Uses of Interface
edu.cmu.tetrad.search.IndependenceTest
Packages that use IndependenceTest
Package
Description
Contains classes for searching for (mostly structural) causal models given data.
Contains classes for various various sorts of scores for running score-based algorithms.
Contains classes for running conditional independence tests for various sorts of data.
Contains some utility classes for search algorithms.
Contains some classes that aren't ready for prime time.
-
Uses of IndependenceTest in edu.cmu.tetrad.algcomparison.independence
Methods in edu.cmu.tetrad.algcomparison.independence that return IndependenceTestModifier and TypeMethodDescriptionBdeuTest.getTest(DataModel dataSet, Parameters parameters) Returns the test.CciTest.getTest(DataModel dataSet, Parameters parameters) ChiSquare.getTest(DataModel dataSet, Parameters parameters) ConditionalGaussianLRT.getTest(DataModel dataSet, Parameters parameters) DegenerateGaussianLRT.getTest(DataModel dataSet, Parameters parameters) DiscreteBicTest.getTest(DataModel dataSet, Parameters parameters) FisherZ.getTest(DataModel dataSet, Parameters parameters) GICScoreTests.getTest(DataModel dataSet, Parameters parameters) Gsquare.getTest(DataModel dataSet, Parameters parameters) IndependenceWrapper.getTest(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.Kci.getTest(DataModel dataSet, Parameters parameters) MagSemBicTest.getTest(DataModel dataSet, Parameters parameters) Mnlrlrt.getTest(DataModel dataSet, Parameters parameters) MSeparationTest.getTest(DataModel dataSet, Parameters parameters) MultinomialLogisticRegressionWald.getTest(DataModel dataSet, Parameters parameters) Mvplrt.getTest(DataModel dataSet, Parameters parameters) PoissonScoreTest.getTest(DataModel dataSet, Parameters parameters) PositiveCorr.getTest(DataModel dataSet, Parameters parameters) ProbabilisticTest.getTest(DataModel dataSet, Parameters parameters) SemBicDTest.getTest(DataModel dataSet, Parameters parameters) SemBicTest.getTest(DataModel dataSet, Parameters parameters) UniformScatterTest.getTest(DataModel dataSet, Parameters parameters) -
Uses of IndependenceTest in edu.cmu.tetrad.graph
Methods in edu.cmu.tetrad.graph with parameters of type IndependenceTestModifier and TypeMethodDescriptionvoidPaths.removeByPossibleMsep(IndependenceTest test, SepsetMap sepsets) Remove edges by the possible m-separation rule. -
Uses of IndependenceTest in edu.cmu.tetrad.search
Classes in edu.cmu.tetrad.search that implement IndependenceTestModifier and TypeClassDescriptionclassChecks independence result by listing all tests with those variables, testing each one, and returning the resolution of these test results.Methods in edu.cmu.tetrad.search that return IndependenceTestModifier and TypeMethodDescriptionBFci.getIndependenceTest()The independence test being used for some steps in final orientation.Cpc.getIndependenceTest()Rreturn the independence test used in the search, set in the constructor.Fci.getIndependenceTest()Returns the independence test used in search.FciMax.getIndependenceTest()Returns the independence test used in search.GFci.getIndependenceTest()Returns the independence test used in search.MarkovCheck.getIndependenceTest()Returns the independence test being used.Pc.getIndependenceTest()Returns the independence test being used in the search.Pcd.getIndependenceTest()Rfci.getIndependenceTest()Returns the independence test.SpFci.getIndependenceTest()Returns the independence test used in search.SvarFci.getIndependenceTest()Returns independence test.PcMb.getTest()Returns the test used in search.default IndependenceTestIndependenceTest.indTestSubset(List<Node> vars) Returns an Independence test for a sublist of the variables.IndTestIod.indTestSubset(List<Node> vars) Constructors in edu.cmu.tetrad.search with parameters of type IndependenceTestModifierConstructorDescriptionBFci(IndependenceTest test, Score score) Constructor.Ccd(IndependenceTest test) Construct a CCD algorithm with the given independence test.Cfci(IndependenceTest independenceTest) Constructs a new FCI search for the given independence test and background knowledge.Cpc(IndependenceTest independenceTest) Constructs a CPC algorithm that uses the given independence test as oracle.Fas(IndependenceTest test) Constructor.Fasd(IndependenceTest test) Constructs a new FastAdjacencySearch.Fask(DataSet dataSet, Score score, IndependenceTest test) Constructor.Fci(IndependenceTest independenceTest) Constructor.Fci(IndependenceTest independenceTest, List<Node> searchVars) Constructor.FciMax(IndependenceTest independenceTest) Constructor.GFci(IndependenceTest test, Score score) Constructs a new GFci algorithm with the given independence test and score.Grasp(@NotNull IndependenceTest test) Constructor for a test.Grasp(@NotNull IndependenceTest test, Score score) Constructor that takes both a test and a score; only one is used-- the parameter setting will decide which.GraspFci(IndependenceTest test, Score score) GrowShrink(IndependenceTest test) Constructs a new search.MarkovCheck(Graph graph, IndependenceTest independenceTest, MarkovCheck.ConditioningSetType setType) Constructor.Pc(IndependenceTest independenceTest) Constructs a new PC search using the given independence test as oracle.Pcd(IndependenceTest independenceTest) Constructs a new PC search using the given independence test as oracle.PcMb(IndependenceTest test, int depth) Constructs a new search.Rfci(IndependenceTest independenceTest) Constructs a new RFCI search for the given independence test and background knowledge.Rfci(IndependenceTest independenceTest, List<Node> searchVars) Constructs a new RFCI search for the given independence test and background knowledge and a list of variables to search over.SpFci(IndependenceTest test, Score score) Constructor; requires by ta test and a score, over the same variables.SvarFas(IndependenceTest test) Constructs a new FastAdjacencySearch.SvarFci(IndependenceTest independenceTest) Constructs a new FCI search for the given independence test and background knowledge.SvarGfci(IndependenceTest test, Score score) Constructs a new GFCI search for the given independence test and background knowledge.Constructor parameters in edu.cmu.tetrad.search with type arguments of type IndependenceTestModifierConstructorDescriptionIndTestIod(List<IndependenceTest> tests) Constructs a new pooled independence test from the given list of independence tests. -
Uses of IndependenceTest in edu.cmu.tetrad.search.score
Constructors in edu.cmu.tetrad.search.score with parameters of type IndependenceTestModifierConstructorDescriptionIndTestScore(IndependenceTest test) Constructs the score using a covariance matrix. -
Uses of IndependenceTest in edu.cmu.tetrad.search.test
Classes in edu.cmu.tetrad.search.test that implement IndependenceTestModifier and TypeClassDescriptionfinal classChecks the conditional independence X _||_ Y | S, where S is a set of discrete variable, and X and Y are discrete variable not in S, by applying a conditional Chi Square test.final classChecks conditional independence of variable in a continuous data set using a conditional correlation test for the nonlinear nonGaussian with the additive error case.classPerforms a test of conditional independence X _||_ Y | Z1...Zn where all searchVariables are either continuous or discrete.classImplements a degenerate Gaussian score as a LRT.final classChecks conditional independence of variable in a continuous data set using Fisher's Z test.final classCalculates independence from pooled residuals using the Fisher Z method.final classCalculates independence from multiple datasets from using the Fisher method of pooling independence results.final classChecks the conditional independence X _||_ Y | S, where S is a set of discrete variable, and X and Y are discrete variable not in S, by applying a conditional G Square test.final classChecks the conditional independence X _||_ Y | S, where S is a set of continuous variable, and X and Y are discrete variable not in S, using the Hilbert-Schmidth Independence Criterion (HSIC), a kernel based nonparametric test for conditional independence.final classChecks conditional independence against a list of conditional independence facts, manually entered.final classPools together a set of independence tests using a specified method.classPerforms a test of conditional independence X _||_ Y | Z1...Zn where all variables are either continuous or discrete.classUses BCInference by Cooper and Bui to calculate probabilistic conditional independence judgments.final classChecks independence of X _||_ Y | Z for variables X and Y and list Z of variables by regressing X on {Y} U Z and testing whether the coefficient for Y is zero.final classChecks d-separations in structural model using t-separations over indicators.classGives an implementation of the Kernal Independence Test (KCI) by Kun Zhang, which is a general test of conditional independence.classChecks independence facts for variables associated with the nodes in a given graph by checking m-separation facts on the underlying nodes.classGives a way of interpreting a score as an independence test.Methods in edu.cmu.tetrad.search.test that return IndependenceTestModifier and TypeMethodDescriptionIndTestChiSquare.indTestSubset(List<Node> nodes) Creates a new IndTestChiSquare for a subset of the nodes.IndTestConditionalCorrelation.indTestSubset(List<Node> vars) IndTestConditionalGaussianLrt.indTestSubset(List<Node> vars) IndTestDegenerateGaussianLrt.indTestSubset(List<Node> vars) IndTestFisherZ.indTestSubset(List<Node> vars) Creates a new independence test instance for a subset of the variables.IndTestFisherZConcatenateResiduals.indTestSubset(List<Node> vars) IndTestFisherZFisherPValue.indTestSubset(List<Node> vars) IndTestGSquare.indTestSubset(List<Node> vars) Creates a new IndTestGSquare for a sublist of the variables.IndTestHsic.indTestSubset(List<Node> vars) Creates a new IndTestHsic instance for a subset of the variables.IndTestIndependenceFacts.indTestSubset(List<Node> vars) IndTestMulti.indTestSubset(List<Node> vars) IndTestMvpLrt.indTestSubset(List<Node> vars) Returns an independence test for a sublist of the searchVariables.IndTestProbabilistic.indTestSubset(List<Node> vars) IndTestRegression.indTestSubset(List<Node> vars) Creates a new IndTestCramerT instance for a subset of the variables.IndTestTrekSep.indTestSubset(List<Node> vars) Creates a new independence test instance for a sublist of the variables.Kci.indTestSubset(List<Node> vars) MsepTest.indTestSubset(List<Node> vars) Returns a test over a subset of the variables.Constructor parameters in edu.cmu.tetrad.search.test with type arguments of type IndependenceTestModifierConstructorDescriptionIndTestMulti(List<IndependenceTest> independenceTests, ResolveSepsets.Method method) -
Uses of IndependenceTest in edu.cmu.tetrad.search.utils
Methods in edu.cmu.tetrad.search.utils that return IndependenceTestModifier and TypeMethodDescriptionPcCommon.getIndependenceTest()SepsetsConservative.getIndependenceTest()Methods in edu.cmu.tetrad.search.utils with parameters of type IndependenceTestModifier and TypeMethodDescriptionMbUtils.generateMbDags(Graph mbCPDAG, boolean orientBidirectedEdges, IndependenceTest test, int depth, Node target) Generates the list of MB DAGs consistent with the MB CPDAG returned by the previous search.GraphSearchUtils.getCpcTripleType(Node x, Node y, Node z, IndependenceTest test, int depth, Graph graph) PossibleMsepFci.getSepset(IndependenceTest test, Node node1, Node node2) SepsetsConservative.getSepsetsLists(Node x, Node y, Node z, IndependenceTest test, int depth, boolean verbose) static voidGraphSearchUtils.pcdOrientC(IndependenceTest test, Knowledge knowledge, Graph graph) Performs step C of the algorithm, as indicated on page xxx of CPS, with the modification that X--W--Y is oriented as X-->W<--Y if W is *determined by* the sepset of (X, Y), rather than W just being *in* the sepset of (X, Y).Method parameters in edu.cmu.tetrad.search.utils with type arguments of type IndependenceTestModifier and TypeMethodDescriptionstatic booleanResolveSepsets.isIndependentPooled(ResolveSepsets.Method method, List<IndependenceTest> independenceTests, Node x, Node y, Set<Node> condSet) Tests for independence using one of the pooled methodsstatic booleanResolveSepsets.isIndependentPooledAverage(List<IndependenceTest> independenceTests, Node x, Node y, Set<Node> condSet) Checks independence from pooled samples by taking the average p valuestatic booleanResolveSepsets.isIndependentPooledAverageTest(List<IndependenceTest> independenceTests, Node x, Node y, Set<Node> condSet) Checks independence from pooled samples by taking the average test statistic CURRENTLY ONLY WORKS FOR CHISQUARE TESTstatic booleanResolveSepsets.isIndependentPooledFisher(List<IndependenceTest> independenceTests, Node x, Node y, Set<Node> condSet) Checks independence from pooled samples using Fisher's method.static booleanResolveSepsets.isIndependentPooledFisher2(List<IndependenceTest> independenceTests, Node x, Node y, Set<Node> condSet) Eliminates from considerations independence tests that cannot be evaluated (due to missing variables mainly).static booleanResolveSepsets.isIndependentPooledMudholkerGeorge(List<IndependenceTest> independenceTests, Node x, Node y, Set<Node> condSet) Checks independence from pooled samples using Mudholker and George's methodstatic booleanResolveSepsets.isIndependentPooledMudholkerGeorge2(List<IndependenceTest> independenceTests, Node x, Node y, Set<Node> condSet) The same as isIndepenentPooledMudholkerGeoerge, except that only available independence tests are used.static booleanResolveSepsets.isIndependentPooledRandom(List<IndependenceTest> independenceTests, Node x, Node y, Set<Node> condSet) Checks independence from pooled samples by randomly selecting a p valuestatic booleanResolveSepsets.isIndependentPooledStouffer(List<IndependenceTest> independenceTests, Node x, Node y, Set<Node> condSet) Checks independence from pooled samples using Stouffer et al.'s methodstatic booleanResolveSepsets.isIndependentPooledTippett(List<IndependenceTest> independenceTests, Node x, Node y, Set<Node> condSet) Checks independence from pooled samples using Tippett's methodstatic booleanResolveSepsets.isIndependentPooledWilkinson(List<IndependenceTest> independenceTests, Node x, Node y, Set<Node> condSet, int r) Checks independence from pooled samples using Wilkinson's methodstatic booleanResolveSepsets.isIndependentPooledWorsleyFriston(List<IndependenceTest> independenceTests, Node x, Node y, Set<Node> condSet) Checks independence from pooled samples using Worsley and Friston's methodConstructors in edu.cmu.tetrad.search.utils with parameters of type IndependenceTestModifierConstructorDescriptionMaxP(IndependenceTest test) Constructor.PcCommon(IndependenceTest independenceTest) Constructs a CPC algorithm that uses the given independence test as oracle.PossibleMsepFci(Graph graph, IndependenceTest test) Creates a new SepSet and assumes that none of the variables have yet been checked.SepsetsConservative(Graph graph, IndependenceTest independenceTest, SepsetMap extraSepsets, int depth) SepsetsGreedy(Graph graph, IndependenceTest independenceTest, SepsetMap extraSepsets, int depth, Knowledge knowledge) SepsetsPossibleMsep(Graph graph, IndependenceTest test, Knowledge knowledge, int depth, int maxPathLength) SepsetsSet(SepsetMap sepsets, IndependenceTest test) SvarFciOrient(SepsetProducer sepsets, IndependenceTest independenceTest) Constructs a new FCI search for the given independence test and background knowledge.TeyssierScorer(IndependenceTest test, Score score) Constructor that takes both a test or a score. -
Uses of IndependenceTest in edu.cmu.tetrad.search.work_in_progress
Classes in edu.cmu.tetrad.search.work_in_progress that implement IndependenceTestModifier and TypeClassDescriptionfinal classChecks conditional independence for continuous variables using Cramer's T-test formula (Cramer, Mathematical Methods of Statistics (1951), page 413).final classChecks independence of X _||_ Y | Z for variables X and Y and list Z of variables.final classCalculates independence from pooled residuals.final classChecks conditional independence of variable in a continuous data set using Fisher's Z test.classPerforms a test of conditional independence X _||_ Y | Z1...Zn where all searchVariables are either continuous or discrete.classPerforms a test of conditional independence X _||_ Y | Z1...Zn where all searchVariables are either continuous or discrete.classPerforms a test of conditional independence X _||_ Y | Z1...Zn where all searchVariables are either continuous or discrete.final classChecks conditional independence of variable in a continuous data set using Fisher's Z test.classChecks independence facts for variables associated with a sepset by simply querying the sepsetfinal classclassUses BCInference by Cooper and Bui to calculate probabilistic conditional independence judgments.Methods in edu.cmu.tetrad.search.work_in_progress that return IndependenceTestModifier and TypeMethodDescriptionKpc.getIndependenceTest()Mmhc.getIndependenceTest()SampleVcpc.getIndependenceTest()SampleVcpcFast.getIndependenceTest()VcPc.getIndependenceTest()VcPcAlt.getIndependenceTest()VcPcFast.getIndependenceTest()IndTestCramerT.indTestSubset(List<Node> vars) Creates a new IndTestCramerT instance for a subset of the variables.IndTestFisherZGeneralizedInverse.indTestSubset(List<Node> vars) Creates a new IndTestCramerT instance for a subset of the variables.IndTestFisherZPercentIndependent.indTestSubset(List<Node> vars) IndTestFisherZRecursive.indTestSubset(List<Node> vars) Creates a new independence test instance for a subset of the variables.IndTestMixedMultipleTTest.indTestSubset(List<Node> vars) IndTestMnlrLr.indTestSubset(List<Node> vars) IndTestMultinomialLogisticRegression.indTestSubset(List<Node> vars) IndTestPositiveCorr.indTestSubset(List<Node> vars) Creates a new independence test instance for a subset of the variables.IndTestSepsetDci.indTestSubset(List<Node> vars) Required by IndependenceTest.ProbabilisticMapIndependence.indTestSubset(List<Node> vars) Methods in edu.cmu.tetrad.search.work_in_progress with parameters of type IndependenceTestModifier and TypeMethodDescriptionVcPc.getPopulationTripleType(Node x, Node y, Node z, IndependenceTest test, int depth, Graph graph, boolean verbose) VcPcFast.getPopulationTripleType(Node x, Node y, Node z, IndependenceTest test, int depth, Graph graph, boolean verbose) Method parameters in edu.cmu.tetrad.search.work_in_progress with type arguments of type IndependenceTestModifier and TypeMethodDescriptionstatic booleanResolveSepsetsDci.isIndependentPooled(ResolveSepsetsDci.Method method, List<IndependenceTest> independenceTests, Node x, Node y, Set<Node> condSet) Tests for independence using one of the pooled methodsstatic booleanResolveSepsetsDci.isIndependentPooledAverage(List<IndependenceTest> independenceTests, Node x, Node y, Set<Node> condSet) Checks independence from pooled samples by taking the average p valuestatic booleanResolveSepsetsDci.isIndependentPooledAverageTest(List<IndependenceTest> independenceTests, Node x, Node y, Set<Node> condSet) Checks independence from pooled samples by taking the average test statistic CURRENTLY ONLY WORKS FOR CHISQUARE TESTstatic booleanResolveSepsetsDci.isIndependentPooledFisher(List<IndependenceTest> independenceTests, Node x, Node y, Set<Node> condSet) Checks independence from pooled samples using Fisher's method.static booleanResolveSepsetsDci.isIndependentPooledFisher2(List<IndependenceTest> independenceTests, Node x, Node y, Set<Node> condSet) Eliminates from considerations independence tests that cannot be evaluated (due to missing variables mainly).static booleanResolveSepsetsDci.isIndependentPooledMudholkerGeorge(List<IndependenceTest> independenceTests, Node x, Node y, Set<Node> condSet) Checks independence from pooled samples using Mudholker and George's methodstatic booleanResolveSepsetsDci.isIndependentPooledMudholkerGeorge2(List<IndependenceTest> independenceTests, Node x, Node y, Set<Node> condSet) The same as isIndepenentPooledMudholkerGeoerge, except that only available independence tests are used.static booleanResolveSepsetsDci.isIndependentPooledRandom(List<IndependenceTest> independenceTests, Node x, Node y, Set<Node> condSet) Checks independence from pooled samples by randomly selecting a p valuestatic booleanResolveSepsetsDci.isIndependentPooledStouffer(List<IndependenceTest> independenceTests, Node x, Node y, Set<Node> condSet) Checks independence from pooled samples using Stouffer et al.'s methodstatic booleanResolveSepsetsDci.isIndependentPooledTippett(List<IndependenceTest> independenceTests, Node x, Node y, Set<Node> condSet) Checks independence from pooled samples using Tippett's methodstatic booleanResolveSepsetsDci.isIndependentPooledWilkinson(List<IndependenceTest> independenceTests, Node x, Node y, Set<Node> condSet, int r) Checks independence from pooled samples using Wilkinson's methodstatic booleanResolveSepsetsDci.isIndependentPooledWorsleyFriston(List<IndependenceTest> independenceTests, Node x, Node y, Set<Node> condSet) Checks independence from pooled samples using Worsley and Friston's methodConstructors in edu.cmu.tetrad.search.work_in_progress with parameters of type IndependenceTestModifierConstructorDescriptionFas2(Graph initialGraph, IndependenceTest test) Constructs a new FastAdjacencySearch.Fas2(IndependenceTest test) Fas3(IndependenceTest test) Constructor.FasDci(Graph graph, IndependenceTest independenceTest) Constructs a new FastAdjacencySearch for DCI.FasDci(Graph graph, IndependenceTest independenceTest, ResolveSepsets.Method method, List<Set<Node>> marginalVars, List<IndependenceTest> independenceTests, SepsetMapDci knownIndependencies, SepsetMapDci knownAssociations) Constructs a new FastAdjacencySearch for DCI with independence test pooling to resolve inconsistencies.FasFdr(IndependenceTest test, int numIndependenceTests) Constructs a new FastAdjacencySearch.GraspTol(@NotNull IndependenceTest test) GraspTol(@NotNull IndependenceTest test, Score score) Iamb(IndependenceTest test) Constructs a new search.IambnPc(IndependenceTest test) Constructs a new search.InterIamb(IndependenceTest test) Constructs a new search.Mmhc(IndependenceTest test, DataSet dataSet) Mmmb(IndependenceTest test, int depth, boolean symmetric) Constructs.OtherPermAlgs(@NotNull IndependenceTest test) OtherPermAlgs(@NotNull IndependenceTest test, Score score) SampleVcpc(IndependenceTest independenceTest) Constructs a CPC algorithm that uses the given independence test as oracle.SampleVcpcFast(IndependenceTest independenceTest) Constructs a CPC algorithm that uses the given independence test as oracle.VcFas(IndependenceTest test) VcPc(IndependenceTest independenceTest) Constructs a CPC algorithm that uses the given independence test as oracle.VcPcAlt(IndependenceTest independenceTest) Constructs a CPC algorithm that uses the given independence test as oracle.VcPcFast(IndependenceTest independenceTest) Constructs a CPC algorithm that uses the given independence test as oracle.Constructor parameters in edu.cmu.tetrad.search.work_in_progress with type arguments of type IndependenceTestModifierConstructorDescriptionDci(List<IndependenceTest> tests) Dci(List<IndependenceTest> tests, ResolveSepsets.Method method) -
Uses of IndependenceTest in edu.pitt.csb.mgm
Classes in edu.pitt.csb.mgm that implement IndependenceTestModifier and TypeClassDescriptionclassPerforms a test of conditional independence X _||_ Y | Z1...Zn where all searchVariables are either continuous or discrete.Methods in edu.pitt.csb.mgm that return IndependenceTestModifier and TypeMethodDescriptionstatic IndependenceTestMixedUtils.IndTestFromString(String name, DataSet data, double alpha) Returns independence tests by name located in edu.cmu.tetrad.search and edu.pitt.csb.mgm also supports shorthand for LRT ("lrt) and t-tests ("tlin" for prefer linear (fastest) or "tlog" for prefer logistic)IndTestMultinomialLogisticRegressionWald.indTestSubset(List<Node> vars)