Uses of Interface
edu.cmu.tetrad.data.DataModel
Packages that use DataModel
Package
Description
This package contains classes for scoring causal graph models.
This package contains classes for testing causal graph search algorithms.
This package contains utility classes for causal graph search algorithms.
A package for algorithms that are not ready for prime time.
-
Uses of DataModel in edu.cmu.tetrad.algcomparison
Methods in edu.cmu.tetrad.algcomparison with parameters of type DataModelModifier and TypeMethodDescriptionstatic StringCompareTwoGraphs.getStatsListTable(Graph trueGraph, Graph targetGraph, DataModel dataModel, long elapsedTime) Returns a string representing a table of statistics that can be printed. -
Uses of DataModel in edu.cmu.tetrad.algcomparison.algorithm
Methods in edu.cmu.tetrad.algcomparison.algorithm with parameters of type DataModelModifier and TypeMethodDescriptionabstract longExternalAlgorithm.getElapsedTime(DataModel dataSet, Parameters parameters) getElapsedTime.intgetIndex.AbstractBootstrapAlgorithm.search(DataModel dataModel, Parameters parameters) Runs the search.Algorithm.search(DataModel dataSet, Parameters parameters) Runs the search.FirstInflection.search(DataModel dataSet, Parameters parameters) Runs the search.StabilitySelection.search(DataModel dataSet, Parameters parameters) Runs the search.StARS.search(DataModel dataSet, Parameters parameters) Runs the search.Method parameters in edu.cmu.tetrad.algcomparison.algorithm with type arguments of type DataModelModifier and TypeMethodDescriptionMultiDataSetAlgorithm.search(List<DataModel> dataSets, Parameters parameters) Runs the search. -
Uses of DataModel in edu.cmu.tetrad.algcomparison.algorithm.continuous.dag
Methods in edu.cmu.tetrad.algcomparison.algorithm.continuous.dag with parameters of type DataModelModifier and TypeMethodDescriptionDagma.runSearch(DataModel dataModel, Parameters parameters) Runs the DAGMA algorithm to search for a directed acyclic graph (DAG) in the given data model with the specified parameters.DirectLingam.runSearch(DataModel dataModel, Parameters parameters) Runs the Direct LiNGAM search algorithm on the given data model with the specified parameters.Fask.runSearch(DataModel dataModel, Parameters parameters) Runs the Fask search algorithm on the given data model with the specified parameters.FaskOrig.runSearch(DataModel dataModel, Parameters parameters) Runs the Fask search algorithm on the given data model with the specified parameters.IcaLingam.runSearch(DataModel dataSet, Parameters parameters) Searches for a graph structure based on the given data set and parameters.IcaLingD.runSearch(DataModel dataSet, Parameters parameters) Runs a search on the provided data set using the given parameters. -
Uses of DataModel in edu.cmu.tetrad.algcomparison.algorithm.multi
Methods in edu.cmu.tetrad.algcomparison.algorithm.multi with parameters of type DataModelModifier and TypeMethodDescriptionFaskConcatenated.search(DataModel dataSet, Parameters parameters) Runs the search.FaskLofsConcatenated.search(DataModel dataSet, Parameters parameters) Runs the search.FaskVote.search(DataModel dataSet, Parameters parameters) Runs the search.FasLofs.search(DataModel dataSet, Parameters parameters) Runs the search.FciIod.search(DataModel dataSet, Parameters parameters) Runs the search.FgesConcatenated.search(DataModel dataSet, Parameters parameters) Runs the search.Images.search(DataModel dataSet, Parameters parameters) Searches for a graph using the given data set and parameters.ImagesBoss.search(DataModel dataSet, Parameters parameters) Runs the search.Method parameters in edu.cmu.tetrad.algcomparison.algorithm.multi with type arguments of type DataModelModifier and TypeMethodDescriptionFaskConcatenated.search(List<DataModel> dataSets, Parameters parameters) Runs the search.FaskLofsConcatenated.search(List<DataModel> dataModels, Parameters parameters) Runs the search.FaskVote.search(List<DataModel> dataSets, Parameters parameters) Runs the search.FciIod.search(List<DataModel> dataSets, Parameters parameters) Runs the search.FgesConcatenated.search(List<DataModel> dataModels, Parameters parameters) Runs the search.Images.search(List<DataModel> dataSets, Parameters parameters) Searches for a graph using the given data sets and parameters.ImagesBoss.search(List<DataModel> dataSets, Parameters parameters) Runs the search. -
Uses of DataModel in edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag
Methods in edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag with parameters of type DataModelModifier and TypeMethodDescriptionCstar.search(DataModel dataSet, Parameters parameters) Runs the search.Pcmci.search(DataModel dataModel, Parameters parameters) Executes the PCMCI (Peter and Clark Momentary Conditional Independence) causal discovery algorithm on a given data model using specified parameters.SingleGraphAlg.search(DataModel dataSet, Parameters parameters) Runs the search. -
Uses of DataModel in edu.cmu.tetrad.algcomparison.algorithm.oracle.pag
Methods in edu.cmu.tetrad.algcomparison.algorithm.oracle.pag with parameters of type DataModelModifier and TypeMethodDescriptionBossFci.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm using the given dataset and parameters and returns the resulting graph.BossPod.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm to find a graph structure based on a given data model and parameters.Ccd.runSearch(DataModel dataModel, Parameters parameters) Runs the CCD (Cyclic Causal Discovery) search algorithm on the given data set using the specified parameters.Cfci.runSearch(DataModel dataModel, Parameters parameters) Deprecated.Runs the search algorithm to discover the causal graph.DmFcit.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm to find a graph structure based on a given data model and parameters.DmFciT2.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm to find a graph structure based on a given data model and parameters.DmPc.runSearch(DataModel dataModel, Parameters parameters) Runs a search algorithm to find a graph structure based on a given data set and parameters.Fci.runSearch(DataModel dataModel, Parameters parameters) Runs a search algorithm to find a graph based on the given data model and parameters.FciCyclicPw.runSearch(DataModel dataModel, Parameters parameters) Executes the search algorithm on a given data model and set of parameters, producing a partially directed acyclic graph (PAG) that represents the causal structure inferred from the data.FciMax.runSearch(DataModel dataModel, Parameters parameters) Deprecated.Runs a search algorithm to discover the causal graph structure.Fcit.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm to find a graph structure based on a given data model and parameters.FgesFci.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm to infer the causal graph given a dataset and specified parameters.Gfci.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm to infer the causal graph given a dataset and specified parameters.GraspFci.runSearch(DataModel dataModel, Parameters parameters) Runs a search algorithm to find a graph structure based on a given data set and parameters.PagSampleRfci.runSearch(DataModel dataSet, Parameters parameters) Runs the search algorithm using the given data set and parameters.Rfci.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm on the given data model and parameters.RfciBsc.runSearch(DataModel dataModel, Parameters parameters) Runs a search algorithm using a given dataset and parameters.SpFci.runSearch(DataModel dataModel, Parameters parameters) Executes a search algorithm to infer the causal graph structure from a given data model -
Uses of DataModel in edu.cmu.tetrad.algcomparison.algorithm.other
Methods in edu.cmu.tetrad.algcomparison.algorithm.other with parameters of type DataModelModifier and TypeMethodDescriptionFactorAnalysis.runSearch(DataModel dataModel, Parameters parameters) Executes a factor analysis search on the given data model using the provided parameters.Glasso.runSearch(DataModel dataModel, Parameters parameters) Runs a search algorithm to create a graph representation of the data.MimbuildBollen.search(DataModel dataModel, Parameters parameters) Executes a factor analysis search on the given data model using the provided parameters.MimbuildPca.search(DataModel dataModel, Parameters parameters) Executes a factor analysis search on the given data model using the provided parameters. -
Uses of DataModel in edu.cmu.tetrad.algcomparison.algorithm.pairwise
Methods in edu.cmu.tetrad.algcomparison.algorithm.pairwise with parameters of type DataModelModifier and TypeMethodDescriptionEb.runSearch(DataModel dataModel, Parameters parameters) Runs a search algorithm to orient the edges in a graph using the given data and parameters.FaskPw.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm using the given data model and parameters.R1.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm on the given data model with the provided parameters.R2.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm using the provided data model and parameters.R3.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm to orient edges in the input graph using the provided data.Rskew.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm using the provided data model and parameters.RskewE.runSearch(DataModel dataModel, Parameters parameters) Runs a search algorithm to find the orientation of edges in a graph using the given data model and parameters.Skew.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm to orient edges in the input graph using the given data model and parameters.SkewE.runSearch(DataModel dataModel, Parameters parameters) Executes the SkewE search algorithm.Tanh.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm using the given data model and parameters. -
Uses of DataModel in edu.cmu.tetrad.algcomparison.independence
Methods in edu.cmu.tetrad.algcomparison.independence with parameters of type DataModelModifier and TypeMethodDescriptionBasisFunctionBlocksIndTest.getTest(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.BasisFunctionLrt.getTest(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.BlocksIndTest.getTest(DataModel dataSet, Parameters parameters) Deprecated.Creates and returns an instance of theIndTestBlocksWilkesinitialized with a specific block specification and a significance level extracted from the provided parameters.BlocksIndTestLemma10.getTest(DataModel dataModel, Parameters parameters) Deprecated.Creates and returns an instance of an independence test based on the specified block structure and parameters provided.BlocksIndTestTs.getTest(DataModel dataModel, Parameters parameters) Creates and returns an instance of an independence test based on the specified block structure and parameters provided.CciTest.getTest(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.ChiSquare.getTest(DataModel dataSet, Parameters parameters) Retrieves an instance of the IndependenceTest interface that performs a Chi Square Test for independence.ConditionalGaussianLrt.getTest(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.DegenerateGaussianLrt.getTest(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.DgBicTest.getTest(DataModel dataSet, Parameters parameters) Returns an instance of IndependenceTest for the SEM BIC test.FisherZ.getTest(DataModel dataModel, Parameters parameters) Gets an independence test based on the given data model and parameters.Gin.getTest(DataModel dataModel, Parameters parameters) Configures and returns an IndependenceTest object based on the provided data model and parameters.GSquare.getTest(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.IndependenceWrapper.getTest(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.Kci.getTest(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.MSeparationTest.getTest(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.MultinomialLogisticRegressionWald.getTest(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.Mvplrt.getTest(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.PoissonBicTest.getTest(DataModel dataSet, Parameters parameters) Returns an instance of IndependenceTest for the SEM BIC test.ProbabilisticTest.getTest(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.RankIndependenceTestLemma10Singletons.getTest(DataModel dataModel, Parameters parameters) Deprecated.Gets an independence test based on the given data model and parameters.RankIndependenceTestTs.getTest(DataModel dataModel, Parameters parameters) Gets an independence test based on the given data model and parameters.RankIndependenceTestTsSingletons.getTest(DataModel dataModel, Parameters parameters) Deprecated.Gets an independence test based on the given data model and parameters.RankIndependenceTestWilkesSingletons.getTest(DataModel dataModel, Parameters parameters) Deprecated.Gets an independence test based on the given data model and parameters.Rcit.getTest(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.SemBicTest.getTest(DataModel dataSet, Parameters parameters) Returns an instance of IndependenceTest for the SEM BIC test. -
Uses of DataModel in edu.cmu.tetrad.algcomparison.score
Methods in edu.cmu.tetrad.algcomparison.score with parameters of type DataModelModifier and TypeMethodDescriptionBasisFunctionBicScore.getScore(DataModel dataSet, Parameters parameters) Returns true, iff x and y are independent, conditional on z for the given data set.BdeuScore.getScore(DataModel dataSet, Parameters parameters) Returns true, iff x and y are independent, conditional on z for the given data set.BlocksBicScore.getScore(DataModel model, Parameters parameters) Computes and returns a score based on the provided data model and parameter settings.BlockScoreWrapper.getScore(DataModel model, Parameters parameters) Computes and returns a score for the given data model and parameters.ConditionalGaussianBicScore.getScore(DataModel dataSet, Parameters parameters) Returns true, iff x and y are independent, conditional on z for the given data set.DegenerateGaussianBicScore.getScore(DataModel dataSet, Parameters parameters) Returns true, iff x and y are independent, conditional on z for the given data set.DiscreteBicScore.getScore(DataModel dataSet, Parameters parameters) Returns true, iff x and y are independent, conditional on z for the given data set.EbicScore.getScore(DataModel dataSet, Parameters parameters) Returns true, iff x and y are independent, conditional on z for the given data set.GicScores.getScore(DataModel dataSet, Parameters parameters) Returns true, iff x and y are independent, conditional on z for the given data set.InstanceAugmentedSemBicScoreWrapper.getScore(DataModel dataModel, Parameters parameters) Computes the score for a given data model and set of parameters.IsBDeuScoreWrapper.getScore(DataModel dataModel, Parameters parameters) Calculates and returns a score for the given data model and associated parameters.MagDgBicScore.getScore(DataModel dataSet, Parameters parameters) Returns true, iff x and y are independent, conditional on z for the given data set.MSepScore.getScore(DataModel dataSet, Parameters parameters) Returns true, iff x and y are independent, conditional on z for the given data set.MVPBicScore.getScore(DataModel dataSet, Parameters parameters) Returns true, iff x and y are independent, conditional on z for the given data set.PoissonPriorScore.getScore(DataModel dataSet, Parameters parameters) Returns true, iff x and y are independent, conditional on z for the given data set.RankBicScore.getScore(DataModel dataModel, Parameters parameters) Returns true, iff x and y are independent, conditional on z for the given data set.ScoreWrapper.getScore(DataModel dataSet, Parameters parameters) Returns true, iff x and y are independent, conditional on z for the given data set.SemBicScore.getScore(DataModel dataSet, Parameters parameters) Returns true, iff x and y are independent, conditional on z for the given data set.ZhangShenBoundScore.getScore(DataModel dataSet, Parameters parameters) Calculates the score based on the given data set and parameters. -
Uses of DataModel in edu.cmu.tetrad.algcomparison.simulation
Methods in edu.cmu.tetrad.algcomparison.simulation that return DataModelModifier and TypeMethodDescriptionAdditiveAnmSimulator.getDataModel(int index) Retrieves the simulated data set at the specified index.AdditiveNoiseSimulation.getDataModel(int index) Returns the data model at the specified index.BayesNetSimulation.getDataModel(int index) Returns the number of data sets to simulate.ConditionalGaussianSimulation.getDataModel(int index) Returns the number of data sets to simulate.GeneralSemSimulation.getDataModel(int index) Returns the data model at the specified index.GeneralSemSimulationSpecial1.getDataModel(int index) Returns the number of data sets to simulate.GpSemSimulation.getDataModel(int index) Returns the number of data sets to simulate.HybridCgSimulation.getDataModel(int index) Returns the data model at the specified index.LeeHastieSimulation.getDataModel(int index) Returns the number of data sets to simulate.LgMnarSimulation.getDataModel(int index) Returns the data model at the specified index.LinearFisherModel.getDataModel(int index) Returns the number of data sets to simulate.LinearSineSimulation.getDataModel(int index) Returns the number of data sets to simulate.NonlinearFunctionsOfLinear.getDataModel(int index) Returns the data model at the specified index.PostnonlinearCausalModel.getDataModel(int index) Returns the data model at the specified index.SemSimulation.getDataModel(int index) Returns the data model at the specified index.SemThenDiscretize.getDataModel(int index) Returns the number of data sets to simulate.Simulation.getDataModel(int index) Returns the number of data sets to simulate.SingleDatasetSimulation.getDataModel(int index) Retrieves the data model at the specified index from this simulation.StandardizedSemSimulation.getDataModel(int index) Returns the number of data sets to simulate.TimeSeriesSemSimulation.getDataModel(int index) Returns the number of data sets to simulate.Constructor parameters in edu.cmu.tetrad.algcomparison.simulation with type arguments of type DataModelModifierConstructorDescriptionLinearFisherModel(RandomGraph graph, List<DataModel> shocks) Constructor for LinearFisherModel. -
Uses of DataModel in edu.cmu.tetrad.algcomparison.statistic
Methods in edu.cmu.tetrad.algcomparison.statistic with parameters of type DataModelModifier and TypeMethodDescriptiondoubleAdjacencyFn.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleAdjacencyFp.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleAdjacencyFpr.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleAdjacencyPrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleAdjacencyRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleAdjacencyTn.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleAdjacencyTp.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleAdjacencyTpr.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleAncestorF1.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleAncestorPrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleAncestorRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleAncestralPrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleAncestralRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleArrowheadFn.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleArrowheadFp.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleArrowheadFpr.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleArrowheadPrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleArrowheadPrecisionCommonEdges.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleArrowheadRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleArrowheadRecallCommonEdges.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleArrowheadTn.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleArrowheadTp.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleAverageDegreeEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleAverageDegreeTrue.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleBicDiff.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleBicDiffPerRecord.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleBicEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleBicTrue.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleBidirectedEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleBidirectedFP.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleBidirectedLatentPrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the percentage of correctly identified bidirected edges in an estimated graph for which a latent confounder exists in the true graph.doubleBidirectedPrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleBidirectedRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleBidirectedTP.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleBidirectedTrue.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleCirclePrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the circle precision, which is the ratio of true positive arrows to the sum of true positive arrows and false positive arrows.doubleCircleRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the circle recall value for a given true graph, estimated graph, and data model.doubleCommonAncestorFalseNegativeBidirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleCommonAncestorFalsePositiveBidirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleCommonAncestorTruePositiveBidirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleCommonMeasuredAncestorRecallBidirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleCorrectSkeleton.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleDefiniteDirectedPathPrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleDefiniteDirectedPathRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleDensityEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleDensityTrue.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleElapsedCpuTime.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleF1Adj.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleF1All.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleF1Arrow.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleF1Circle.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleF1Tail.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleFalseNegativesAdjacencies.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleFalsePositiveAdjacencies.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleFBetaAdj.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleFractionDependentUnderAlternative.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleFractionDependentUnderNull.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleGraphExactlyRight.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleIdaAverageSquaredDistance.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the value of the IDA Average Squared Distance statistic.doubleIdaCheckAvgMaxSquaredDiffEstTrue.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the average maximum squared difference between the estimated and true values for a given data model and graphs.doubleIdaCheckAvgMinSquaredDiffEstTrue.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the average minimum squared difference between the estimated and true values for a given data model and graphs.doubleIdaCheckAvgSquaredDifference.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Retrieves the value of the statistic, which is the average squared difference between the estimated and true values for a given data model and graphs.doubleIdaMaximumSquaredDifference.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the value of the statistic "IDA Average Maximum Squared Difference".doubleIdaMinimumSquaredDifference.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the value of the statistic "IDA Average Minimum Squared Difference".doubleImpliedArrowOrientationRatioEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleImpliedArrowOrientationRatioEst2.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleImpliedOrientationRatioEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleImpliesLegalMag.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleKnowledgeSatisfied.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleLatentCommonAncestorFalseNegativeBidirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleLatentCommonAncestorFalsePositiveBidirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleLatentCommonAncestorRecallBidirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleLatentCommonAncestorTruePositiveBidirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleLegalCpdag.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the value indicating whether the estimated graph is a Legal CPDAG (1.0) or not (0.0).doubleLegalPag.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleLocalGraphPrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) This method calculates the Local Graph Precision.doubleLocalGraphRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) doubleMagCgScore.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleMagDgScore.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleMagSemScore.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleMarkovCheckAdPasses.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the Anderson Darling p-value > 0.05.doubleMarkovCheckAdPassesBestOf10.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the Anderson Darling p-value > 0.05.doubleMarkovCheckAndersonDarlingP.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the Anderson Darling P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).doubleMarkovCheckAndersonDarlingPBestOf10.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the Anderson Darling P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).doubleMarkovCheckBinomialP.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the Binomial P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).doubleMarkovCheckBinomialPBestOf10.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the Binomial P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).doubleMarkovCheckFractionDependentH0.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the Anderson Darling P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).doubleMarkovCheckFractionDependentH1.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the Anderson Darling P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).doubleMarkovCheckKolmogorovSmirnoffP.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the Kolmogorov-Smirnoff P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).doubleMarkovCheckKolmogorovSmirnoffPBestOf10.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the Kolmogorov-Smirnoff P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).doubleMarkovCheckKsPasses.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates whether Kolmogorov-Smirnoff P > 0.05.doubleMarkovCheckKsPassesBestOf10.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates whether Kolmogorov-Smirnoff P > 0.05.doubleMathewsCorrAdj.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleMathewsCorrArrow.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleMaximal.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Checks whether a PAG is maximal.doubleMaximalityCondition.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleMcGetNumTestsH0.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the number of tests done under the null hypothesis of independence for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).doubleMcGetNumTestsH1.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the number of tests done under the null hypothesis of independence for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).doubleNoAlmostCyclicPathsCondition.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNoCyclicPathsCondition.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNodesInCyclesPrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNodesInCyclesRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNonancestorPrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNonancestorRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNoSemidirectedF1.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNoSemidirectedPrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNoSemidirectedRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumAmbiguousTriples.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumberArrowsEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumberArrowsNotInUnshieldedCollidersEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumberCollidersEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumberEdgesEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumberEdgesInCollidersEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumberEdgesInUnshieldedCollidersEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumberEdgesTrue.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumberOfEdgesEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumberOfEdgesTrue.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumberTailsEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumberUnshieldedCollidersEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumBidirectedBothNonancestorAncestor.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumBidirectedEdgesEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumBidirectedEdgesTrue.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumColoredDD.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumColoredNL.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumColoredPD.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumColoredPL.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumCommonMeasuredAncestorBidirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumCompatibleDefiniteDirectedEdgeAncestors.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumCompatibleDirectedEdgeConfounded.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumCompatibleDirectedEdgeNonAncestors.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumCompatibleEdges.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumCompatiblePossiblyDirectedEdgeAncestors.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumCompatiblePossiblyDirectedEdgeNonAncestors.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumCompatibleVisibleNonancestors.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumCorrectBidirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the number of bidirected edges for which a latent confounder exists.doubleNumCorrectDDAncestors.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumCorrectPDAncestors.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumCorrectVisibleEdges.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumCoveringAdjacenciesInPag.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumDefinitelyDirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumDefinitelyNotDirectedPaths.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumDirectedEdgeAncestors.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumDirectedEdgeBnaMeasuredCounfounded.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumDirectedEdgeNoMeasureAncestors.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumDirectedEdgeNotAncNotRev.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumDirectedEdgeReversed.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumDirectedEdges.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumDirectedPathsEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumDirectedPathsTrue.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumDirectedShouldBePartiallyDirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumEdgeInEstInTrue.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumGenuineAdjacenciesInPag.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumIncorrectDDAncestors.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumIncorrectPDAncestors.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumIncorrectVisibleAncestors.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumLatentCommonAncestorBidirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumNondirectedEdges.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumParametersEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumPartiallyOrientedEdges.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumPossiblyDirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumUndirectedEdges.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumVisibleEdgeEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the number of X-->Y edges that are visible in the estimated PAG.doubleNumVisibleEdges.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumVisibleEdgeTrue.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Retrieves the number of X-->Y edges for which X-->Y is visible in the true PAG.doubleOrientationPrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleOrientationRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the Orientation Recall statistic, which measures the accuracy of the estimated orientation of edges in a graph compared to the true graph.doublePagAdjacencyPrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the adjacency precision of the estimated graph compared to the true graph.doublePagAdjacencyRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the adjacency recall compared to the true PAG (Partial Ancestral Graph).doubleParameterColumn.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doublePercentAmbiguous.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the percentage of ambiguous triples in the estimated graph compared to the true graph.doublePercentBidirectedEdges.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleProportionSemidirectedPathsNotReversedEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the proportion of semi(X, Y) in the estimated graph for which there is no semi(Y, X) in the true graph.doubleProportionSemidirectedPathsNotReversedTrue.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the proportion of semi(X, Y) paths in the true graph for which there is no semi(Y, Z) path in the estimated graph.doublePvalueDistanceToAlpha.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doublePvalueUniformityUnderNull.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleSemidirectedPathF1.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the F1 statistic for adjacencies.doubleSemidirectedPrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the semi-directed precision value.doubleSemidirectedRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the Semidirected-Rec statistic, which is the proportion of (X, Y) where if there is a semidirected path in the true graph, then there is also a semidirected path in the estimated graph.default doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleStatistic.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleStructuralHammingDistance.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleTailPrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the tail precision, which is the ratio of true positive arrows to the sum of true positive arrows and false positive arrows.doubleTailRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the tail recall value for a given true graph, estimated graph, and data model.doubleTrueDagFalseNegativesArrows.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the number of false negatives for arrows compared to the true DAG.doubleTrueDagFalseNegativesTails.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the number of false negatives for tails compared to the true DAG.doubleTrueDagFalsePositiveArrow.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the false positives for arrows compared to the true DAG.doubleTrueDagFalsePositiveTails.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the number of false positives for tails in the estimated graph compared to the true DAG.doubleTrueDagPrecisionArrow.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the proportion of X*->Y in the estimated graph for which there is no path Y~~>X in the true graph.doubleTrueDagPrecisionTails.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the proportion of X-->Y edges in the estimated graph for which there is a path X~~>Y in the true graph.doubleTrueDagRecallArrows.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleTrueDagRecallTails.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleTrueDagTruePositiveArrow.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the number of true positives for arrows compared to the true DAG.doubleTrueDagTruePositiveDirectedPathNonancestor.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the true positives for arrows compared to the true DAG.doubleTrueDagTruePositiveTails.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleTwoCycleFalseNegative.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleTwoCycleFalsePositive.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleTwoCyclePrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleTwoCycleRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleTwoCycleTruePositive.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph. -
Uses of DataModel in edu.cmu.tetrad.bayes
Constructors in edu.cmu.tetrad.bayes with parameters of type DataModelModifierConstructorDescriptionJunctionTreeAlgorithm(Graph graph, DataModel dataModel) Constructor for JunctionTreeAlgorithm. -
Uses of DataModel in edu.cmu.tetrad.data
Subinterfaces of DataModel in edu.cmu.tetrad.dataModifier and TypeInterfaceDescriptioninterfaceImplements a rectangular data set, in the sense of being a dataset with a fixed number of columns and a fixed number of rows, the length of each column being constant.interfaceInterface for covariance matrices.Classes in edu.cmu.tetrad.data that implement DataModelModifier and TypeClassDescriptionfinal classWraps a DataBox in such a way that mixed data sets can be stored.final classStores a correlation matrix together with variable names and sample size; intended as a representation of a data set.classStores a covariance matrix together with variable names and sample size, intended as a representation of a data set.classStores a covariance matrix together with variable names and sample size, intended as a representation of a data set.classStores a covariance matrix together with variable names and sample size, intended as a representation of a data set.final classStores a list of data models and keeps track of which one is selected.classStores a list of independence facts.final classWraps a 2D array of Number objects in such a way that mixed data sets can be stored.final classStores time series data as a list of continuous columns.Methods in edu.cmu.tetrad.data that return DataModelModifier and TypeMethodDescriptionCorrelationMatrixOnTheFly.copy()copy.CovarianceMatrix.copy()copy.CovarianceMatrixOnTheFly.copy()copy.DataModel.copy()copy.DataModelList.copy()copy.IndependenceFacts.copy()copy.TimeSeriesData.copy()copy.DataModelList.get(int index) DataModelList.getSelectedModel()Getter for the fieldselectedModel.DataModelList.remove(int index) Methods in edu.cmu.tetrad.data that return types with arguments of type DataModelMethods in edu.cmu.tetrad.data with parameters of type DataModelModifier and TypeMethodDescriptionvoidAdds the given DataModel to the list at the given index.static DataSetSimpleDataLoader.getContinuousDataSet(DataModel dataSet) Returns the datamodel case to DataSet if it is continuous.static ICovarianceMatrixSimpleDataLoader.getCovarianceMatrix(DataModel dataModel, boolean precomputeCovariances) Returns the model cast to ICovarianceMatrix if already a covariance matric, or else returns the covariance matrix for a dataset.static DataSetSimpleDataLoader.getDiscreteDataSet(DataModel dataSet) Returns the datamodel case to DataSet if it is discrete.static DataSetSimpleDataLoader.getMixedDataSet(DataModel dataSet) Returns the datamodel case to DataSet if it is mixed.voidDataModelList.setSelectedModel(DataModel model) Setter for the fieldselectedModel. -
Uses of DataModel in edu.cmu.tetrad.data.simulation
Methods in edu.cmu.tetrad.data.simulation that return DataModelModifier and TypeMethodDescriptionLoadContinuousDataAndGraphs.getDataModel(int index) Returns the number of data sets to simulate.LoadContinuousDataAndSingleGraph.getDataModel(int index) Returns the number of data sets to simulate.LoadContinuousDataSmithSim.getDataModel(int index) Returns the number of data sets to simulate.LoadDataAndGraphs.getDataModel(int index) Returns the number of data sets to simulate.LoadDataFromFileWithoutGraph.getDataModel(int index) Returns the number of data sets to simulate. -
Uses of DataModel in edu.cmu.tetrad.search.score
Methods in edu.cmu.tetrad.search.score that return DataModelModifier and TypeMethodDescriptionPoissonPriorScore.getData()Returns the data set.SemBicScore.getData()Returns the data model.SemBicScore.getDataModel()Returns the data model.Methods in edu.cmu.tetrad.search.score with parameters of type DataModelModifier and TypeMethodDescriptionstatic doubleScores the given DAG using the given data model, usimg a BIC score.static doubleSemBicScorer.scoreDag(Graph dag, DataModel data, double penaltyDiscount, boolean precomputeCovariances) Scores the given DAG using the given data model, usimg a BIC score. -
Uses of DataModel in edu.cmu.tetrad.search.test
Methods in edu.cmu.tetrad.search.test that return DataModelModifier and TypeMethodDescriptionCachingIndependenceTest.getData()Retrieves the data model associated with the underlying independence test.IndependenceTest.getData()Retrieves the data model associated with this test.IndTestBasisFunctionBlocks.getData()Retrieves the original dataset represented by this instance.IndTestBasisFunctionLrt.getData()Deprecated.Retrieves the data model associated with this instance.IndTestBasisFunctionLrtFullSample.getData()Deprecated.Retrieves the data model associated with this instance.IndTestBlocksLemma10.getData()Deprecated.IndTestBlocksTs.getData()Retrieves the data model associated with the current block specification.IndTestBlocksWilkes.getData()IndTestDegenerateGaussianLrtFullSample.getData()Deprecated.Retrieves the data model associated with this instance.IndTestFdrWrapper.getData()Retrieves the data model associated with the wrappedIndependenceTest.IndTestIndependenceFacts.getData()Returns the facts supplied in the constructor, which constutite a data model.IndTestProbabilistic.getData()Returns the data model associated with this instance.Kci.getData()Retrieves the data model associated with the current instance.ScoreIndTest.getData()Retrieves the data model associated with this object.Constructors in edu.cmu.tetrad.search.test with parameters of type DataModelModifierConstructorDescriptionScoreIndTest(Score score, DataModel data) Constructor for ScoreIndTest. -
Uses of DataModel in edu.cmu.tetrad.search.utils
Methods in edu.cmu.tetrad.search.utils with parameters of type DataModelModifier and TypeMethodDescriptionstatic voidLogUtilsSearch.stampWithBic(Graph graph, DataModel dataModel) stampWithBic.Constructors in edu.cmu.tetrad.search.utils with parameters of type DataModelModifierConstructorDescriptionClusterSignificance(List<Node> variables, DataModel dataModel) Constructs a new cluster significance object.Constructor parameters in edu.cmu.tetrad.search.utils with type arguments of type DataModel -
Uses of DataModel in edu.cmu.tetrad.search.work_in_progress
Methods in edu.cmu.tetrad.search.work_in_progress that return DataModel -
Uses of DataModel in edu.cmu.tetrad.util
Methods in edu.cmu.tetrad.util that return DataModelModifier and TypeMethodDescriptionstatic DataModelMultidataUtils.combineDataset(List<DataModel> dataModels) combineDataset.static DataModelDataConvertUtils.toContinuousDataModel(ContinuousData dataset) toContinuousDataModel.static DataModelDataConvertUtils.toCovarianceMatrix(CovarianceData dataset) toCovarianceMatrix.static DataModelDataConvertUtils.toDataModel(Data data) toDataModel.static DataModelDataConvertUtils.toDataModel(Data data, Metadata metadata) toDataModel.static DataModelDataConvertUtils.toMixedDataBox(MixedTabularData dataset) toMixedDataBox.static DataModelDataConvertUtils.toMixedDataBox(MixedTabularData dataset, Metadata metadata) Converting using metadatastatic DataModelDataConvertUtils.toVerticalDiscreteDataModel(VerticalDiscreteTabularData dataset) toVerticalDiscreteDataModel.static DataModelDataConvertUtils.toVerticalDiscreteDataModel(VerticalDiscreteTabularData dataset, Metadata metatdata) Converting using metadataMethods in edu.cmu.tetrad.util with parameters of type DataModelModifier and TypeMethodDescriptionstatic intMultidataUtils.getNumberOfColumns(DataModel dataModel) getNumberOfColumns.Method parameters in edu.cmu.tetrad.util with type arguments of type DataModelModifier and TypeMethodDescriptionstatic voidMultidataUtils.combineContinuousData(List<DataModel> dataModels, double[][] combinedData) combineContinuousData.static DataModelMultidataUtils.combineDataset(List<DataModel> dataModels) combineDataset.static voidMultidataUtils.combineDiscreteDataToDiscreteVerticalData(List<DataModel> dataModels, List<Node> variables, int[][] combinedData, int numOfRows, int numOfColumns) combineDiscreteDataToDiscreteVerticalData.static voidMultidataUtils.combineMixedContinuousData(List<DataModel> dataModels, List<Node> variables, double[][] combinedData, int numOfRows, int numOfColumns) combineMixedContinuousData.static voidMultidataUtils.combineMixedDiscreteData(List<DataModel> dataModels, List<Node> variables, int[][] combinedData, int numOfRows, int numOfColumns) combineMixedDiscreteData.static voidMultidataUtils.combineVariables(List<DataModel> dataModels, List<Node> variables) Combine the list of variables from each of data model in the list into one variable list.static int[]MultidataUtils.getRowCounts(List<DataModel> dataModels) getRowCounts.