Class PoissonPriorScore

java.lang.Object
edu.cmu.tetrad.search.score.PoissonPriorScore
All Implemented Interfaces:
Score

public class PoissonPriorScore extends Object implements Score

Implements Poisson prior score, a novel (unpubished) score that replaces the penalty term in BIC by the log of the Poisson distribution. The Poisson distribution has a lambda parameter, which is made a parameter of this score and acts like a structure prior for the score.

Here is the Wikipedia page for the Poisson distribution, for reference:

https://en.wikipedia.org/wiki/Poisson_distribution

As for all scores in Tetrad, higher scores mean more dependence, and negative scores indicate independence.

Author:
bryanandrews, josephramsey
  • Constructor Details

    • PoissonPriorScore

      public PoissonPriorScore(ICovarianceMatrix covariances)
      Constructs the score using a covariance matrix.
    • PoissonPriorScore

      public PoissonPriorScore(DataSet dataSet, boolean precomputeCovariances)
      Constructs the score using a covariance matrix.
  • Method Details

    • localScoreDiff

      public double localScoreDiff(int x, int y, int[] z)
      Description copied from interface: Score
      Returns the score difference of the graph.
      Specified by:
      localScoreDiff in interface Score
      Parameters:
      x - A node.
      y - TAhe node.
      z - A set of nodes.
      Returns:
      The score difference.
    • localScore

      public double localScore(int i, int... parents) throws RuntimeException
      Description copied from interface: Score
      The score of a node given its parents.
      Specified by:
      localScore in interface Score
      Parameters:
      i - The index of the node.
      parents - The indices of the node's parents.
      Returns:
      The score, or NaN if the score cannot be calculated.
      Throws:
      RuntimeException
    • getCovariances

      public ICovarianceMatrix getCovariances()
    • getSampleSize

      public int getSampleSize()
      Description copied from interface: Score
      The sample size of the data.
      Specified by:
      getSampleSize in interface Score
      Returns:
      This size.
    • isEffectEdge

      public boolean isEffectEdge(double bump)
      Description copied from interface: Score
      Returns true iff the edge between x and y is an effect edge.
      Specified by:
      isEffectEdge in interface Score
      Parameters:
      bump - The bump.
      Returns:
      True iff the edge between x and y is an effect edge.
    • setVerbose

      public void setVerbose(boolean verbose)
    • getVariables

      public List<Node> getVariables()
      Description copied from interface: Score
      The variables of the score.
      Specified by:
      getVariables in interface Score
      Returns:
      This list.
    • getMaxDegree

      public int getMaxDegree()
      Description copied from interface: Score
      Returns the max degree, by default 1000.
      Specified by:
      getMaxDegree in interface Score
      Returns:
      The max degree.
    • determines

      public boolean determines(List<Node> z, Node y)
      Description copied from interface: Score
      Returns true iff the score determines the edge between x and y.
      Specified by:
      determines in interface Score
      Parameters:
      z - The set of nodes.
      y - The node.
      Returns:
      True iff the score determines the edge between x and y.
    • getData

      public DataModel getData()
    • setLambda

      public void setLambda(double lambda)