Uses of Interface
edu.cmu.tetrad.data.ICovarianceMatrix
Packages that use ICovarianceMatrix
Package
Description
This package contains classes for causal graph search algorithms.
This package contains classes for scoring causal graph models.
This package contains classes for testing causal graph search algorithms.
This package contains utility classes for causal graph search algorithms.
A package for algorithms that are not ready for prime time.
-
Uses of ICovarianceMatrix in edu.cmu.tetrad.data
Classes in edu.cmu.tetrad.data that implement ICovarianceMatrixModifier and TypeClassDescriptionfinal classStores a correlation matrix together with variable names and sample size; intended as a representation of a data set.classStores a covariance matrix together with variable names and sample size, intended as a representation of a data set.classStores a covariance matrix together with variable names and sample size, intended as a representation of a data set.classStores a covariance matrix together with variable names and sample size, intended as a representation of a data set.Methods in edu.cmu.tetrad.data that return ICovarianceMatrixModifier and TypeMethodDescriptionstatic ICovarianceMatrixDataTransforms.covarianceNonparanormalDrton(DataSet dataSet) covarianceNonparanormalDrton.static @NotNull ICovarianceMatrixSimpleDataLoader.getCorrelationMatrix(DataSet dataSet) getCorrelationMatrix.static ICovarianceMatrixSimpleDataLoader.getCovarianceMatrix(DataModel dataModel, boolean precomputeCovariances) Returns the model cast to ICovarianceMatrix if already a covariance matric, or else returns the covariance matrix for a dataset.static @NotNull ICovarianceMatrixSimpleDataLoader.getCovarianceMatrix(DataSet dataSet, boolean precomputeCovariances) getCovarianceMatrix.final ICovarianceMatrixCorrelationMatrixOnTheFly.getSubmatrix(int[] indices) getSubmatrix.final ICovarianceMatrixCorrelationMatrixOnTheFly.getSubmatrix(List<String> submatrixVarNames) getSubmatrix.final ICovarianceMatrixCovarianceMatrix.getSubmatrix(int[] indices) getSubmatrix.final ICovarianceMatrixCovarianceMatrix.getSubmatrix(List<String> submatrixVarNames) getSubmatrix.final ICovarianceMatrixCovarianceMatrixOnTheFly.getSubmatrix(int[] indices) getSubmatrix.final ICovarianceMatrixCovarianceMatrixOnTheFly.getSubmatrix(int[] indices, int[] dataRows) getSubmatrix.final ICovarianceMatrixCovarianceMatrixOnTheFly.getSubmatrix(List<String> submatrixVarNames) getSubmatrix.ICovarianceMatrix.getSubmatrix(int[] indices) Returns a submatrix of the covariance matrix, including only the specified variables.ICovarianceMatrix.getSubmatrix(String[] submatrixVarNames) Returns a submatrix of the covariance matrix, including only the specified variables.ICovarianceMatrix.getSubmatrix(List<String> submatrixVarNames) Returns a submatrix of the covariance matrix, including only the specified variables.static ICovarianceMatrixSimpleDataLoader.loadCovarianceMatrix(char[] chars, String commentMarker, DelimiterType delimiterType, char quoteChar, String missingValueMarker) Parses a covariance matrix from a char[] array.static ICovarianceMatrixSimpleDataLoader.loadCovarianceMatrix(File file, String commentMarker, DelimiterType delimiter, char quoteCharacter, String missingValueMarker) Parses the given files for a tabular data set, returning a RectangularDataSet if successful.static ICovarianceMatrixCorrelationMatrixOnTheFly.serializableInstance()Generates a simple exemplar of this class to test serialization.static ICovarianceMatrixCovarianceMatrix.serializableInstance()Generates a simple exemplar of this class to test serialization.static ICovarianceMatrixCovarianceMatrixOnTheFly.serializableInstance()Generates a simple exemplar of this class to test serialization.Methods in edu.cmu.tetrad.data with parameters of type ICovarianceMatrixModifier and TypeMethodDescriptionstatic doubleDataUtils.getEss(ICovarianceMatrix covariances) Returns the equivalent sample size, assuming all units are equally correlated and all unit variances are equal.DataUtils.getExampleNonsingular(ICovarianceMatrix covarianceMatrix, int depth) getExampleNonsingular.static MatrixsubMatrix.static MatrixsubMatrix.static voidDataWriter.writeCovMatrix(ICovarianceMatrix covMatrix, PrintWriter out, NumberFormat nf) Writes the lower triangle of a covariance matrix to file.Constructors in edu.cmu.tetrad.data with parameters of type ICovarianceMatrixModifierConstructorDescriptionCorrelationMatrix(ICovarianceMatrix matrix) Constructs a new correlation matrix using the covariances in the given covariance matrix.Constructs a new covariance matrix from the given data set.CovarianceMatrix(ICovarianceMatrix covMatrix) Constructor for CovarianceMatrix. -
Uses of ICovarianceMatrix in edu.cmu.tetrad.regression
Constructors in edu.cmu.tetrad.regression with parameters of type ICovarianceMatrixModifierConstructorDescriptionRegressionCovariance(ICovarianceMatrix covariances) Constructs a covariance-based regression model using the given covariance matrix, assuming that no means are specified. -
Uses of ICovarianceMatrix in edu.cmu.tetrad.search
Methods in edu.cmu.tetrad.search that return ICovarianceMatrixModifier and TypeMethodDescriptionIsGFci.getCovarianceMatrix()Retrieves the current covariance matrix object used by the IGFci algorithm.IsGFci.getCovMatrix()Retrieves the current covariance matrix object used by the IGFci algorithm.MimbuildTrek.getLatentsCov()Deprecated.The covariance matrix over the latents that is implied by the clustering.MimbuildBollen.getLatentsCovariance()Retrieves the latent covariance matrix associated with the MimbuildBollen instance.MimbuildPca.getLatentsCovariance()Retrieves the latent covariance matrix, which encapsulates the covariances between the latent variables associated with the specified blocks in the PCA analysis.Methods in edu.cmu.tetrad.search with parameters of type ICovarianceMatrixModifier and TypeMethodDescriptionMimbuildTrek.search(List<List<Node>> clustering, List<String> latentNames, ICovarianceMatrix measuresCov) Deprecated.Does the search and returns the graph.voidIsGFci.setCovarianceMatrix(ICovarianceMatrix covarianceMatrix) Sets the covariance matrix to be used in the IGFci algorithm.Constructors in edu.cmu.tetrad.search with parameters of type ICovarianceMatrix -
Uses of ICovarianceMatrix in edu.cmu.tetrad.search.score
Methods in edu.cmu.tetrad.search.score that return ICovarianceMatrixModifier and TypeMethodDescriptionGicScores.getCovariances()Returns the sample size.PoissonPriorScore.getCovariances()Returns the covariance matrix.SemBicScore.getCovariances()Returns the covariance matrix.ZsbScore.getCovariances()Returns the covariance matrix.Methods in edu.cmu.tetrad.search.score with parameters of type ICovarianceMatrixModifier and TypeMethodDescriptionstatic SemBicScore.CovAndCoefsSemBicScore.getCovAndCoefs(int i, int[] parents, Matrix data, ICovarianceMatrix covariances, boolean calculateRowSubsets, double lambda) Returns the covariance matrix of the regression of the ith variable on its parents and the regression coefficients.static @NotNull SemBicScore.CovAndCoefsSemBicScore.getCovAndCoefs(int i, int[] parents, Matrix data, ICovarianceMatrix covariances, double lambda, List<Integer> rows) Returns the covariance matrix of the regression of the ith variable on its parents and the regressionstatic doubleSemBicScore.getResidualVariance(int i, int[] parents, Matrix data, ICovarianceMatrix covariances, boolean calculateRowSubsets, double lambda) Returns the variance of the residual of the regression of the ith variable on its parents.Constructors in edu.cmu.tetrad.search.score with parameters of type ICovarianceMatrixModifierConstructorDescriptionEbicScore(ICovarianceMatrix covariances) Constructs the score using a covariance matrix.GicScores(ICovarianceMatrix covariances) Constructs the score using a covariance matrix.InstanceAugmentedSemBicScore(ICovarianceMatrix cov, double[] instanceRowCentered) Constructs an `InstanceAugmentedSemBicScore` object using a covariance matrix and a fully centered row of instance data.InstanceAugmentedSemBicScore(ICovarianceMatrix cov, double[] instanceRowRaw, double[] populationMeans) Constructs an `InstanceAugmentedSemBicScore` object using a covariance matrix, a raw row of instance data, and the population mean values.PoissonPriorScore(ICovarianceMatrix covariances) Constructs the score using a covariance matrix.SemBicScore(ICovarianceMatrix covariances) Constructs the score using a covariance matrix.SemBicScore(ICovarianceMatrix covariances, double penaltyDiscount) Constructs the score using a covariance matrix.ZsbScore(ICovarianceMatrix covMatrix) Constructs the score using a covariance matrix. -
Uses of ICovarianceMatrix in edu.cmu.tetrad.search.test
Methods in edu.cmu.tetrad.search.test that return ICovarianceMatrixModifier and TypeMethodDescriptiondefault ICovarianceMatrixIndependenceTest.getCov()Returns the covariance matrix.IndTestFisherZ.getCov()Retrieves the covariance matrix used by this instance.IndTestFisherZConcatenateResiduals.getCov()Deprecated.Returns the covariance matrix for the data sets.IndTestFisherZFisherPValue.getCov()Returns the covariance matrix of the concatenated data.IndTestTrekSep.getCov()Deprecated.Returns the covariance matrix.ScoreIndTest.getCov()Returns the covariance matrix.Constructors in edu.cmu.tetrad.search.test with parameters of type ICovarianceMatrixModifierConstructorDescriptionIndTestFisherZ(ICovarianceMatrix covMatrix, double alpha) Constructs an instance of IndTestFisherZ using the given covariance matrix and significance level.IndTestFisherZ(ICovarianceMatrix covMatrix, double alpha, double ridge) Constructor for the IndTestFisherZ class.IndTestTrekSep(ICovarianceMatrix covMatrix, double alpha, List<List<Node>> clustering, List<Node> latents) Deprecated.Constructs a new independence test that will determine conditional independence facts using the given correlation matrix and the given significance level. -
Uses of ICovarianceMatrix in edu.cmu.tetrad.search.utils
Methods in edu.cmu.tetrad.search.utils that return ICovarianceMatrixModifier and TypeMethodDescriptionTetradTest.getCovMatrix()getCovMatrix.TetradTestContinuous.getCovMatrix()getCovMatrix.TetradTestDiscrete.getCovMatrix()getCovMatrix.TetradTestPopulation.getCovMatrix()getCovMatrix.Methods in edu.cmu.tetrad.search.utils with parameters of type ICovarianceMatrixModifier and TypeMethodDescriptionvoidTetradTestContinuous.setCovMatrix(ICovarianceMatrix covMatrix) Setter for the fieldcovMatrix.Constructors in edu.cmu.tetrad.search.utils with parameters of type ICovarianceMatrixModifierConstructorDescriptionConstructs a test using the given covariance matrix.DeltaTetradTest(ICovarianceMatrix covarianceMatrix) Constructor for a covariance matrix.Constructs a test using the given covariance matrix.DeltaTetradTest3(ICovarianceMatrix covarianceMatrix) Constructor for a covariance matrix.Constructor -
Uses of ICovarianceMatrix in edu.cmu.tetrad.search.work_in_progress
Methods in edu.cmu.tetrad.search.work_in_progress that return ICovarianceMatrixModifier and TypeMethodDescriptionIndTestFisherZPercentIndependent.getCov()Deprecated.Retrieves the covariance matrix.IndTestFisherZRecursive.getCov()Deprecated.getCov.IndTestPositiveCorr.getCov()Deprecated.getCov.SampleVcpc.getCov()getCov.SampleVcpcFast.getCov()getCov.SemBicScoreDeterministic.getCovariances()Getter for the fieldcovariances.Constructors in edu.cmu.tetrad.search.work_in_progress with parameters of type ICovarianceMatrixModifierConstructorDescriptionIndTestCramerT(ICovarianceMatrix covMatrix, double alpha) Deprecated.Constructs a new independence test that will determine conditional independence facts using the given correlation matrix and the given significance level.IndTestFisherZRecursive(ICovarianceMatrix covMatrix, double alpha) Deprecated.Constructs a new independence test that will determine conditional independence facts using the given correlation matrix and the given significance level.MagSemBicScore(ICovarianceMatrix covariances) Constructor.SemBicScoreDeterministic(ICovarianceMatrix covariances) Constructs the score using a covariance matrix.Washdown(ICovarianceMatrix cov, double alpha) Constructor. -
Uses of ICovarianceMatrix in edu.cmu.tetrad.sem
Methods in edu.cmu.tetrad.sem that return ICovarianceMatrixModifier and TypeMethodDescriptionDagScorer.getCovMatrix()Getter for the fieldcovMatrix.Scorer.getCovMatrix()getCovMatrix.SemEstimator.getCovMatrix()Getter for the fieldcovMatrix.Methods in edu.cmu.tetrad.sem with parameters of type ICovarianceMatrixModifier and TypeMethodDescriptionstatic doubleRicf.logLikMAG(cern.colt.matrix.DoubleMatrix2D B, cern.colt.matrix.DoubleMatrix2D Omega, cern.colt.matrix.DoubleMatrix2D Lambda, int[] ug, ICovarianceMatrix covMatrix) Calculates the log-likelihood for a Mixed Ancestral Graph (MAG) model given the input matrices and provides a measure of model fit.Ricf.ricf(SemGraph mag, ICovarianceMatrix covMatrix, double tolerance) Calculates the Restricted Information Criterion Fusion (RICF) for a given SemGraph.Ricf.ricf2(Graph mag, ICovarianceMatrix covMatrix, double tolerance) Same as above but takes a Graph instead of a SemGraphvoidSemIm.setCovMatrix(ICovarianceMatrix covMatrix) Sets the sample covariance matrix for this Sem as a submatrix of the given matrix.Constructors in edu.cmu.tetrad.sem with parameters of type ICovarianceMatrixModifierConstructorDescriptionDagScorer(ICovarianceMatrix covMatrix) Constructs a new SemEstimator that uses the specified optimizer.RicfResult(cern.colt.matrix.DoubleMatrix2D shat, cern.colt.matrix.DoubleMatrix2D lhat, cern.colt.matrix.DoubleMatrix2D bhat, cern.colt.matrix.DoubleMatrix2D ohat, int iterations, double diff, ICovarianceMatrix covMatrix) The result.SemEstimator(ICovarianceMatrix covMatrix, SemPm semPm) Constructs a SEM estimator that does default estimation.SemEstimator(ICovarianceMatrix covMatrix, SemPm semPm, SemOptimizer semOptimizer) Constructs a new SemEstimator that uses the specified optimizer.SemIm(SemPm semPm, ICovarianceMatrix covMatrix) Constructs a SEM model using the given SEM PM and sample covariance matrix.