Package edu.cmu.tetrad.search.score
Class EbicScore
java.lang.Object
edu.cmu.tetrad.search.score.EbicScore
- All Implemented Interfaces:
- Score
Implements the extended BIC (EBIC) score. The reference is here:
Chen, J., & Chen, Z. (2008). Extended Bayesian information criteria for model selection with large model spaces. Biometrika, 95(3), 759-771.
As for all scores in Tetrad, higher scores mean more dependence, and negative scores indicate independence.
- Author:
- josephramsey
- 
Constructor SummaryConstructorsConstructorDescriptionConstructs the score using a covariance matrix.EbicScore(ICovarianceMatrix covariances) Constructs the score using a covariance matrix.
- 
Method SummaryModifier and TypeMethodDescriptionbooleandetermines(List<Node> z, Node y) Return a judgment of whether the variable in z determine y exactly.intReturns an estimate of max degree of the graph for some algorithms.intReturns the sample size.Returns the variables for this score.booleanisEffectEdge(double bump) Returns a judgement for FGES of whether the given bump implies an effect edge.doublelocalScore(int i, int... parents) Returns the score of the node i given its parents.doublelocalScoreDiff(int x, int y, int[] z) Returns the score difference of the graph.voidsetGamma(double gamma) Sets the gamma parameter for EBIC.Methods inherited from class java.lang.Objectclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitMethods inherited from interface edu.cmu.tetrad.search.score.Scoreappend, getVariable, localScore, localScore, localScoreDiff, toString
- 
Constructor Details- 
EbicScoreConstructs the score using a covariance matrix.
- 
EbicScoreConstructs the score using a covariance matrix.- Parameters:
- dataSet- The continuous dataset to analyze.
- precomputeCovariances- Whether the covariances should be precomputed or computed on the fly. True if precomputed.
 
 
- 
- 
Method Details- 
localScoreDiffpublic double localScoreDiff(int x, int y, int[] z) Description copied from interface:ScoreReturns the score difference of the graph.- Specified by:
- localScoreDiffin interface- Score
- Parameters:
- x- A node.
- y- TAhe node.
- z- A set of nodes.
- Returns:
- localScore(y | z, x) - localScore(y | z).
 
- 
localScoreReturns the score of the node i given its parents.- Specified by:
- localScorein interface- Score
- Parameters:
- i- The index of the node.
- parents- The indices of the node's parents.
- Returns:
- The score, or NaN if the score cannot be calculated.
- Throws:
- RuntimeException
 
- 
getSampleSizepublic int getSampleSize()Returns the sample size.- Specified by:
- getSampleSizein interface- Score
- Returns:
- This size.
 
- 
isEffectEdgepublic boolean isEffectEdge(double bump) Returns a judgement for FGES of whether the given bump implies an effect edge.- Specified by:
- isEffectEdgein interface- Score
- Parameters:
- bump- The bump
- Returns:
- True if so
- See Also:
 
- 
getVariablesReturns the variables for this score.- Specified by:
- getVariablesin interface- Score
- Returns:
- Thsi list.
 
- 
getMaxDegreepublic int getMaxDegree()Returns an estimate of max degree of the graph for some algorithms.- Specified by:
- getMaxDegreein interface- Score
- Returns:
- This max degree.
- See Also:
 
- 
determinesReturn a judgment of whether the variable in z determine y exactly.- Specified by:
- determinesin interface- Score
- Parameters:
- z- The set of nodes.
- y- The node.
- Returns:
- This judgment
 
- 
setGammapublic void setGamma(double gamma) Sets the gamma parameter for EBIC.- Parameters:
- gamma- The gamma parameter.
 
 
-