Uses of Class
edu.cmu.tetrad.util.Parameters
Packages that use Parameters
Package
Description
Contains classes for searching for (mostly structural) causal models given data.
Contains some classes that aren't ready for prime time.
Contains an editable display graph for (small) lag graphs.
Contains classes for generating simulations of expression levels over a
collection
of genes.
- 
Uses of Parameters in edu.cmu.tetrad.algcomparisonMethods in edu.cmu.tetrad.algcomparison with parameters of type ParametersModifier and TypeMethodDescriptionvoidComparison.compareFromFiles(String filePath, Algorithms algorithms, Statistics statistics, Parameters parameters) compareFromFiles.voidComparison.compareFromFiles(String dataPath, String resultsPath, Algorithms algorithms, Statistics statistics, Parameters parameters) Compares algorithms.voidTimeoutComparison.compareFromFiles(String filePath, Algorithms algorithms, Statistics statistics, Parameters parameters, long timeout, TimeUnit unit) compareFromFiles.voidTimeoutComparison.compareFromFiles(String dataPath, String resultsPath, Algorithms algorithms, Statistics statistics, Parameters parameters, long timeout, TimeUnit unit) Compares algorithms.voidComparison.compareFromSimulations(String resultsPath, Simulations simulations, Algorithms algorithms, Statistics statistics, Parameters parameters) Compare simulation results using the provided parameters and write the comparison results to a file.voidComparison.compareFromSimulations(String resultsPath, Simulations simulations, String outputFileName, Algorithms algorithms, Statistics statistics, Parameters parameters) Compares the results obtained from simulations.voidComparison.compareFromSimulations(String resultsPath, Simulations simulations, String outputFileName, PrintStream localOut, Algorithms algorithms, Statistics statistics, Parameters parameters) Compares the results of simulations and generates an output file.voidComparison.compareFromSimulations(String resultsPath, Simulations simulations, String outputFileName, PrintStream localOut, PrintStream localOut2, Algorithms algorithms, Statistics statistics, Parameters parameters) Compares the results of different simulations and algorithms.voidTimeoutComparison.compareFromSimulations(String resultsPath, Simulations simulations, Algorithms algorithms, Statistics statistics, Parameters parameters, long timeout, TimeUnit unit) compareFromSimulations.voidTimeoutComparison.compareFromSimulations(String resultsPath, Simulations simulations, String outputFileName, Algorithms algorithms, Statistics statistics, Parameters parameters, long timeout, TimeUnit unit) Compares algorithms.voidComparison.generateReportFromExternalAlgorithms(String dataPath, String resultsPath, Algorithms algorithms, Statistics statistics, Parameters parameters) Generates a report from external algorithms.voidComparison.generateReportFromExternalAlgorithms(String dataPath, String resultsPath, String outputFileName, Algorithms algorithms, Statistics statistics, Parameters parameters) Generates a report from external algorithms based on the given parameters.voidTimeoutComparison.generateReportFromExternalAlgorithms(String dataPath, String resultsPath, Algorithms algorithms, Statistics statistics, Parameters parameters, long timeout, TimeUnit unit) generateReportFromExternalAlgorithms.voidTimeoutComparison.generateReportFromExternalAlgorithms(String dataPath, String resultsPath, String outputFileName, Algorithms algorithms, Statistics statistics, Parameters parameters, long timeout, TimeUnit unit) generateReportFromExternalAlgorithms.voidComparison.saveToFiles(String dataPath, Simulation simulation, Parameters parameters) Saves the simulation data to file in the specified data path.voidTimeoutComparison.saveToFiles(String dataPath, Simulation simulation, Parameters parameters) Saves simulationWrapper data.voidComparison.saveToFilesSingleSimulation(String dataPath, Simulation simulation, Parameters parameters) Saves the results of a single simulation to files.
- 
Uses of Parameters in edu.cmu.tetrad.algcomparison.algorithmMethods in edu.cmu.tetrad.algcomparison.algorithm with parameters of type ParametersModifier and TypeMethodDescriptionabstract longExternalAlgorithm.getElapsedTime(DataModel dataSet, Parameters parameters) getElapsedTime.AbstractBootstrapAlgorithm.search(DataModel dataModel, Parameters parameters) Runs the search.Algorithm.search(DataModel dataSet, Parameters parameters) Runs the search.FirstInflection.search(DataModel dataSet, Parameters parameters) Runs the search.MultiDataSetAlgorithm.search(List<DataModel> dataSets, Parameters parameters) Runs the search.StabilitySelection.search(DataModel dataSet, Parameters parameters) Runs the search.StARS.search(DataModel dataSet, Parameters parameters) Runs the search.
- 
Uses of Parameters in edu.cmu.tetrad.algcomparison.algorithm.clusterMethods in edu.cmu.tetrad.algcomparison.algorithm.cluster with parameters of type ParametersModifier and TypeMethodDescriptionFofc.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm and returns the resulting graph.Ftfc.runSearch(DataModel dataSet, Parameters parameters) Runs the search algorithm to find a causal graph.Bpc.search(DataModel dataModel, Parameters parameters) Runs the search algorithm to build a graph using the given data model and parameters.
- 
Uses of Parameters in edu.cmu.tetrad.algcomparison.algorithm.continuous.dagMethods in edu.cmu.tetrad.algcomparison.algorithm.continuous.dag with parameters of type ParametersModifier and TypeMethodDescriptionDagma.runSearch(DataModel dataModel, Parameters parameters) Runs the DAGMA algorithm to search for a directed acyclic graph (DAG) in the given data model with the specified parameters.DirectLingam.runSearch(DataModel dataModel, Parameters parameters) Runs the Direct LiNGAM search algorithm on the given data model with the specified parameters.Fask.runSearch(DataModel dataModel, Parameters parameters) Runs the Fask search algorithm on the given data model with the specified parameters.FaskOrig.runSearch(DataModel dataModel, Parameters parameters) Runs the Fask search algorithm on the given data model with the specified parameters.IcaLingam.runSearch(DataModel dataSet, Parameters parameters) Searches for a graph structure based on the given data set and parameters.IcaLingD.runSearch(DataModel dataSet, Parameters parameters) Runs a search on the provided data set using the given parameters.
- 
Uses of Parameters in edu.cmu.tetrad.algcomparison.algorithm.multiMethods in edu.cmu.tetrad.algcomparison.algorithm.multi with parameters of type ParametersModifier and TypeMethodDescriptionFaskConcatenated.search(DataModel dataSet, Parameters parameters) Runs the search.FaskConcatenated.search(List<DataModel> dataSets, Parameters parameters) Runs the search.FaskLofsConcatenated.search(DataModel dataSet, Parameters parameters) Runs the search.FaskLofsConcatenated.search(List<DataModel> dataModels, Parameters parameters) Runs the search.FaskVote.search(DataModel dataSet, Parameters parameters) Runs the search.FaskVote.search(List<DataModel> dataSets, Parameters parameters) Runs the search.FasLofs.search(DataModel dataSet, Parameters parameters) Runs the search.FciIod.search(DataModel dataSet, Parameters parameters) Runs the search.FciIod.search(List<DataModel> dataSets, Parameters parameters) Runs the search.FgesConcatenated.search(DataModel dataSet, Parameters parameters) Runs the search.FgesConcatenated.search(List<DataModel> dataModels, Parameters parameters) Runs the search.Images.search(DataModel dataSet, Parameters parameters) Searches for a graph using the given data set and parameters.Images.search(List<DataModel> dataSets, Parameters parameters) Searches for a graph using the given data sets and parameters.ImagesBoss.search(DataModel dataSet, Parameters parameters) Runs the search.ImagesBoss.search(List<DataModel> dataSets, Parameters parameters) Runs the search.
- 
Uses of Parameters in edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdagMethods in edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag with parameters of type ParametersModifier and TypeMethodDescriptionCstar.search(DataModel dataSet, Parameters parameters) Runs the search.SingleGraphAlg.search(DataModel dataSet, Parameters parameters) Runs the search.
- 
Uses of Parameters in edu.cmu.tetrad.algcomparison.algorithm.oracle.pagMethods in edu.cmu.tetrad.algcomparison.algorithm.oracle.pag with parameters of type ParametersModifier and TypeMethodDescriptionBossDot.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm to find a graph structure based on a given data model and parameters.BossFci.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm using the given dataset and parameters and returns the resulting graph.Ccd.runSearch(DataModel dataModel, Parameters parameters) Runs the CCD (Cyclic Causal Discovery) search algorithm on the given data set using the specified parameters.Cfci.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm to discover the causal graph.DmFcit.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm to find a graph structure based on a given data model and parameters.DmFciT2.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm to find a graph structure based on a given data model and parameters.DmPc.runSearch(DataModel dataModel, Parameters parameters) Runs a search algorithm to find a graph structure based on a given data set and parameters.Fci.runSearch(DataModel dataModel, Parameters parameters) Runs a search algorithm to find a graph based on the given data model and parameters.FciMax.runSearch(DataModel dataModel, Parameters parameters) Runs a search algorithm to discover the causal graph structure.Fcit.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm to find a graph structure based on a given data model and parameters.FgesFci.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm to infer the causal graph given a dataset and specified parameters.Gfci.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm to infer the causal graph given a dataset and specified parameters.GraspFci.runSearch(DataModel dataModel, Parameters parameters) Runs a search algorithm to find a graph structure based on a given data set and parameters.PagSampleRfci.runSearch(DataModel dataSet, Parameters parameters) Runs the search algorithm using the given data set and parameters.Rfci.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm on the given data model and parameters.RfciBsc.runSearch(DataModel dataModel, Parameters parameters) Runs a search algorithm using a given dataset and parameters.SpFci.runSearch(DataModel dataModel, Parameters parameters) Executes a search algorithm to infer the causal graph structure from a given data modelSvarFci.runSearch(DataModel dataModel, Parameters parameters) Executes the search algorithm to find a graph structure that best fits the given dataset and parameters.SvarGfci.runSearch(DataModel dataModel, Parameters parameters) Runs a search algorithm on the given data set using the specified parameters.
- 
Uses of Parameters in edu.cmu.tetrad.algcomparison.algorithm.otherMethods in edu.cmu.tetrad.algcomparison.algorithm.other with parameters of type ParametersModifier and TypeMethodDescriptionFactorAnalysis.runSearch(DataModel dataModel, Parameters parameters) Executes a factor analysis search on the given data model using the provided parameters.Glasso.runSearch(DataModel dataModel, Parameters parameters) Runs a search algorithm to create a graph representation of the data.
- 
Uses of Parameters in edu.cmu.tetrad.algcomparison.algorithm.pairwiseMethods in edu.cmu.tetrad.algcomparison.algorithm.pairwise with parameters of type ParametersModifier and TypeMethodDescriptionEb.runSearch(DataModel dataModel, Parameters parameters) Runs a search algorithm to orient the edges in a graph using the given data and parameters.FaskPw.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm using the given data model and parameters.R1.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm on the given data model with the provided parameters.R2.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm using the provided data model and parameters.R3.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm to orient edges in the input graph using the provided data.Rskew.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm using the provided data model and parameters.RskewE.runSearch(DataModel dataModel, Parameters parameters) Runs a search algorithm to find the orientation of edges in a graph using the given data model and parameters.Skew.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm to orient edges in the input graph using the given data model and parameters.SkewE.runSearch(DataModel dataModel, Parameters parameters) Executes the SkewE search algorithm.Tanh.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm using the given data model and parameters.
- 
Uses of Parameters in edu.cmu.tetrad.algcomparison.graphMethods in edu.cmu.tetrad.algcomparison.graph with parameters of type ParametersModifier and TypeMethodDescriptionCyclic.createGraph(Parameters parameters) createGraph.ErdosRenyi.createGraph(Parameters parameters) createGraph.RandomForward.createGraph(Parameters parameters) Creates a random graph by adding forward edges.RandomGraph.createGraph(Parameters parameters) createGraph.RandomSingleFactorMim.createGraph(Parameters parameters) createGraph.RandomTwoFactorMim.createGraph(Parameters parameters) createGraph.ScaleFree.createGraph(Parameters parameters) createGraph.SingleGraph.createGraph(Parameters parameters) createGraph.
- 
Uses of Parameters in edu.cmu.tetrad.algcomparison.independenceMethods in edu.cmu.tetrad.algcomparison.independence with parameters of type ParametersModifier and TypeMethodDescriptionBasisFunctionLrt.getTest(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.CciTest.getTest(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.ChiSquare.getTest(DataModel dataSet, Parameters parameters) Retrieves an instance of the IndependenceTest interface that performs a Chi Square Test for independence.ConditionalGaussianLrt.getTest(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.DegenerateGaussianLrt.getTest(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.FisherZ.getTest(DataModel dataModel, Parameters parameters) Gets an independence test based on the given data model and parameters.GSquare.getTest(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.IndependenceWrapper.getTest(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.Kci.getTest(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.MSeparationTest.getTest(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.MultinomialLogisticRegressionWald.getTest(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.Mvplrt.getTest(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.PoissonBicTest.getTest(DataModel dataSet, Parameters parameters) Returns an instance of IndependenceTest for the SEM BIC test.ProbabilisticTest.getTest(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.SemBicTest.getTest(DataModel dataSet, Parameters parameters) Returns an instance of IndependenceTest for the SEM BIC test.
- 
Uses of Parameters in edu.cmu.tetrad.algcomparison.scoreMethods in edu.cmu.tetrad.algcomparison.score with parameters of type ParametersModifier and TypeMethodDescriptionBasisFunctionBicScore.getScore(DataModel dataSet, Parameters parameters) Returns true, iff x and y are independent, conditional on z for the given data set.BdeuScore.getScore(DataModel dataSet, Parameters parameters) Returns true, iff x and y are independent, conditional on z for the given data set.ConditionalGaussianBicScore.getScore(DataModel dataSet, Parameters parameters) Returns true, iff x and y are independent, conditional on z for the given data set.DegenerateGaussianBicScore.getScore(DataModel dataSet, Parameters parameters) Returns true, iff x and y are independent, conditional on z for the given data set.DiscreteBicScore.getScore(DataModel dataSet, Parameters parameters) Returns true, iff x and y are independent, conditional on z for the given data set.EbicScore.getScore(DataModel dataSet, Parameters parameters) Returns true, iff x and y are independent, conditional on z for the given data set.GicScores.getScore(DataModel dataSet, Parameters parameters) Returns true, iff x and y are independent, conditional on z for the given data set.MagDgBicScore.getScore(DataModel dataSet, Parameters parameters) Returns true, iff x and y are independent, conditional on z for the given data set.MSepScore.getScore(DataModel dataSet, Parameters parameters) Returns true, iff x and y are independent, conditional on z for the given data set.MVPBicScore.getScore(DataModel dataSet, Parameters parameters) Returns true, iff x and y are independent, conditional on z for the given data set.PoissonPriorScore.getScore(DataModel dataSet, Parameters parameters) Returns true, iff x and y are independent, conditional on z for the given data set.ScoreWrapper.getScore(DataModel dataSet, Parameters parameters) Returns true, iff x and y are independent, conditional on z for the given data set.SemBicScore.getScore(DataModel dataSet, Parameters parameters) Returns true, iff x and y are independent, conditional on z for the given data set.ZhangShenBoundScore.getScore(DataModel dataSet, Parameters parameters) Calculates the score based on the given data set and parameters.
- 
Uses of Parameters in edu.cmu.tetrad.algcomparison.simulationMethods in edu.cmu.tetrad.algcomparison.simulation with parameters of type ParametersModifier and TypeMethodDescriptionvoidBayesNetSimulation.createData(Parameters parameters, boolean newModel) Creates a data set and simulates data.voidCausalPerceptronNetwork.createData(Parameters parameters, boolean newModel) Creates simulated data and associated graphs based on the given parameters.voidConditionalGaussianSimulation.createData(Parameters parameters, boolean newModel) Creates a data set and simulates data.voidGeneralSemSimulation.createData(Parameters parameters, boolean newModel) Creates data sets for simulation based on the given parameters and model reuse preference.voidGeneralSemSimulationSpecial1.createData(Parameters parameters, boolean newModel) Creates a data set and simulates data.voidGpSemSimulation.createData(Parameters parameters, boolean newModel) Creates a data set and simulates data.voidLeeHastieSimulation.createData(Parameters parameters, boolean newModel) Creates a data set and simulates data.voidLgMnarSimulation.createData(Parameters parameters, boolean newModel) Creates simulated data and associated graphs based on the given parameters.voidLinearFisherModel.createData(Parameters parameters, boolean newModel) Creates a data set and simulates data.voidLinearSineSimulation.createData(Parameters parameters, boolean newModel) Creates a data set and simulates data.voidNonlinearAdditiveNoiseModel.createData(Parameters parameters, boolean newModel) Creates simulated data and associated graphs based on the given parameters.voidNonlinearFunctionsOfLinear.createData(Parameters parameters, boolean newModel) Creates simulated data and associated graphs based on the given parameters.voidPostnonlinearCausalModel.createData(Parameters parameters, boolean newModel) Creates simulated data and associated graphs based on the given parameters.voidSemSimulation.createData(Parameters parameters, boolean newModel) Creates data sets for simulation based on the given parameters and model reuse preference.voidSemThenDiscretize.createData(Parameters parameters, boolean newModel) Creates a data set and simulates data.voidSimulation.createData(Parameters parameters, boolean newModel) Creates a data set and simulates data.voidSingleDatasetSimulation.createData(Parameters parameters, boolean newModel) Creates a new data model for the simulation.voidStandardizedSemSimulation.createData(Parameters parameters, boolean newModel) Creates a data set and simulates data.voidTimeSeriesSemSimulation.createData(Parameters parameters, boolean newModel) Creates a data set and simulates data.
- 
Uses of Parameters in edu.cmu.tetrad.algcomparison.statisticMethods in edu.cmu.tetrad.algcomparison.statistic with parameters of type ParametersModifier and TypeMethodDescriptiondoubleAdjacencyFn.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleAdjacencyFp.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleAdjacencyFpr.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleAdjacencyPrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleAdjacencyRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleAdjacencyTn.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleAdjacencyTp.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleAdjacencyTpr.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleAncestorF1.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleAncestorPrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleAncestorRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleAncestralPrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleAncestralRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleArrowheadFn.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleArrowheadFp.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleArrowheadFpr.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleArrowheadPrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleArrowheadPrecisionCommonEdges.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleArrowheadRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleArrowheadRecallCommonEdges.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleArrowheadTn.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleArrowheadTp.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleAverageDegreeEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleAverageDegreeTrue.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleBicDiff.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleBicDiffPerRecord.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleBicEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleBicTrue.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleBidirectedEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleBidirectedFP.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleBidirectedLatentPrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the percentage of correctly identified bidirected edges in an estimated graph for which a latent confounder exists in the true graph.doubleBidirectedPrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleBidirectedRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleBidirectedTP.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleBidirectedTrue.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleCommonAncestorFalseNegativeBidirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleCommonAncestorFalsePositiveBidirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleCommonAncestorTruePositiveBidirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleCommonMeasuredAncestorRecallBidirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleCorrectSkeleton.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleDefiniteDirectedPathPrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleDefiniteDirectedPathRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleDensityEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleDensityTrue.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleElapsedCpuTime.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleF1Adj.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleF1All.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleF1Arrow.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleFalseNegativesAdjacencies.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleFalsePositiveAdjacencies.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleFBetaAdj.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleFractionDependentUnderAlternative.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleFractionDependentUnderNull.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleGraphExactlyRight.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleIdaAverageSquaredDistance.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the value of the IDA Average Squared Distance statistic.doubleIdaCheckAvgMaxSquaredDiffEstTrue.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the average maximum squared difference between the estimated and true values for a given data model and graphs.doubleIdaCheckAvgMinSquaredDiffEstTrue.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the average minimum squared difference between the estimated and true values for a given data model and graphs.doubleIdaCheckAvgSquaredDifference.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Retrieves the value of the statistic, which is the average squared difference between the estimated and true values for a given data model and graphs.doubleIdaMaximumSquaredDifference.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the value of the statistic "IDA Average Maximum Squared Difference".doubleIdaMinimumSquaredDifference.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the value of the statistic "IDA Average Minimum Squared Difference".doubleImpliedArrowOrientationRatioEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleImpliedArrowOrientationRatioEst2.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleImpliedOrientationRatioEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleImpliesLegalMag.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleKnowledgeSatisfied.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleLatentCommonAncestorFalseNegativeBidirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleLatentCommonAncestorFalsePositiveBidirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleLatentCommonAncestorRecallBidirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleLatentCommonAncestorTruePositiveBidirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleLegalCpdag.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleLegalPag.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleLocalGraphPrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) This method calculates the Local Graph Precision.doubleLocalGraphRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) doubleMagCgScore.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleMagDgScore.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleMagSemScore.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleMarkovCheckAdPasses.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the Anderson Darling p-value > 0.05.doubleMarkovCheckAdPassesBestOf10.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the Anderson Darling p-value > 0.05.doubleMarkovCheckAndersonDarlingP.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the Anderson Darling P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).doubleMarkovCheckAndersonDarlingPBestOf10.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the Anderson Darling P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).doubleMarkovCheckBinomialP.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the Binomial P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).doubleMarkovCheckBinomialPBestOf10.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the Binomial P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).doubleMarkovCheckFractionDependentH0.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the Anderson Darling P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).doubleMarkovCheckFractionDependentH1.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the Anderson Darling P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).doubleMarkovCheckKolmogorovSmirnoffP.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the Kolmogorov-Smirnoff P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).doubleMarkovCheckKolmogorovSmirnoffPBestOf10.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the Kolmogorov-Smirnoff P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).doubleMarkovCheckKsPasses.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates whether Kolmogorov-Smirnoff P > 0.05.doubleMarkovCheckKsPassesBestOf10.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates whether Kolmogorov-Smirnoff P > 0.05.doubleMathewsCorrAdj.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleMathewsCorrArrow.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleMaximal.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Checks whether a PAG is maximal.doubleMaximalityCondition.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleMcGetNumTestsH0.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the number of tests done under the null hypothesis of independence for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).doubleMcGetNumTestsH1.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the number of tests done under the null hypothesis of independence for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).doubleNoAlmostCyclicPathsCondition.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNoCyclicPathsCondition.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNodesInCyclesPrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNodesInCyclesRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNonancestorPrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNonancestorRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNoSemidirectedF1.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNoSemidirectedPrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNoSemidirectedRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumAmbiguousTriples.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumberArrowsEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumberArrowsNotInUnshieldedCollidersEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumberCollidersEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumberEdgesEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumberEdgesInCollidersEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumberEdgesInUnshieldedCollidersEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumberEdgesTrue.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumberOfEdgesEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumberOfEdgesTrue.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumberTailsEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumberUnshieldedCollidersEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumBidirectedBothNonancestorAncestor.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumBidirectedEdgesEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumBidirectedEdgesTrue.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumColoredDD.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumColoredNL.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumColoredPD.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumColoredPL.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumCommonMeasuredAncestorBidirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumCompatibleDefiniteDirectedEdgeAncestors.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumCompatibleDirectedEdgeConfounded.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumCompatibleDirectedEdgeNonAncestors.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumCompatibleEdges.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumCompatiblePossiblyDirectedEdgeAncestors.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumCompatiblePossiblyDirectedEdgeNonAncestors.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumCompatibleVisibleNonancestors.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumCorrectBidirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the number of bidirected edges for which a latent confounder exists.doubleNumCorrectDDAncestors.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumCorrectPDAncestors.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumCorrectVisibleEdges.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumCoveringAdjacenciesInPag.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumDefinitelyDirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumDefinitelyNotDirectedPaths.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumDirectedEdgeAncestors.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumDirectedEdgeBnaMeasuredCounfounded.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumDirectedEdgeNoMeasureAncestors.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumDirectedEdgeNotAncNotRev.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumDirectedEdgeReversed.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumDirectedEdges.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumDirectedPathsEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumDirectedPathsTrue.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumDirectedShouldBePartiallyDirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumEdgeInEstInTrue.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumGenuineAdjacenciesInPag.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumIncorrectDDAncestors.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumIncorrectPDAncestors.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumIncorrectVisibleAncestors.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumLatentCommonAncestorBidirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumNondirectedEdges.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumParametersEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumPartiallyOrientedEdges.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumPossiblyDirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumUndirectedEdges.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumVisibleEdgeEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the number of X-->Y edges that are visible in the estimated PAG.doubleNumVisibleEdges.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumVisibleEdgeTrue.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Retrieves the number of X-->Y edges for which X-->Y is visible in the true PAG.doubleOrientationPrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleOrientationRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the Orientation Recall statistic, which measures the accuracy of the estimated orientation of edges in a graph compared to the true graph.doublePagAdjacencyPrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the adjacency precision of the estimated graph compared to the true graph.doublePagAdjacencyRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the adjacency recall compared to the true PAG (Partial Ancestral Graph).doubleParameterColumn.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doublePercentAmbiguous.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the percentage of ambiguous triples in the estimated graph compared to the true graph.doublePercentBidirectedEdges.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleProportionSemidirectedPathsNotReversedEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the proportion of semi(X, Y) in the estimated graph for which there is no semi(Y, X) in the true graph.doubleProportionSemidirectedPathsNotReversedTrue.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the proportion of semi(X, Y) paths in the true graph for which there is no semi(Y, Z) path in the estimated graph.doublePvalueDistanceToAlpha.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doublePvalueUniformityUnderNull.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleSemidirectedPathF1.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the F1 statistic for adjacencies.doubleSemidirectedPrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the semi-directed precision value.doubleSemidirectedRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the Semidirected-Rec statistic, which is the proportion of (X, Y) where if there is a semidirected path in the true graph, then there is also a semidirected path in the estimated graph.doubleStatistic.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.default doubleStatistic.getValue(Graph trueGraph, Graph estGraph, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleStructuralHammingDistance.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleTailPrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the tail precision, which is the ratio of true positive arrows to the sum of true positive arrows and false positive arrows.doubleTailRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the tail recall value for a given true graph, estimated graph, and data model.doubleTrueDagFalseNegativesArrows.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the number of false negatives for arrows compared to the true DAG.doubleTrueDagFalseNegativesTails.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the number of false negatives for tails compared to the true DAG.doubleTrueDagFalsePositiveArrow.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the false positives for arrows compared to the true DAG.doubleTrueDagFalsePositiveTails.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the number of false positives for tails in the estimated graph compared to the true DAG.doubleTrueDagPrecisionArrow.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the proportion of X*->Y in the estimated graph for which there is no path Y~~>X in the true graph.doubleTrueDagPrecisionTails.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the proportion of X-->Y edges in the estimated graph for which there is a path X~~>Y in the true graph.doubleTrueDagRecallArrows.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleTrueDagRecallTails.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleTrueDagTruePositiveArrow.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the number of true positives for arrows compared to the true DAG.doubleTrueDagTruePositiveDirectedPathNonancestor.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Calculates the true positives for arrows compared to the true DAG.doubleTrueDagTruePositiveTails.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleTwoCycleFalseNegative.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleTwoCycleFalsePositive.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleTwoCyclePrecision.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleTwoCycleRecall.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.doubleTwoCycleTruePositive.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel, Parameters parameters) Returns the value of this statistic, given the true graph and the estimated graph.
- 
Uses of Parameters in edu.cmu.tetrad.algcomparison.utilsMethods in edu.cmu.tetrad.algcomparison.utils that return Parameters
- 
Uses of Parameters in edu.cmu.tetrad.dataMethods in edu.cmu.tetrad.data with parameters of type ParametersModifier and TypeMethodDescriptionstatic DataSetDataSampling.createDataSample(DataSet dataSet, org.apache.commons.math3.random.RandomGenerator randomGenerator, int[] selectedColumns, Parameters parameters) Creates a resampled dataset from the given dataset based on the specified parameters.DataSampling.createDataSamples(DataSet dataSet, org.apache.commons.math3.random.RandomGenerator randomGenerator, Parameters parameters) Create a list of dataset resampled from the given dataset.DataSampling.createDataSamples(org.apache.commons.math3.random.RandomGenerator randomGenerator, DataSet dataSet, Parameters parameters) Create a list of dataset resampled from the given dataset.
- 
Uses of Parameters in edu.cmu.tetrad.data.simulationMethods in edu.cmu.tetrad.data.simulation that return ParametersModifier and TypeMethodDescriptionLoadContinuousDataAndSingleGraph.getParameterValues()getParameterValues.LoadContinuousDataSmithSim.getParameterValues()getParameterValues.Methods in edu.cmu.tetrad.data.simulation with parameters of type ParametersModifier and TypeMethodDescriptionvoidLoadContinuousDataAndGraphs.createData(Parameters parameters, boolean newModel) Creates a data set and simulates data.voidLoadContinuousDataAndSingleGraph.createData(Parameters parameters, boolean newModel) Creates a data set and simulates data.voidLoadContinuousDataSmithSim.createData(Parameters parameters, boolean newModel) Creates a data set and simulates data.voidLoadDataAndGraphs.createData(Parameters parameters, boolean newModel) Creates a data set and simulates data.voidLoadDataFromFileWithoutGraph.createData(Parameters parameters, boolean newModel) Creates a data set and simulates data.
- 
Uses of Parameters in edu.cmu.tetrad.graphMethods in edu.cmu.tetrad.graph with parameters of type ParametersModifier and TypeMethodDescriptionstatic GraphGraphUtils.getComparisonGraph(Graph graph, Parameters params) Returns a comparison graph based on the specified parameters.
- 
Uses of Parameters in edu.cmu.tetrad.searchConstructors in edu.cmu.tetrad.search with parameters of type ParametersModifierConstructorDescriptionCstar(IndependenceWrapper test, ScoreWrapper score, Parameters parameters) Constructor.
- 
Uses of Parameters in edu.cmu.tetrad.search.work_in_progressMethods in edu.cmu.tetrad.search.work_in_progress with parameters of type Parameters
- 
Uses of Parameters in edu.cmu.tetrad.semMethods in edu.cmu.tetrad.sem that return ParametersMethods in edu.cmu.tetrad.sem with parameters of type ParametersModifier and TypeMethodDescriptionvoidSemIm.setParams(Parameters params) Setter for the fieldparams.Constructors in edu.cmu.tetrad.sem with parameters of type ParametersModifierConstructorDescriptionSemIm(SemPm semPm, SemIm oldSemIm, Parameters parameters) Constructs a new SEM IM from the given SEM PM, using the old SEM IM and params object to guide the choice of parameter values.SemIm(SemPm semPm, Parameters params) Constructs a new SEM IM from the given SEM PM, using the given params object to guide the choice of parameter values.StandardizedSemIm(SemIm im, StandardizedSemIm.Initialization initialization, Parameters parameters) Constructs a new standardized SEM IM from the freeParameters in the given SEM IM.StandardizedSemIm(SemIm im, Parameters parameters) Constructs a new standardized SEM IM, initializing from the freeParameters in the given SEM IM.
- 
Uses of Parameters in edu.cmu.tetrad.study.gene.tetrad.gene.graphConstructors in edu.cmu.tetrad.study.gene.tetrad.gene.graph with parameters of type ParametersModifierConstructorDescriptionLagGraphParams(Parameters parameters) Constructor for LagGraphParams.
- 
Uses of Parameters in edu.cmu.tetrad.study.gene.tetrad.gene.simulationConstructors in edu.cmu.tetrad.study.gene.tetrad.gene.simulation with parameters of type ParametersModifierConstructorDescriptionMeasurementSimulator(Parameters parameters) Constructs a measurement simulator using the given history.
- 
Uses of Parameters in edu.cmu.tetrad.study.gene.tetradapp.modelConstructors in edu.cmu.tetrad.study.gene.tetradapp.model with parameters of type ParametersModifierConstructorDescriptionMeasurementSimulatorParams(Parameters parameters) Constructs a measurement simulator using the given history.
- 
Uses of Parameters in edu.cmu.tetrad.utilMethods in edu.cmu.tetrad.util that return ParametersModifier and TypeMethodDescriptionstatic ParametersCreate parameters with their default values.static ParametersParameters.serializableInstance()serializableInstance.Methods in edu.cmu.tetrad.util with parameters of type ParametersConstructors in edu.cmu.tetrad.util with parameters of type Parameters