Uses of Interface
edu.cmu.tetrad.data.ICovarianceMatrix
Packages that use ICovarianceMatrix
Package
Description
Contains classes for searching for (mostly structural) causal models given data.
Contains classes for various various sorts of scores for running score-based algorithms.
Contains classes for running conditional independence tests for various sorts of data.
Contains some utility classes for search algorithms.
Contains some classes that aren't ready for prime time.
-
Uses of ICovarianceMatrix in edu.cmu.tetrad.data
Classes in edu.cmu.tetrad.data that implement ICovarianceMatrixModifier and TypeClassDescriptionfinal class
Stores a correlation matrix together with variable names and sample size; intended as a representation of a data set.class
Stores a covariance matrix together with variable names and sample size, intended as a representation of a data set.class
Stores a covariance matrix together with variable names and sample size, intended as a representation of a data set.class
Stores a covariance matrix together with variable names and sample size, intended as a representation of a data set.Methods in edu.cmu.tetrad.data that return ICovarianceMatrixModifier and TypeMethodDescriptionstatic ICovarianceMatrix
DataTransforms.covarianceNonparanormalDrton
(DataSet dataSet) static @NotNull ICovarianceMatrix
SimpleDataLoader.getCorrelationMatrix
(DataSet dataSet) static ICovarianceMatrix
SimpleDataLoader.getCovarianceMatrix
(DataModel dataModel, boolean precomputeCovariances) Returns the model cast to ICovarianceMatrix if already a covariance matric, or else returns the covariance matrix for a dataset.static @NotNull ICovarianceMatrix
SimpleDataLoader.getCovarianceMatrix
(DataSet dataSet, boolean precomputeCovariances) final ICovarianceMatrix
CorrelationMatrixOnTheFly.getSubmatrix
(int[] indices) final ICovarianceMatrix
CorrelationMatrixOnTheFly.getSubmatrix
(List<String> submatrixVarNames) final ICovarianceMatrix
CovarianceMatrix.getSubmatrix
(int[] indices) final ICovarianceMatrix
CovarianceMatrix.getSubmatrix
(List<String> submatrixVarNames) final ICovarianceMatrix
CovarianceMatrixOnTheFly.getSubmatrix
(int[] indices) final ICovarianceMatrix
CovarianceMatrixOnTheFly.getSubmatrix
(int[] indices, int[] dataRows) final ICovarianceMatrix
CovarianceMatrixOnTheFly.getSubmatrix
(List<String> submatrixVarNames) ICovarianceMatrix.getSubmatrix
(int[] indices) ICovarianceMatrix.getSubmatrix
(String[] submatrixVarNames) ICovarianceMatrix.getSubmatrix
(List<String> submatrixVarNames) static ICovarianceMatrix
SimpleDataLoader.loadCovarianceMatrix
(char[] chars, String commentMarker, DelimiterType delimiterType, char quoteChar, String missingValueMarker) Parses a covariance matrix from a char[] array.static ICovarianceMatrix
SimpleDataLoader.loadCovarianceMatrix
(File file, String commentMarker, DelimiterType delimiter, char quoteCharacter, String missingValueMarker) Parses the given files for a tabular data set, returning a RectangularDataSet if successful.static ICovarianceMatrix
CorrelationMatrixOnTheFly.serializableInstance()
Generates a simple exemplar of this class to test serialization.static ICovarianceMatrix
CovarianceMatrix.serializableInstance()
Generates a simple exemplar of this class to test serialization.static ICovarianceMatrix
CovarianceMatrixOnTheFly.serializableInstance()
Generates a simple exemplar of this class to test serialization.Methods in edu.cmu.tetrad.data with parameters of type ICovarianceMatrixModifier and TypeMethodDescriptionstatic double
DataUtils.getEss
(ICovarianceMatrix covariances) Returns the equivalent sample size, assuming all units are equally correlated and all unit variances are equal.DataUtils.getExampleNonsingular
(ICovarianceMatrix covarianceMatrix, int depth) static Matrix
static Matrix
static void
DataWriter.writeCovMatrix
(ICovarianceMatrix covMatrix, PrintWriter out, NumberFormat nf) Writes the lower triangle of a covariance matrix to file.Constructors in edu.cmu.tetrad.data with parameters of type ICovarianceMatrixModifierConstructorDescriptionCorrelationMatrix
(ICovarianceMatrix matrix) Constructs a new correlation matrix using the covariances in the given covariance matrix.Constructs a new covariance matrix from the given data set.CovarianceMatrix
(ICovarianceMatrix covMatrix) -
Uses of ICovarianceMatrix in edu.cmu.tetrad.regression
Constructors in edu.cmu.tetrad.regression with parameters of type ICovarianceMatrixModifierConstructorDescriptionRegressionCovariance
(ICovarianceMatrix covariances) Constructs a covariance-based regression model using the given covariance matrix, assuming that no means are specified. -
Uses of ICovarianceMatrix in edu.cmu.tetrad.search
Methods in edu.cmu.tetrad.search that return ICovarianceMatrixModifier and TypeMethodDescriptiondefault ICovarianceMatrix
IndependenceTest.getCov()
Returns the covariance matrix.Bpc.getCovarianceMatrix()
Returns the wrapped covariance matrix.Mimbuild.getLatentsCov()
Returns the inferred covariance matrix over the latent variables.MimbuildTrek.getLatentsCov()
The covariance matrix over the latents that is implied by the clustering.Methods in edu.cmu.tetrad.search with parameters of type ICovarianceMatrixModifier and TypeMethodDescriptionMimbuild.search
(List<List<Node>> clustering, List<String> latentNames, ICovarianceMatrix measuresCov) Does a Mimbuild search.MimbuildTrek.search
(List<List<Node>> clustering, List<String> latentNames, ICovarianceMatrix measuresCov) Does the search and returns the graph.Constructors in edu.cmu.tetrad.search with parameters of type ICovarianceMatrixModifierConstructorDescriptionBpc
(ICovarianceMatrix covarianceMatrix, double alpha, BpcTestType sigTestType) Constructor.FactorAnalysis
(ICovarianceMatrix covarianceMatrix) Constructor.Fofc
(ICovarianceMatrix cov, BpcTestType testType, Fofc.Algorithm algorithm, double alpha) Constructor.Ftfc
(ICovarianceMatrix cov, Ftfc.Algorithm algorithm, double alpha) Conctructor. -
Uses of ICovarianceMatrix in edu.cmu.tetrad.search.score
Methods in edu.cmu.tetrad.search.score that return ICovarianceMatrixModifier and TypeMethodDescriptionGicScores.getCovariances()
Specialized scoring method for a single parent.PoissonPriorScore.getCovariances()
SemBicScore.getCovariances()
ZsbScore.getCovariances()
Methods in edu.cmu.tetrad.search.score with parameters of type ICovarianceMatrixModifier and TypeMethodDescriptionstatic double
SemBicScore.getVarRy
(int i, int[] parents, Matrix data, ICovarianceMatrix covariances, boolean calculateRowSubsets) Constructors in edu.cmu.tetrad.search.score with parameters of type ICovarianceMatrixModifierConstructorDescriptionEbicScore
(ICovarianceMatrix covariances) Constructs the score using a covariance matrix.GicScores
(ICovarianceMatrix covariances) Constructs the score using a covariance matrix.PoissonPriorScore
(ICovarianceMatrix covariances) Constructs the score using a covariance matrix.SemBicScore
(ICovarianceMatrix covariances) Constructs the score using a covariance matrix.ZsbScore
(ICovarianceMatrix covMatrix) Constructs the score using a covariance matrix. -
Uses of ICovarianceMatrix in edu.cmu.tetrad.search.test
Methods in edu.cmu.tetrad.search.test that return ICovarianceMatrixModifier and TypeMethodDescriptionIndTestFisherZ.getCov()
Returns the correlation matrix being analyzed.IndTestFisherZConcatenateResiduals.getCov()
Returns teh covaraince matrix of the concatenated data.IndTestFisherZFisherPValue.getCov()
Returns the covariance matrix of the concatenated data.IndTestTrekSep.getCov()
Returns the covariance matrix.Kci.getCov()
ScoreIndTest.getCov()
Returns the covariance matrix.Constructors in edu.cmu.tetrad.search.test with parameters of type ICovarianceMatrixModifierConstructorDescriptionIndTestFisherZ
(ICovarianceMatrix covMatrix, double alpha) Constructs a new independence test that will determine conditional independence facts using the given correlation matrix and the given significance level.IndTestTrekSep
(ICovarianceMatrix covMatrix, double alpha, List<List<Node>> clustering, List<Node> latents) Constructs a new independence test that will determine conditional independence facts using the given correlation matrix and the given significance level. -
Uses of ICovarianceMatrix in edu.cmu.tetrad.search.utils
Methods in edu.cmu.tetrad.search.utils that return ICovarianceMatrixModifier and TypeMethodDescriptionTetradTest.getCovMatrix()
TetradTestContinuous.getCovMatrix()
TetradTestDiscrete.getCovMatrix()
TetradTestPopulation.getCovMatrix()
Methods in edu.cmu.tetrad.search.utils with parameters of type ICovarianceMatrixModifier and TypeMethodDescriptionvoid
TetradTestContinuous.setCovMatrix
(ICovarianceMatrix covMatrix) Constructors in edu.cmu.tetrad.search.utils with parameters of type ICovarianceMatrixModifierConstructorDescriptionConstructs a test using the given covariance matrix.Constructs a test using the given covariance matrix.ConstructorTetradTestContinuous
(ICovarianceMatrix covMatrix, BpcTestType sigTestType, double sig) -
Uses of ICovarianceMatrix in edu.cmu.tetrad.search.work_in_progress
Methods in edu.cmu.tetrad.search.work_in_progress that return ICovarianceMatrixModifier and TypeMethodDescriptionIndTestFisherZPercentIndependent.getCov()
IndTestFisherZRecursive.getCov()
IndTestPositiveCorr.getCov()
SampleVcpc.getCov()
SampleVcpcFast.getCov()
SemBicScoreDeterministic.getCovariances()
Constructors in edu.cmu.tetrad.search.work_in_progress with parameters of type ICovarianceMatrixModifierConstructorDescriptionBpcTetradPurifyWashdown
(ICovarianceMatrix cov, BpcTestType testType, double alpha) Construct the algorithm using a covariance matrix.IndTestCramerT
(ICovarianceMatrix covMatrix, double alpha) Constructs a new independence test that will determine conditional independence facts using the given correlation matrix and the given significance level.IndTestFisherZRecursive
(ICovarianceMatrix covMatrix, double alpha) Constructs a new independence test that will determine conditional independence facts using the given correlation matrix and the given significance level.MagSemBicScore
(ICovarianceMatrix covariances) Constructor.SemBicScoreDeterministic
(ICovarianceMatrix covariances) Constructs the score using a covariance matrix.Washdown
(ICovarianceMatrix cov, double alpha) Constructor. -
Uses of ICovarianceMatrix in edu.cmu.tetrad.sem
Methods in edu.cmu.tetrad.sem that return ICovarianceMatrixModifier and TypeMethodDescriptionDagScorer.getCovMatrix()
Scorer.getCovMatrix()
SemEstimator.getCovMatrix()
Methods in edu.cmu.tetrad.sem with parameters of type ICovarianceMatrixModifier and TypeMethodDescriptionRicf.ricf
(SemGraph mag, ICovarianceMatrix covMatrix, double tolerance) Ricf.ricf2
(Graph mag, ICovarianceMatrix covMatrix, double tolerance) same as above but takes a Graph instead of a SemGraphvoid
SemIm.setCovMatrix
(ICovarianceMatrix covMatrix) Sets the sample covariance matrix for this Sem as a submatrix of the given matrix.Constructors in edu.cmu.tetrad.sem with parameters of type ICovarianceMatrixModifierConstructorDescriptionDagScorer
(ICovarianceMatrix covMatrix) Constructs a new SemEstimator that uses the specified optimizer.RicfResult
(cern.colt.matrix.DoubleMatrix2D shat, cern.colt.matrix.DoubleMatrix2D lhat, cern.colt.matrix.DoubleMatrix2D bhat, cern.colt.matrix.DoubleMatrix2D ohat, int iterations, double diff, ICovarianceMatrix covMatrix) SemEstimator
(ICovarianceMatrix covMatrix, SemPm semPm) Constructs a SEM estimator that does default estimation.SemEstimator
(ICovarianceMatrix covMatrix, SemPm semPm, SemOptimizer semOptimizer) Constructs a new SemEstimator that uses the specified optimizer.SemIm
(SemPm semPm, ICovarianceMatrix covMatrix) Constructs a SEM model using the given SEM PM and sample covariance matrix.