha) Constructor.IndTestFisherZFisherPValue
(List<DataSet> dataSets, double alpha) Constructor. -
Uses of DataSet in edu.cmu.tetrad.search.utils
Methods in edu.cmu.tetrad.search.utils that return DataSetModifier and TypeMethodDescriptionstatic DataSet
Creates new time series dataset from the given one with index variable (e.g., time)static DataSet
ar.static DataSet
ar2.static DataSet
TsUtils.createLagData
(DataSet data, int numLags) Creates new time series dataset from the given one (fixed to deal with mixed datasets)static DataSet
TsUtils.createShiftedData
(DataSet data, int[] shifts) createShiftedData.static DataSet
TsUtils.difference
(DataSet data, int d) Calculates the dth difference of the given data.TetradTest.getDataSet()
getDataSet.TetradTestContinuous.getDataSet()
Getter for the fielddataSet
.TetradTestDiscrete.getDataSet()
Getter for the fielddataSet
.TetradTestPopulation.getDataSet()
getDataSet.TsUtils.VarResult.getResiduals()
Getter for the fieldresiduals
.Methods in edu.cmu.tetrad.search.utils with parameters of type DataSetModifier and TypeMethodDescriptionstatic DataSet
Creates new time series dataset from the given one with index variable (e.g., time)static DataSet
ar.static DataSet
ar2.static Matrix
Constructs the centralized Gram matrix for a given vector valued sample.static Matrix
Constructs Gram matrix for a given vector valued sample.static DataSet
TsUtils.createLagData
(DataSet data, int numLags) Creates new time series dataset from the given one (fixed to deal with mixed datasets)static DataSet
TsUtils.createShiftedData
(DataSet data, int[] shifts) createShiftedData.static DataSet
TsUtils.difference
(DataSet data, int d) Calculates the dth difference of the given data.static double[]
TsUtils.getSelfLoopCoefs
(DataSet timeSeries) getSelfLoopCoefs.static Matrix
KernelUtils.incompleteCholeskyGramMatrix
(List<Kernel> kernels, DataSet dataset, List<Node> nodes, double precision) Approximates Gram matrix using incomplete Cholesky factorizationvoid
Kernel.setDefaultBw
(DataSet dataset, Node node) Sets bandwidth from data using default methodvoid
KernelGaussian.setDefaultBw
(DataSet dataset, Node node) Sets bandwidth from data using default methodvoid
KernelGaussian.setMedianBandwidth
(DataSet dataset, Node node) Sets the bandwidth of the kernel to median distance between two points in the given vectorstatic TsUtils.VarResult
TsUtils.structuralVar
(DataSet timeSeries, int numLags) structuralVar.static double
TsUtils.sumOfArCoefficients
(DataSet timeSeries, int numLags) sumOfArCoefficients.Constructors in edu.cmu.tetrad.search.utils with parameters of type DataSetModifierConstructorDescriptionConstructs an AD Leaf Tree for the given dataset, without subsampling.Constructs an AD Leaf Tree for the given dataset.DeltaSextadTest
(DataSet dataSet) Constructs a test using a given data set.DeltaTetradTest
(DataSet dataSet) Constructs a test using a given data set.FgesOrienter
(DataSet dataSet) The data set must either be all continuous or all discrete.KernelGaussian
(DataSet dataset, Node node) Creates a new Gaussian kernel using the median distance between points to set the bandwidthPurify
(DataSet dataSet, double sig, BpcTestType testType, Clusters clusters) Constructor for Purify.TetradTestContinuous
(DataSet dataSet, BpcTestType sigTestType, double sig) Constructor for TetradTestContinuous.TetradTestDiscrete
(DataSet dataSet, double sig) Constructor for TetradTestDiscrete.Constructs a new result. -
Uses of DataSet in edu.cmu.tetrad.search.work_in_progress
Methods in edu.cmu.tetrad.search.work_in_progress that return DataSetModifier and TypeMethodDescriptionDMSearch.getData()
Getter for the fielddata
.IndTestCramerT.getData()
Retrieves the dataset used in the independence test.IndTestFisherZPercentIndependent.getData()
Retrieves the data set from the method.IndTestFisherZRecursive.getData()
getData.IndTestMixedMultipleTTest.getData()
Returne the original data for the method.IndTestMnlrLr.getData()
Returns the dataset.IndTestMultinomialLogisticRegression.getData()
Retrieves the original data used for the independence test.IndTestPositiveCorr.getData()
Retrieve the data set used in the independence test.IndTestSepsetDci.getData()
getData.ISBDeuScore.getDataSet()
Retrieves a DataSet object.ISBicScore.getDataSet()
Retrieves the data set from the current context.ISScore.getDataSet()
Retrieves the dataset used in the scoring calculations.SemBicScoreDeterministic.getDataSet()
getDataSet.DataSet[]
MixtureModel.getDemixedData()
getDemixedData.Methods in edu.cmu.tetrad.search.work_in_progress that return types with arguments of type DataSetModifier and TypeMethodDescriptionIndTestFisherZPercentIndependent.getDataSets()
Retrieves the list of data sets.IndTestFisherZRecursive.getDataSets()
Returns the datasets for this testIndTestPositiveCorr.getDataSets()
Retrieves the data sets used in the independence test.Methods in edu.cmu.tetrad.search.work_in_progress with parameters of type DataSetConstructors in edu.cmu.tetrad.search.work_in_progress with parameters of type DataSetModifierConstructorDescriptionBpcTetradPurifyWashdown
(DataSet dataSet, BpcTestType testType, double alpha) Construct the algorithm using a data set.Constructor.Constructor for FasLofs.Constructor for HbsmsBeam.Constructor for HbsmsGes.IndTestCramerT
(DataSet dataSet, double alpha) Constructs a new Independence test which checks independence facts based on the correlation matrix implied by the given data set (must be continuous).IndTestFisherZRecursive
(DataSet dataSet, double alpha) Constructs a new Independence test which checks independence facts based on the correlation matrix implied by the given data set (must be continuous).IndTestMixedMultipleTTest
(DataSet data, double alpha) Constructor for IndTestMixedMultipleTTest.IndTestMnlrLr
(DataSet data, double alpha) Constructs a new independence test for the given data set and significance level.IndTestMultinomialLogisticRegression
(DataSet data, double alpha) Constructor for IndTestMultinomialLogisticRegression.IndTestPositiveCorr
(DataSet dataSet, double alpha) Constructs a new Independence test which checks independence facts based on the correlation matrix implied by the given data set (must be continuous).InverseCorrelation
(DataSet dataSet, double threshold) Constructor for InverseCorrelation.ISBDeuScore
(DataSet dataSet, DataSet testCase) Initializes the ISBDeuScore with the given dataset and test case.ISBicScore
(DataSet dataSet, DataSet testCase) Constructs an ISBicScore instance with the provided data sets.Constructs a new PC search using for the given dataset.MagCgBicScore
(DataSet dataSet) Constructor.MagCgBicScore
(DataSet dataSet, boolean precomputeCovariances) Constructor.MagDgBicScore
(DataSet dataSet) Constructor.MagDgBicScore
(DataSet dataSet, boolean precomputeCovariances) Constructor.MagSemBicScore
(DataSet dataSet, boolean precomputeCovariances) Constructor.MixtureModel
(DataSet data, double[][] dataArray, double[][] meansArray, double[] weightsArray, Matrix[] variancesArray, double[][] gammaArray) Constructs a mixture model from a mixed data set, a means matrix, a weights array, a variance matrix, and a gamma matrix.Mmhc
(IndependenceTest test, DataSet dataSet) Constructor for Mmhc.MnlrLikelihood
(DataSet dataSet, double structurePrior, int fDegree) Constructor.Constructor.ProbabilisticMapIndependence
(DataSet dataSet) Initializes the test using a discrete data sets.Constructor.Constructor parameters in edu.cmu.tetrad.search.work_in_progress with type arguments of type DataSetModifierConstructorDescriptionFaskVote
(List<DataSet> dataSets, ScoreWrapper score, IndependenceWrapper test) Constructor.IndTestFisherZPercentIndependent
(List<DataSet> dataSets, double alpha) Initializes an object of the class IndTestFisherZPercentIndependent. -
Uses of DataSet in edu.cmu.tetrad.sem
Methods in edu.cmu.tetrad.sem that return DataSetModifier and TypeMethodDescriptionDagScorer.getDataSet()
Getter for the fielddataSet
.Scorer.getDataSet()
getDataSet.SemEstimator.getDataSet()
Getter for the fielddataSet
.GeneralizedSemIm.simulateData
(int sampleSize, boolean latentDataSaved) Simulates data based on the given parameters.SemIm.simulateData
(int sampleSize, boolean latentDataSaved) Simulates data from the model associated with this object.StandardizedSemIm.simulateData
(int sampleSize, boolean latentDataSaved) Simulates data from the model associated with this object.GeneralizedSemIm.simulateDataAvoidInfinity
(int sampleSize, boolean latentDataSaved) Simulates data avoiding infinity values.SemIm.simulateDataCholesky
(int sampleSize, boolean latentDataSaved) Simulates data from this Sem using a Cholesky decomposition of the implied covariance matrix.GeneralizedSemIm.simulateDataFisher
(int sampleSize) Simulates data using the model of R.GeneralizedSemIm.simulateDataFisher
(int sampleSize, int intervalBetweenShocks, double epsilon) Simulates data using the model of R.LargeScaleSimulation.simulateDataFisher
(double[][] shocks, int intervalBetweenShocks, double epsilon) Simulates data using the model of R.LargeScaleSimulation.simulateDataFisher
(int sampleSize) Simulates data using the model of R.LargeScaleSimulation.simulateDataFisher
(int intervalBetweenShocks, int intervalBetweenRecordings, int sampleSize, double epsilon, boolean saveLatentVars) simulateDataFisher.GeneralizedSemIm.simulateDataMinimizeSurface
(int sampleSize, boolean latentDataSaved) Simulates data by minimizing the surface defined by the given sample size and whether latent data is saved.GeneralizedSemIm.simulateDataNSteps
(int sampleSize, boolean latentDataSaved) Simulates data for a given number of steps.GeneralizedSemIm.simulateDataRecursive
(int sampleSize, boolean latentDataSaved) This simulates data by picking random values for the exogenous terms and percolating this information down through the SEM, assuming it is acyclic.LargeScaleSimulation.simulateDataRecursive
(int sampleSize) This simulates data by picking random values for the exogenous terms and percolating this information down through the SEM, assuming it is acyclic.SemIm.simulateDataRecursive
(int sampleSize, boolean latentDataSaved) simulateDataRecursive.LargeScaleSimulation.simulateDataReducedForm
(int sampleSize) Simulates data using the model X = (I - B)Y^-1 * e.SemIm.simulateDataReducedForm
(int sampleSize, boolean latentDataSaved) simulateDataReducedForm.StandardizedSemIm.simulateDataReducedForm
(int sampleSize, boolean latentDataSaved) simulateDataReducedForm.Methods in edu.cmu.tetrad.sem with parameters of type DataSetModifier and TypeMethodDescriptionGeneralizedSemEstimator.estimate
(GeneralizedSemPm pm, DataSet data) Maximizes likelihood equation by equation.reidentifyVariables2.void
SemIm.setDataSet
(DataSet dataSet) Calculates the covariance matrix of the given DataSet and sets the sample covariance matrix for this model to a subset of it.Constructors in edu.cmu.tetrad.sem with parameters of type DataSetModifierConstructorDescriptionConstructs a new SemEstimator that uses the specified optimizer.SemEstimator
(DataSet dataSet, SemPm semPm) Constructs a Sem Estimator that does default estimation.SemEstimator
(DataSet dataSet, SemPm semPm, SemOptimizer semOptimizer) Constructs a new SemEstimator that uses the specified optimizer. -
Uses of DataSet in edu.cmu.tetrad.simulation
Methods in edu.cmu.tetrad.simulation that return DataSetModifier and TypeMethodDescriptionHsim.hybridsimulate()
hybridsimulate.HsimContinuous.hybridsimulate()
hybridsimulate.Methods in edu.cmu.tetrad.simulation with parameters of type DataSetModifier and TypeMethodDescriptionstatic VerticalIntDataBox
HsimUtils.makeVertIntBox
(DataSet dataset) makeVertIntBox.void
GdistanceRandom.setLocationMap
(DataSet map) Setter for the fieldlocationMap
.Constructors in edu.cmu.tetrad.simulation with parameters of type DataSetModifierConstructorDescriptionConstructor for Gdistance.GdistanceRandom
(DataSet inMap) Constructor for GdistanceRandom.Constructor for Hsim.Constructor for HsimAutoC.HsimAutoRun
(DataSet indata) Constructor for HsimAutoRun.HsimContinuous
(Dag thedag, Set<Node> thesimnodes, DataSet thedata) Constructor for HsimContinuous.HsimRepeatAC
(DataSet indata) Constructor for HsimRepeatAC.HsimRepeatAutoRun
(DataSet indata) Constructor for HsimRepeatAutoRun.Vicinity
(List<Edge> edges, DataSet locationMap, int xLow, int xHigh, int yLow, int yHigh, int zLow, int zHigh, double xDist, double yDist, double zDist) Constructor for Vicinity. -
Uses of DataSet in edu.pitt.csb.mgm
Methods in edu.pitt.csb.mgm that return DataSetModifier and TypeMethodDescriptionstatic DataSet
Makes a deep copy of a dataset (Nodes copied as well).static DataSet
MixedUtils.getContinousData
(DataSet ds) getContinousData.IndTestMultinomialLogisticRegressionWald.getData()
Retrieves the original dataset used for the independence test.static DataSet
MixedUtils.getDiscreteData
(DataSet ds) getDiscreteData.static DataSet
loadData.static DataSet
MixedUtils.loadDataSet
(String dir, String filename) loadDataSet.static DataSet
loadDelim.static DataSet
MixedUtils.makeContinuousData
(DataSet dsMix) makeContinuousData.static DataSet
MixedUtils.makeMixedData
(DataSet dsCont, Map<String, Integer> nodeDists) makeMixedData.static DataSet
MixedUtils.makeMixedData
(DataSet dsCont, Map<String, String> nodeDists, int numCategories) makeMixedData.Methods in edu.pitt.csb.mgm with parameters of type DataSetModifier and TypeMethodDescriptionstatic DataSet
Makes a deep copy of a dataset (Nodes copied as well).static DataSet
MixedUtils.getContinousData
(DataSet ds) getContinousData.static int[]
MixedUtils.getDiscLevels
(DataSet ds) getDiscLevels.static DataSet
MixedUtils.getDiscreteData
(DataSet ds) getDiscreteData.static IndependenceTest
MixedUtils.IndTestFromString
(String name, DataSet data, double alpha) Returns independence tests by name located in edu.cmu.tetrad.search and edu.pitt.csb.mgm also supports shorthand for LRT ("lrt) and t-tests ("tlin" for prefer linear (fastest) or "tlog" for prefer logistic)static boolean
MixedUtils.isColinear
(DataSet ds, boolean verbose) Check each pair of variables to see if correlation is 1.static DataSet
MixedUtils.makeContinuousData
(DataSet dsMix) makeContinuousData.static DataSet
MixedUtils.makeMixedData
(DataSet dsCont, Map<String, Integer> nodeDists) makeMixedData.static DataSet
MixedUtils.makeMixedData
(DataSet dsCont, Map<String, String> nodeDists, int numCategories) makeMixedData.Constructors in edu.pitt.csb.mgm with parameters of type DataSetModifierConstructorDescriptionIndTestMultinomialLogisticRegressionWald
(DataSet data, double alpha, boolean preferLinear) Constructs a new instance of IndTestMultinomialLogisticRegressionWald with the specified parameters.Constructor for Mgm. -
Uses of DataSet in edu.pitt.csb.stability
Methods in edu.pitt.csb.stability with parameters of type DataSetModifier and TypeMethodDescriptionabstract Graph
search.Search method.Search method.Search method.static cern.colt.matrix.DoubleMatrix2D
StabilityUtils.StabilitySearch
(DataSet data, DataGraphSearch gs, int N, int b) StabilitySearch.static cern.colt.matrix.DoubleMatrix2D
StabilityUtils.StabilitySearchPar
(DataSet data, DataGraphSearch gs, int N, int b) StabilitySearchPar. -
Uses of DataSet in edu.pitt.dbmi.algo.bayesian.constraint.search
Constructors in edu.pitt.dbmi.algo.bayesian.constraint.search with parameters of type DataSet