Class MultinomialLogisticRegressionWald
java.lang.Object
edu.cmu.tetrad.algcomparison.independence.MultinomialLogisticRegressionWald
- All Implemented Interfaces:
IndependenceWrapper,HasParameters,TetradSerializable,Serializable
Wrapper for Fisher Z test.
- Version:
- $Id: $Id
- Author:
- josephramsey
- See Also:
-
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptionReturns the data type that the search requires, whether continuous, discrete, or mixed.Returns a short of this independence test.Returns the parameters that this search uses.getTest(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.
-
Constructor Details
-
MultinomialLogisticRegressionWald
public MultinomialLogisticRegressionWald()Constructs a new instance of the test.
-
-
Method Details
-
getTest
Returns true iff x and y are independent conditional on z for the given data set.- Specified by:
getTestin interfaceIndependenceWrapper- Parameters:
dataSet- The data set to test independence against.parameters- The paramters of the test.- Returns:
- True iff independence holds.
-
getDescription
Returns a short of this independence test.- Specified by:
getDescriptionin interfaceIndependenceWrapper- Returns:
- This description.
-
getDataType
Returns the data type that the search requires, whether continuous, discrete, or mixed.- Specified by:
getDataTypein interfaceIndependenceWrapper- Returns:
- This type.
-
getParameters
Returns the parameters that this search uses.- Specified by:
getParametersin interfaceHasParameters- Specified by:
getParametersin interfaceIndependenceWrapper- Returns:
- A list of String names of parameters.
-