Package edu.cmu.tetrad.sem
Class DagScorer
java.lang.Object
edu.cmu.tetrad.sem.DagScorer
- All Implemented Interfaces:
Scorer
,TetradSerializable
,Serializable
Estimates a SemIm given a CovarianceMatrix and a SemPm. (A DataSet may be substituted for the CovarianceMatrix.) Uses
regression to do the estimation, so this is only for DAG models. But the DAG model may be reset on the fly and the
estimation redone. Variables whose parents have not changed will not be reestimated. Intended to speed up estimation
for algorithm that require repeated estimation of DAG models over the same variables. Assumes all variables are
measured.
- Author:
- josephramsey
- See Also:
-
Constructor Summary
ConstructorsConstructorDescriptionConstructs a new SemEstimator that uses the specified optimizer.DagScorer
(ICovarianceMatrix covMatrix) Constructs a new SemEstimator that uses the specified optimizer. -
Method Summary
Modifier and TypeMethodDescriptiondouble
double
int
getDof()
double
getFml()
The value of the maximum likelihood function for the getModel the model (Bollen 107).int
double
int
double
Runs the estimator on the data and SemPm passed in through the constructor.static Scorer
Generates a simple exemplar of this class to test serialization.toString()
-
Constructor Details
-
DagScorer
Constructs a new SemEstimator that uses the specified optimizer.- Parameters:
dataSet
- a DataSet, all of whose variables are contained in the given SemPm. (They are identified by name.)
-
DagScorer
Constructs a new SemEstimator that uses the specified optimizer.- Parameters:
covMatrix
- a covariance matrix, all of whose variables are contained in the given SemPm. (They are identified by name.)
-
-
Method Details
-
serializableInstance
Generates a simple exemplar of this class to test serialization. -
score
Runs the estimator on the data and SemPm passed in through the constructor. Returns the fml score of the resulting model. -
getCovMatrix
- Specified by:
getCovMatrix
in interfaceScorer
-
toString
-
getFml
public double getFml()The value of the maximum likelihood function for the getModel the model (Bollen 107). To optimize, this should be minimized. -
getBicScore
public double getBicScore()- Specified by:
getBicScore
in interfaceScorer
- Returns:
- BIC score, calculated as chisq - dof. This is equal to getFullBicScore() up to a constant.
-
getChiSquare
public double getChiSquare()- Specified by:
getChiSquare
in interfaceScorer
- Returns:
- the chi square value for the model.
-
getPValue
public double getPValue() -
getDataSet
- Specified by:
getDataSet
in interfaceScorer
-
getNumFreeParams
public int getNumFreeParams()- Specified by:
getNumFreeParams
in interfaceScorer
-
getDof
public int getDof() -
getSampleSize
public int getSampleSize()- Specified by:
getSampleSize
in interfaceScorer
-
getMeasuredNodes
- Specified by:
getMeasuredNodes
in interfaceScorer
-
getSampleCovar
- Specified by:
getSampleCovar
in interfaceScorer
-
getEdgeCoef
- Specified by:
getEdgeCoef
in interfaceScorer
-
getErrorCovar
- Specified by:
getErrorCovar
in interfaceScorer
-
getVariables
- Specified by:
getVariables
in interfaceScorer
-
getEstSem
-