Uses of Interface
edu.cmu.tetrad.algcomparison.algorithm.TakesCovarianceMatrix
Packages that use TakesCovarianceMatrix
Package
Description
-
Uses of TakesCovarianceMatrix in edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag
Classes in edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag that implement TakesCovarianceMatrixModifier and TypeClassDescriptionclassBOSS (Best Order Score Search)classCD-NOD wrapper for algcomparison.classDeprecated.classFast Adjacency Search (FAS)--i.e., the PC adjacency step, which is used in many algorithms.classFGES (the heuristic version).classFGES-MB (the heuristic version).classGIN (Generalized Independent Noise Search)classGRaSP (Greedy Relaxations of Sparsest Permutation)classIS-FGES (Instance-Specific FGES) wrapper for the algcomparison interface.classPeter/Clark algorithm (PC).classPC.classDeprecated.classPC.classSP (Sparsest Permutation) -
Uses of TakesCovarianceMatrix in edu.cmu.tetrad.algcomparison.algorithm.oracle.pag
Classes in edu.cmu.tetrad.algcomparison.algorithm.oracle.pag that implement TakesCovarianceMatrixModifier and TypeClassDescriptionclassAdjusts FGES-FCI to use a permutation algorithm (such as BOSS-Tuck) to do the initial steps of finding adjacencies and unshielded colliders.classThis class represents the FCIT algorithm, which is an implementation of the FGES-FCI algorithm for learning causal structures from observational data using the BOSS algorithm as an initial CPDAG and using all score-based steps afterward.classCCD (Cyclic Causal Discovery)classDeprecated.classThis class represents the Detect-Mimic-FCIT (DM-FCIT) algorithm, a specialized variant of the DM-PC and FCIT algorithms designed to identify intermediate latent variables.classThis class represents the Detect-Mimic-FCIT (DM-FCIT) algorithm, a specialized variant of the DM-PC and FCIT algorithms designed to identify intermediate latent variables.classDetect-Mimic-PC (DM-PC) algorithm.classThe Fast Causal Inference (FCI) algorithm.classFCI-CPW: Run FCI with internally constructed PW-forbidden knowledge, then orient edges using a pairwise left-right rule on standardized data in cases that are safe under no-selection-bias cyclic semantics: Tail–tail (—) edges Orient per pairwise rule. Tail–circle (—o) edges If pairwise prefers x→y, set x→y (symmetrically, if prefers y→x, set y→x). Circle–circle (o–o) edges If pairwise prefers x→y, set x o→y (symmetrically for y→x).classDeprecated.classThis class represents the FCI Targeted Testing (FCIT) algorithm, which is variant of the *-FCI algorithm for learning causal structures from observational data using the BOSS algorithm as an initial CPDAG and using all score-based steps afterward.classThe Fges-FCI class represents the Greedy Fast Causal Inference algorithm, adjusted as in *-FCI.classThe GFCI class represents the Greedy Fast Causal Inference algorithm, adjusted as in *-FCI.classGRaSP-FCI, an implentatation of *-FCI using GRaSP.classIS-GFCI (Instance-Specific GFCI) wrapper for the algcomparison interface.classRFCI.classAdjusts GFCI to use a permutation algorithm (in this case SP) to do the initial steps of finding adjacencies and unshielded colliders.