Package edu.cmu.tetrad.search.test
Class IndTestTrekSep
java.lang.Object
edu.cmu.tetrad.search.test.IndTestTrekSep
- All Implemented Interfaces:
IndependenceTest
Checks d-separations in structural model using t-separations over indicators.
- Author:
- Adam Brodie
-
Constructor Summary
ConstructorsConstructorDescriptionIndTestTrekSep(ICovarianceMatrix covMatrix, double alpha, List<List<Node>> clustering, List<Node> latents) Constructs a new independence test that will determine conditional independence facts using the given correlation matrix and the given significance level. -
Method Summary
Modifier and TypeMethodDescriptioncheckIndependence(Node x, Node y, Set<Node> z) Determines whether variable x is independent of variable y given a list of conditioning variables z.booleandetermines(List<Node> z, Node x) IfisDeterminismAllowed(), defers to IndTestFisherZD; otherwise throws UnsupportedOperationException.doublegetAlpha()Gets the model significance level.getCov()Returns the covariance matrix.getData()Returns the datasets for this testintReturns the sample size.getVariable(String name) Returns the variable with the given name.Returns the list of variables over which this independence checker is capable of determinine independence relations-- that is, all the variables in the given graph or the given data set.indTestSubset(List<Node> vars) Creates a new independence test instance for a sublist of the variables.booleanReturns true if verbose output should be printed.voidsetAlpha(double alpha) Sets the significance level at which independence judgments should be made.voidsetVariables(List<Node> variables) Sets the varialbe to this list (of the same length).voidsetVerbose(boolean verbose) Sets whether verbose output should be printed.toString()Returns a string representation of this test.Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitMethods inherited from interface edu.cmu.tetrad.search.IndependenceTest
checkIndependence, determines, getVariableNames
-
Constructor Details
-
IndTestTrekSep
public IndTestTrekSep(ICovarianceMatrix covMatrix, double alpha, List<List<Node>> clustering, List<Node> latents) Constructs a new independence test that will determine conditional independence facts using the given correlation matrix and the given significance level.- Parameters:
covMatrix- The covariance over the measures.alpha- The significance level.clustering- The clustering of the measured variables. In each cluster, all measured variable in the cluster are explained by a single latent.latents- The list of latent variables for the clusters, in order.
-
-
Method Details
-
indTestSubset
Creates a new independence test instance for a sublist of the variables.- Specified by:
indTestSubsetin interfaceIndependenceTest- Parameters:
vars- The sublist.
-
checkIndependence
Determines whether variable x is independent of variable y given a list of conditioning variables z.- Specified by:
checkIndependencein interfaceIndependenceTest- Parameters:
x- the one variable being compared.y- the second variable being compared.z- the list of conditioning variables.- Returns:
- True iff x _||_ y | z.
- Throws:
org.apache.commons.math3.linear.SingularMatrixException- if a matrix singularity is encountered.- See Also:
-
getAlpha
public double getAlpha()Gets the model significance level.- Specified by:
getAlphain interfaceIndependenceTest- Returns:
- This alpha.
-
setAlpha
public void setAlpha(double alpha) Sets the significance level at which independence judgments should be made. Affects the cutoff for partial correlations to be considered statistically equal to zero.- Specified by:
setAlphain interfaceIndependenceTest- Parameters:
alpha- This significance level.
-
getVariables
Returns the list of variables over which this independence checker is capable of determinine independence relations-- that is, all the variables in the given graph or the given data set.- Specified by:
getVariablesin interfaceIndependenceTest- Returns:
- This list.
-
setVariables
Sets the varialbe to this list (of the same length). Useful is multiple test are used that need the same object-identical lists of variables.- Parameters:
variables- This list.
-
getVariable
Returns the variable with the given name.- Specified by:
getVariablein interfaceIndependenceTest- Returns:
- This variable.
-
determines
IfisDeterminismAllowed(), defers to IndTestFisherZD; otherwise throws UnsupportedOperationException.- Returns:
- True if so
- Throws:
UnsupportedOperationException- If the above condition is not met.
-
getData
- Specified by:
getDatain interfaceIndependenceTest- Returns:
- The data model for the independence test, either a DataSet or a CovarianceMatrix.
- Throws:
UnsupportedOperationException- Always.- See Also:
-
toString
Returns a string representation of this test.- Specified by:
toStringin interfaceIndependenceTest- Overrides:
toStringin classObject- Returns:
- This string.
-
getCov
Returns the covariance matrix.- Specified by:
getCovin interfaceIndependenceTest- Returns:
- This matrix.
-
getDataSets
Description copied from interface:IndependenceTestReturns the datasets for this test- Specified by:
getDataSetsin interfaceIndependenceTest- Returns:
- these datasets.
- Throws:
UnsupportedOperationException- Always.
-
getSampleSize
public int getSampleSize()Returns the sample size.- Specified by:
getSampleSizein interfaceIndependenceTest- Returns:
- This size.
-
isVerbose
public boolean isVerbose()Returns true if verbose output should be printed.- Specified by:
isVerbosein interfaceIndependenceTest- Returns:
- True, if so.
-
setVerbose
public void setVerbose(boolean verbose) Sets whether verbose output should be printed.- Specified by:
setVerbosein interfaceIndependenceTest- Parameters:
verbose- True, if so.
-