Uses of Interface
edu.cmu.tetrad.algcomparison.utils.HasParameters
Packages that use HasParameters
Package
Description
-
Uses of HasParameters in edu.cmu.tetrad.algcomparison.algorithm
Subinterfaces of HasParameters in edu.cmu.tetrad.algcomparison.algorithmModifier and TypeInterfaceDescriptioninterfaceInterface that algorithm must implement.interfaceImplements an algorithm that takes multiple data sets as input.Classes in edu.cmu.tetrad.algcomparison.algorithm that implement HasParametersModifier and TypeClassDescriptionclassThis is a base class for bootstrap algorithms.classTags an an algorithm that loads up external graphs for inclusion in reports.classFirst inflection point.classStability selection.classStARS -
Uses of HasParameters in edu.cmu.tetrad.algcomparison.algorithm.cluster
Classes in edu.cmu.tetrad.algcomparison.algorithm.cluster that implement HasParameters -
Uses of HasParameters in edu.cmu.tetrad.algcomparison.algorithm.continuous.dag
Classes in edu.cmu.tetrad.algcomparison.algorithm.continuous.dag that implement HasParametersModifier and TypeClassDescriptionclassImplements the DAGMA algorithm.classDirect LiNGAM.classFASK algorithm.classThe FaskOrig class is an implementation of the FASK-Orig algorithm for causal discovery.classIcaLingam class implements the Algorithm and ReturnsBootstrapGraphs interface.classIcaLingD is an implementation of the Algorithm interface that performs the ICA-LiNG-D algorithm for discovering causal models for the linear non-Gaussian case where the underlying model might be cyclic. -
Uses of HasParameters in edu.cmu.tetrad.algcomparison.algorithm.mixed
Classes in edu.cmu.tetrad.algcomparison.algorithm.mixed that implement HasParameters -
Uses of HasParameters in edu.cmu.tetrad.algcomparison.algorithm.multi
Classes in edu.cmu.tetrad.algcomparison.algorithm.multi that implement HasParametersModifier and TypeClassDescriptionclassWraps the IMaGES algorithm for continuous variables.classWraps the IMaGES algorithm for continuous variables.classWraps the MultiFask algorithm for continuous variables.classWraps the IMaGES algorithm for continuous variables.classRuns FCI on multiple datasets using the IOD pooled dataset independence test.classRequires that the parameter 'randomSelectionSize' be set to indicate how many datasets should be taken at a time (randomly).classWraps the IMaGES algorithm for continuous variables.classWraps the IMaGES algorithm for continuous variables. -
Uses of HasParameters in edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag
Classes in edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag that implement HasParametersModifier and TypeClassDescriptionclassBOSS (Best Order Score Search)classBOSS-LiNGAM algorithm.classConservative PC (CPC).classCstar class.classFast Adjacency Search (FAS)--i.e., the PC adjacency step, which is used in many algorithms.classFGES (the heuristic version).classFGES-MB (the heuristic version).classFGES (the heuristic version).classGRaSP (Greedy Relaxations of Sparsest Permutation)classPeter/Clark algorithm (PC).classPC.classPC.classBOSS-DC (Best Order Score Search Divide and Conquer)classPC.classSP (Sparsest Permutation) -
Uses of HasParameters in edu.cmu.tetrad.algcomparison.algorithm.oracle.pag
Classes in edu.cmu.tetrad.algcomparison.algorithm.oracle.pag that implement HasParametersModifier and TypeClassDescriptionclassAdjusts GFCI to use a permutation algorithm (such as BOSS-Tuck) to do the initial steps of finding adjacencies and unshielded colliders.classThis class represents the LV-Lite algorithm, which is an implementation of the GFCI algorithm for learning causal structures from observational data using the BOSS algorithm as an initial CPDAG and using all score-based steps afterward.classThis class represents the LV-Lite algorithm, which is an implementation of the GFCI algorithm for learning causal structures from observational data using the BOSS algorithm as an initial CPDAG and using all score-based steps afterward.classCCD (Cyclic Causal Discovery)classConservative FCI.classThe Fast Causal Inference (FCI) algorithm.classFCI-Max algorithm.classThe Gfci class represents the Greedy Fast Causal Inference algorithm.classAdjusts GFCI to use a permutation algorithm (such as BOSS-Tuck) to do the initial steps of finding adjacencies and unshielded colliders.classThis class represents the LV-Lite algorithm, which is an implementation of the GFCI algorithm for learning causal structures from observational data using the BOSS algorithm as an initial CPDAG and using all score-based steps afterward.classJan 29, 2023 3:45:09 PMclassRFCI.classRuns RFCI-BSC, which is RFCI with bootstrap sampling of PAGs.classAdjusts GFCI to use a permutation algorithm (in this case SP) to do the initial steps of finding adjacencies and unshielded colliders.classThe SvarFci class is an implementation of the SVAR Fast Causal Inference algorithm.classSvarGfci class is an implementation of the SVAR GFCI algorithm. -
Uses of HasParameters in edu.cmu.tetrad.algcomparison.algorithm.other
Classes in edu.cmu.tetrad.algcomparison.algorithm.other that implement HasParameters -
Uses of HasParameters in edu.cmu.tetrad.algcomparison.algorithm.pairwise
Classes in edu.cmu.tetrad.algcomparison.algorithm.pairwise that implement HasParameters -
Uses of HasParameters in edu.cmu.tetrad.algcomparison.independence
Subinterfaces of HasParameters in edu.cmu.tetrad.algcomparison.independenceModifier and TypeInterfaceDescriptioninterfaceInterface that algorithm must implement.Classes in edu.cmu.tetrad.algcomparison.independence that implement HasParametersModifier and TypeClassDescriptionclassclassWrapper for Fisher Z test.classWrapper for Daudin Conditional Independence test.classWrapper for Fisher Z test.classWrapper for Fisher Z test.classWrapper for DG LRT.classWrapper for Fisher Z test.classWrapper for Fisher Z test.classRepresents a class for Generalized Information Criterion Score Tests.classWrapper for Fisher Z test.classWrapper for KCI test.classWrapper for Fisher Z test.classWrapper for Fisher Z test.classWrapper for M-separation test.classWrapper for Fisher Z test.classWrapper for Fisher Z test.classclassWrapper for Fisher Z test.classDec 17, 2018 3:44:46 PMclassThe SemBicDTest class implements the IndependenceWrapper interface and represents a test for independence based on SEM BIC algorithm.class -
Uses of HasParameters in edu.cmu.tetrad.algcomparison.score
Subinterfaces of HasParameters in edu.cmu.tetrad.algcomparison.scoreModifier and TypeInterfaceDescriptioninterfaceInterface that algorithm must implement.Classes in edu.cmu.tetrad.algcomparison.score that implement HasParametersModifier and TypeClassDescriptionclassWrapper for Basis Function BIC Score (Basis-BIC).classWrapper for Fisher Z test.classWrapper for Fisher Z test.classWrapper for degenerate Gaussian BIC scoreclassWrapper for Discrete BIC test.classWrapper for linear, Gaussian Extended BIC score (Chen and Chen).classWrapper for Fisher Z test.classThe GicScores class is an implementation of the ScoreWrapper interface that calculates the Generalized Information Criterion (GIC) scores for a given data model.classWrapper for degenerate Gaussian BIC scoreclassWrapper for Fisher Z test.classWrapper for MVP BIC Score.classWrapper for the Poisson prior score (Bryan)classWrapper for Fisher Z test.classWrapper for linear, Gaussian SEM BIC score.classSemBicScoreDeterministic is a class that implements the ScoreWrapper interface.classWrapper for linear, Gaussian Extended BIC score (Chen and Chen). -
Uses of HasParameters in edu.cmu.tetrad.algcomparison.simulation
Subinterfaces of HasParameters in edu.cmu.tetrad.algcomparison.simulationModifier and TypeInterfaceDescriptioninterfaceThe interface that simulations must implement.Classes in edu.cmu.tetrad.algcomparison.simulation that implement HasParametersModifier and TypeClassDescriptionclassBayes net simulation.classA simulation method based on the conditional Gaussian assumption.classThe GeneralSemSimulation class represents a simulation using a generalized structural equation model (SEM).classThis was used for a simulation to test the FTFC and FOFC algorithm and contains some carefully selected functions to test nonlinearity and non-Gaussianity.classA version of the Lee and Hastic simulation which is guaranteed ot generate a discrete data set.classLinear Fisher Model.classA simulation method based on the mixed variable polynomial assumption.classNL SEM simulation.classThis class represents a Simulation using Structural Equation Modeling (SEM).classSEM the discretize.classASimulationimplementation that returns a single supplied data set.classStandardized SEM simulation.classTime series SEM simulation. -
Uses of HasParameters in edu.cmu.tetrad.data.simulation
Classes in edu.cmu.tetrad.data.simulation that implement HasParametersModifier and TypeClassDescriptionclassLoad data sets and graphs from a directory.classLoad data sets and graphs from a directory.classLoad data sets and graphs from a directory.classLoad data sets and graphs from a directory.classLoad data sets and graphs from a directory.