Package edu.cmu.tetrad.sem
Class SemEstimator
java.lang.Object
edu.cmu.tetrad.sem.SemEstimator
- All Implemented Interfaces:
- TetradSerializable,- Serializable
Estimates a SemIm given a CovarianceMatrix and a SemPm. (A DataSet may be substituted for the CovarianceMatrix.)
- Version:
- $Id: $Id
- Author:
- Frank Wimberly, Ricardo Silva, Don Crimbchin, josephramsey
- See Also:
- 
Constructor SummaryConstructorsConstructorDescriptionSemEstimator(DataSet dataSet, SemPm semPm) Constructs a Sem Estimator that does default estimation.SemEstimator(DataSet dataSet, SemPm semPm, SemOptimizer semOptimizer) Constructs a new SemEstimator that uses the specified optimizer.SemEstimator(ICovarianceMatrix covMatrix, SemPm semPm) Constructs a SEM estimator that does default estimation.SemEstimator(ICovarianceMatrix covMatrix, SemPm semPm, SemOptimizer semOptimizer) Constructs a new SemEstimator that uses the specified optimizer.
- 
Method SummaryModifier and TypeMethodDescriptionestimate()Runs the estimator on the data and SemPm passed in through the constructor.Getter for the fieldcovMatrix.Getter for the fielddataSet.Getter for the fieldestimatedSem.getSemPm()Getter for the fieldsemPm.static SemEstimatorGenerates a simple exemplar of this class to test serialization.voidsetNumRestarts(int numRestarts) Setter for the fieldnumRestarts.voidsetScoreType(ScoreType scoreType) Setter for the fieldscoreType.voidsetSemOptimizer(SemOptimizer semOptimizer) Setter for the fieldsemOptimizer.toString()toString.
- 
Constructor Details- 
SemEstimatorConstructs a Sem Estimator that does default estimation.- Parameters:
- dataSet- a DataSet, all of whose variables are contained in the given SemPm. (They are identified by name.)
- semPm- a SemPm specifying the graph and parameterization for the model.
 
- 
SemEstimatorConstructs a SEM estimator that does default estimation.- Parameters:
- covMatrix- a CovarianceMatrix, all of whose variables are contained in the given SemPm. (They are identified by name.)
- semPm- a SemPm specifying the graph and parameterization for the model.
 
- 
SemEstimatorConstructs a new SemEstimator that uses the specified optimizer.- Parameters:
- dataSet- a DataSet, all of whose variables are contained in the given SemPm. (They are identified by name.)
- semPm- a SemPm specifying the graph and parameterization for the model.
- semOptimizer- the optimizer that optimizes the Sem.
 
- 
SemEstimatorConstructs a new SemEstimator that uses the specified optimizer.- Parameters:
- covMatrix- a covariance matrix, all of whose variables are contained in the given SemPm. (They are identified by name.)
- semPm- a SemPm specifying the graph and parameterization for the model.
- semOptimizer- the optimizer that optimizes the Sem.
 
 
- 
- 
Method Details- 
serializableInstanceGenerates a simple exemplar of this class to test serialization.- Returns:
- a SemEstimatorobject
 
- 
estimateRuns the estimator on the data and SemPm passed in through the constructor.- Returns:
- a SemImobject
 
- 
getEstimatedSemGetter for the field estimatedSem.- Returns:
- the estimated SemIm. If the estimatemethod has not yet been called,nullis returned.
 
- 
getDataSetGetter for the field dataSet.- Returns:
- a DataSetobject
 
- 
getSemPmGetter for the field semPm.- Returns:
- a SemPmobject
 
- 
getCovMatrixGetter for the field covMatrix.- Returns:
- a ICovarianceMatrixobject
 
- 
setSemOptimizerSetter for the field semOptimizer.- Parameters:
- semOptimizer- a- SemOptimizerobject
 
- 
toStringtoString. 
- 
setScoreTypeSetter for the field scoreType.- Parameters:
- scoreType- a- ScoreTypeobject
 
- 
setNumRestartspublic void setNumRestarts(int numRestarts) Setter for the field numRestarts.- Parameters:
- numRestarts- a int
 
 
-