Uses of Interface
edu.cmu.tetrad.data.DataModel
Packages that use DataModel
Package
Description
Contains classes for searching for (mostly structural) causal models given data.
Contains classes for various sorts of scores for running score-based algorithms.
Contains classes for running conditional independence tests for various sorts of data.
Contains some utility classes for search algorithms.
Contains some classes that aren't ready for prime time.
-
Uses of DataModel in edu.cmu.tetrad.algcomparison
Methods in edu.cmu.tetrad.algcomparison with parameters of type DataModelModifier and TypeMethodDescriptionstatic StringCompareTwoGraphs.getStatsListTable(Graph trueGraph, Graph targetGraph, DataModel dataModel, long elapsedTime) Returns a string representing a table of statistics that can be printed. -
Uses of DataModel in edu.cmu.tetrad.algcomparison.algorithm
Methods in edu.cmu.tetrad.algcomparison.algorithm with parameters of type DataModelModifier and TypeMethodDescriptionabstract longExternalAlgorithm.getElapsedTime(DataModel dataSet, Parameters parameters) getElapsedTime.intgetIndex.AbstractBootstrapAlgorithm.search(DataModel dataModel, Parameters parameters) Runs the search.Algorithm.search(DataModel dataSet, Parameters parameters) Runs the search.FirstInflection.search(DataModel dataSet, Parameters parameters) Runs the search.StabilitySelection.search(DataModel dataSet, Parameters parameters) Runs the search.StARS.search(DataModel dataSet, Parameters parameters) Runs the search.Method parameters in edu.cmu.tetrad.algcomparison.algorithm with type arguments of type DataModelModifier and TypeMethodDescriptionMultiDataSetAlgorithm.search(List<DataModel> dataSets, Parameters parameters) Runs the search. -
Uses of DataModel in edu.cmu.tetrad.algcomparison.algorithm.cluster
Methods in edu.cmu.tetrad.algcomparison.algorithm.cluster with parameters of type DataModelModifier and TypeMethodDescriptionFofc.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm and returns the resulting graph.Ftfc.runSearch(DataModel dataSet, Parameters parameters) Runs the search algorithm to find a causal graph.Bpc.search(DataModel dataModel, Parameters parameters) Runs the search algorithm to build a graph using the given data model and parameters. -
Uses of DataModel in edu.cmu.tetrad.algcomparison.algorithm.continuous.dag
Methods in edu.cmu.tetrad.algcomparison.algorithm.continuous.dag with parameters of type DataModelModifier and TypeMethodDescriptionDagma.runSearch(DataModel dataModel, Parameters parameters) Runs the DAGMA algorithm to search for a directed acyclic graph (DAG) in the given data model with the specified parameters.DirectLingam.runSearch(DataModel dataModel, Parameters parameters) Runs the Direct LiNGAM search algorithm on the given data model with the specified parameters.Fask.runSearch(DataModel dataModel, Parameters parameters) Runs the Fask search algorithm on the given data model with the specified parameters.IcaLingam.runSearch(DataModel dataSet, Parameters parameters) Searches for a graph structure based on the given data set and parameters.IcaLingD.runSearch(DataModel dataSet, Parameters parameters) Runs a search on the provided data set using the given parameters. -
Uses of DataModel in edu.cmu.tetrad.algcomparison.algorithm.mixed
Methods in edu.cmu.tetrad.algcomparison.algorithm.mixed with parameters of type DataModelModifier and TypeMethodDescriptionMgm.runSearch(DataModel dataModel, Parameters parameters) Runs the MGM search algorithm. -
Uses of DataModel in edu.cmu.tetrad.algcomparison.algorithm.multi
Methods in edu.cmu.tetrad.algcomparison.algorithm.multi with parameters of type DataModelModifier and TypeMethodDescriptionFaskConcatenated.search(DataModel dataSet, Parameters parameters) Runs the search.FaskLofsConcatenated.search(DataModel dataSet, Parameters parameters) Runs the search.FaskVote.search(DataModel dataSet, Parameters parameters) Runs the search.FasLofs.search(DataModel dataSet, Parameters parameters) Runs the search.FciIod.search(DataModel dataSet, Parameters parameters) Runs the search.FgesConcatenated.search(DataModel dataSet, Parameters parameters) Runs the search.Images.search(DataModel dataSet, Parameters parameters) Searches for a graph using the given data set and parameters.ImagesBoss.search(DataModel dataSet, Parameters parameters) Runs the search.Method parameters in edu.cmu.tetrad.algcomparison.algorithm.multi with type arguments of type DataModelModifier and TypeMethodDescriptionFaskConcatenated.search(List<DataModel> dataSets, Parameters parameters) Runs the search.FaskLofsConcatenated.search(List<DataModel> dataModels, Parameters parameters) Runs the search.FaskVote.search(List<DataModel> dataSets, Parameters parameters) Runs the search.FciIod.search(List<DataModel> dataSets, Parameters parameters) Runs the search.FgesConcatenated.search(List<DataModel> dataModels, Parameters parameters) Runs the search.Images.search(List<DataModel> dataSets, Parameters parameters) Searches for a graph using the given data sets and parameters.ImagesBoss.search(List<DataModel> dataSets, Parameters parameters) Runs the search. -
Uses of DataModel in edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag
Methods in edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag with parameters of type DataModelModifier and TypeMethodDescriptionCstar.search(DataModel dataSet, Parameters parameters) Runs the search.SingleGraphAlg.search(DataModel dataSet, Parameters parameters) Runs the search. -
Uses of DataModel in edu.cmu.tetrad.algcomparison.algorithm.oracle.pag
Methods in edu.cmu.tetrad.algcomparison.algorithm.oracle.pag with parameters of type DataModelModifier and TypeMethodDescriptionBfci.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm using the given dataset and parameters and returns the resulting graph.Ccd.runSearch(DataModel dataModel, Parameters parameters) Runs the CCD (Cyclic Causal Discovery) search algorithm on the given data set using the specified parameters.Cfci.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm to discover the causal graph.Fci.runSearch(DataModel dataModel, Parameters parameters) Runs a search algorithm to find a graph based on the given data model and parameters.FciMax.runSearch(DataModel dataModel, Parameters parameters) Runs a search algorithm to discover the causal graph structure.Gfci.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm to infer the causal graph given a dataset and specified parameters.GraspFci.runSearch(DataModel dataModel, Parameters parameters) Runs a search algorithm to find a graph structure based on a given data set and parameters.LvLite.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm to find a graph structure based on a given data model and parameters.PagSampleRfci.runSearch(DataModel dataSet, Parameters parameters) Runs the search algorithm using the given data set and parameters.Rfci.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm on the given data model and parameters.RfciBsc.runSearch(DataModel dataModel, Parameters parameters) Runs a search algorithm using a given dataset and parameters.SpFci.runSearch(DataModel dataModel, Parameters parameters) Executes a search algorithm to infer the causal graph structure from a given data modelSvarFci.runSearch(DataModel dataModel, Parameters parameters) Executes the search algorithm to find a graph structure that best fits the given dataset and parameters.SvarGfci.runSearch(DataModel dataModel, Parameters parameters) Runs a search algorithm on the given data set using the specified parameters. -
Uses of DataModel in edu.cmu.tetrad.algcomparison.algorithm.other
Methods in edu.cmu.tetrad.algcomparison.algorithm.other with parameters of type DataModelModifier and TypeMethodDescriptionFactorAnalysis.runSearch(DataModel dataModel, Parameters parameters) Executes a factor analysis search on the given data model using the provided parameters.Glasso.runSearch(DataModel dataModel, Parameters parameters) Runs a search algorithm to create a graph representation of the data. -
Uses of DataModel in edu.cmu.tetrad.algcomparison.algorithm.pairwise
Methods in edu.cmu.tetrad.algcomparison.algorithm.pairwise with parameters of type DataModelModifier and TypeMethodDescriptionEb.runSearch(DataModel dataModel, Parameters parameters) Runs a search algorithm to orient the edges in a graph using the given data and parameters.FaskPw.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm using the given data model and parameters.R1.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm on the given data model with the provided parameters.R2.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm using the provided data model and parameters.R3.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm to orient edges in the input graph using the provided data.Rskew.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm using the provided data model and parameters.RskewE.runSearch(DataModel dataModel, Parameters parameters) Runs a search algorithm to find the orientation of edges in a graph using the given data model and parameters.Skew.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm to orient edges in the input graph using the given data model and parameters.SkewE.runSearch(DataModel dataModel, Parameters parameters) Executes the SkewE search algorithm.Tanh.runSearch(DataModel dataModel, Parameters parameters) Runs the search algorithm using the given data model and parameters. -
Uses of DataModel in edu.cmu.tetrad.algcomparison.independence
Methods in edu.cmu.tetrad.algcomparison.independence with parameters of type DataModelModifier and TypeMethodDescriptionBdeuTest.getTest(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.CciTest.getTest(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.ChiSquare.getTest(DataModel dataSet, Parameters parameters) Retrieves an instance of the IndependenceTest interface that performs a Chi Square Test for independence.ConditionalGaussianLRT.getTest(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.DegenerateGaussianLRT.getTest(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.DiscreteBicTest.getTest(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.FisherZ.getTest(DataModel dataModel, Parameters parameters) Gets an independence test based on the given data model and parameters.GICScoreTests.getTest(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.GSquare.getTest(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.IndependenceWrapper.getTest(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.Kci.getTest(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.MagSemBicTest.getTest(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.Mnlrlrt.getTest(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.MSeparationTest.getTest(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.MultinomialLogisticRegressionWald.getTest(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.Mvplrt.getTest(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.PositiveCorr.getTest(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.ProbabilisticTest.getTest(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.SemBicDTest.getTest(DataModel dataSet, Parameters parameters) Retrieves an IndependenceTest object for testing independence against a given data set and parameters.SemBicTest.getTest(DataModel dataSet, Parameters parameters) Returns an instance of IndependenceTest for the SEM BIC test. -
Uses of DataModel in edu.cmu.tetrad.algcomparison.score
Methods in edu.cmu.tetrad.algcomparison.score with parameters of type DataModelModifier and TypeMethodDescriptionBdeuScore.getScore(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.ConditionalGaussianBicScore.getScore(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.DegenerateGaussianBicScore.getScore(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.DiscreteBicScore.getScore(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.EbicScore.getScore(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.FisherZScore.getScore(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.GicScores.getScore(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.MagSemBicScore.getScore(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.MSeparationScore.getScore(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.MVPBicScore.getScore(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.PoissonPriorScore.getScore(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.PositiveCorrScore.getScore(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.ScoreWrapper.getScore(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.SemBicScore.getScore(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.SemBicScoreDeterministic.getScore(DataModel dataSet, Parameters parameters) Returns true iff x and y are independent conditional on z for the given data set.ZhangShenBoundScore.getScore(DataModel dataSet, Parameters parameters) Calculates the score based on the given data set and parameters. -
Uses of DataModel in edu.cmu.tetrad.algcomparison.simulation
Methods in edu.cmu.tetrad.algcomparison.simulation that return DataModelModifier and TypeMethodDescriptionBayesNetSimulation.getDataModel(int index) Returns the number of data sets to simulate.ConditionalGaussianSimulation.getDataModel(int index) Returns the number of data sets to simulate.GeneralSemSimulation.getDataModel(int index) Returns the data model at the specified index.GeneralSemSimulationSpecial1.getDataModel(int index) Returns the number of data sets to simulate.LeeHastieSimulation.getDataModel(int index) Returns the number of data sets to simulate.LinearFisherModel.getDataModel(int index) Returns the number of data sets to simulate.LinearSineSimulation.getDataModel(int index) Returns the number of data sets to simulate.NLSemSimulation.getDataModel(int index) Returns the number of data sets to simulate.SemSimulation.getDataModel(int index) Returns the data model at the specified index.SemThenDiscretize.getDataModel(int index) Returns the number of data sets to simulate.Simulation.getDataModel(int index) Returns the number of data sets to simulate.StandardizedSemSimulation.getDataModel(int index) Returns the number of data sets to simulate.TimeSeriesSemSimulation.getDataModel(int index) Returns the number of data sets to simulate.Constructor parameters in edu.cmu.tetrad.algcomparison.simulation with type arguments of type DataModelModifierConstructorDescriptionLinearFisherModel(RandomGraph graph, List<DataModel> shocks) Constructor for LinearFisherModel. -
Uses of DataModel in edu.cmu.tetrad.algcomparison.statistic
Methods in edu.cmu.tetrad.algcomparison.statistic with parameters of type DataModelModifier and TypeMethodDescriptiondoubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleCalculates the percentage of correctly identified bidirected edges in an estimated graph for which a latent confounder exists in the true graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleCommonAncestorFalseNegativeBidirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel) Returns the value of this statistic, given the true graph and the estimated graph.doubleCommonAncestorFalsePositiveBidirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel) Returns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleCommonMeasuredAncestorRecallBidirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel) Returns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleCalculates the value of the IDA Average Squared Distance statistic.doubleCalculates the average maximum squared difference between the estimated and true values for a given data model and graphs.doubleCalculates the average minimum squared difference between the estimated and true values for a given data model and graphs.doubleRetrieves the value of the statistic, which is the average squared difference between the estimated and true values for a given data model and graphs.doubleCalculates the value of the statistic "IDA Average Maximum Squared Difference".doubleCalculates the value of the statistic "IDA Average Minimum Squared Difference".doubleLatentCommonAncestorFalseNegativeBidirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel) Returns the value of this statistic, given the true graph and the estimated graph.doubleLatentCommonAncestorFalsePositiveBidirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel) Returns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleLatentCommonAncestorTruePositiveBidirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel) Returns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleCalculates the Anderson Darling P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).doubleCalculates the Binomial P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).doubleCalculates the Kolmogorov-Smirnoff P value for the Markov check of whether the p-values for the estimated graph are distributed as U(0, 1).doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleChecks whether a PAG is maximal.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleNumCompatibleDefiniteDirectedEdgeAncestors.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel) Returns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleNumCompatibleDirectedEdgeNonAncestors.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel) Returns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleNumCompatiblePossiblyDirectedEdgeAncestors.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel) Returns the value of this statistic, given the true graph and the estimated graph.doubleNumCompatiblePossiblyDirectedEdgeNonAncestors.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel) Returns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the number of bidirected edges for which a latent confounder exists.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleNumDirectedEdgeBnaMeasuredCounfounded.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel) Returns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the number of X-->Y edges that are visible in the estimated PAG.doubleRetrieves the number of X-->Y edges for which X-->Y is visible in the true PAG.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleCalculates the Orientation Recall statistic, which measures the accuracy of the estimated orientation of edges in a graph compared to the true graph.doubleCalculates the adjacency precision of the estimated graph compared to the true graph.doubleCalculates the adjacency recall compared to the true PAG (Partial Ancestral Graph).doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleCalculates the percentage of ambiguous triples in the estimated graph compared to the true graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleProportionSemidirectedPathsNotReversedEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel) Calculates the proportion of semi(X, Y) in the estimated graph for which there is no semi(Y, X) in the true graph.doubleProportionSemidirectedPathsNotReversedTrue.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel) Calculates the proportion of semi(X, Y) paths in the true graph for which there is no semi(Y, Z) path in the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleCalculates the F1 statistic for adjacencies.doubleCalculates the semi-directed precision value.doubleCalculates the Semidirected-Rec statistic, which is the proportion of (X, Y) where if there is a semidirected path in the true graph, then there is also a semidirected path in the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleCalculates the tail precision, which is the ratio of true positive arrows to the sum of true positive arrows and false positive arrows.doubleCalculates the tail recall value for a given true graph, estimated graph, and data model.doubleCalculates the number of false negatives for arrows compared to the true DAG.doubleCalculates the number of false negatives for tails compared to the true DAG.doubleCalculates the false positives for arrows compared to the true DAG.doubleCalculates the number of false positives for tails in the estimated graph compared to the true DAG.doubleCalculates the proportion of X*->Y in the estimated graph for which there is no path Y~~>X in the true graph.doubleCalculates the proportion of X-->Y edges in the estimated graph for which there is a path X~~>Y in the true graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleCalculates the number of true positives for arrows compared to the true DAG.doubleTrueDagTruePositiveDirectedPathNonancestor.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel) Calculates the true positives for arrows compared to the true DAG.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph.doubleReturns the value of this statistic, given the true graph and the estimated graph. -
Uses of DataModel in edu.cmu.tetrad.bayes
Constructors in edu.cmu.tetrad.bayes with parameters of type DataModelModifierConstructorDescriptionJunctionTreeAlgorithm(Graph graph, DataModel dataModel) Constructor for JunctionTreeAlgorithm. -
Uses of DataModel in edu.cmu.tetrad.data
Subinterfaces of DataModel in edu.cmu.tetrad.dataModifier and TypeInterfaceDescriptioninterfaceImplements a rectangular data set, in the sense of being a dataset with a fixed number of columns and a fixed number of rows, the length of each column being constant.interfaceInterface for covariance matrices.Classes in edu.cmu.tetrad.data that implement DataModelModifier and TypeClassDescriptionfinal classWraps a DataBox in such a way that mixed data sets can be stored.final classStores a correlation matrix together with variable names and sample size; intended as a representation of a data set.classStores a covariance matrix together with variable names and sample size, intended as a representation of a data set.classStores a covariance matrix together with variable names and sample size, intended as a representation of a data set.classStores a covariance matrix together with variable names and sample size, intended as a representation of a data set.final classStores a list of data models and keeps track of which one is selected.classStores a list of independence facts.final classWraps a 2D array of Number objects in such a way that mixed data sets can be stored.final classStores time series data as a list of continuous columns.Methods in edu.cmu.tetrad.data that return DataModelModifier and TypeMethodDescriptionCorrelationMatrixOnTheFly.copy()copy.CovarianceMatrix.copy()copy.CovarianceMatrixOnTheFly.copy()copy.DataModel.copy()copy.DataModelList.copy()copy.IndependenceFacts.copy()copy.TimeSeriesData.copy()copy.DataModelList.get(int index) DataModelList.getSelectedModel()Getter for the fieldselectedModel.DataModelList.remove(int index) Methods in edu.cmu.tetrad.data that return types with arguments of type DataModelMethods in edu.cmu.tetrad.data with parameters of type DataModelModifier and TypeMethodDescriptionvoidAdds the given DataModel to the list at the given index.static DataSetSimpleDataLoader.getContinuousDataSet(DataModel dataSet) Returns the datamodel case to DataSet if it is continuous.static ICovarianceMatrixSimpleDataLoader.getCovarianceMatrix(DataModel dataModel, boolean precomputeCovariances) Returns the model cast to ICovarianceMatrix if already a covariance matric, or else returns the covariance matrix for a dataset.static DataSetSimpleDataLoader.getDiscreteDataSet(DataModel dataSet) Returns the datamodel case to DataSet if it is discrete.static DataSetSimpleDataLoader.getMixedDataSet(DataModel dataSet) Returns the datamodel case to DataSet if it is mixed.voidDataModelList.setSelectedModel(DataModel model) Setter for the fieldselectedModel. -
Uses of DataModel in edu.cmu.tetrad.data.simulation
Methods in edu.cmu.tetrad.data.simulation that return DataModelModifier and TypeMethodDescriptionLoadContinuousDataAndGraphs.getDataModel(int index) Returns the number of data sets to simulate.LoadContinuousDataAndSingleGraph.getDataModel(int index) Returns the number of data sets to simulate.LoadContinuousDataSmithSim.getDataModel(int index) Returns the number of data sets to simulate.LoadDataAndGraphs.getDataModel(int index) Returns the number of data sets to simulate.LoadDataFromFileWithoutGraph.getDataModel(int index) Returns the number of data sets to simulate. -
Uses of DataModel in edu.cmu.tetrad.search
Methods in edu.cmu.tetrad.search that return DataModel -
Uses of DataModel in edu.cmu.tetrad.search.score
Methods in edu.cmu.tetrad.search.score that return DataModelModifier and TypeMethodDescriptionPoissonPriorScore.getData()Returns the data set.SemBicScore.getData()Returns the data model.SemBicScore.getDataModel()Returns the data model.Methods in edu.cmu.tetrad.search.score with parameters of type DataModelModifier and TypeMethodDescriptionstatic doubleScores the given DAG using the given data model, usimg a BIC score.static doubleSemBicScorer.scoreDag(Graph dag, DataModel data, double penaltyDiscount, boolean precomputeCovariances) Scores the given DAG using the given data model, usimg a BIC score. -
Uses of DataModel in edu.cmu.tetrad.search.test
Methods in edu.cmu.tetrad.search.test that return DataModelModifier and TypeMethodDescriptionIndTestIndependenceFacts.getData()Returns the facts supplied in the constructor, which constutite a data model.IndTestProbabilistic.getData()Returns the data model associated with this instance.Kci.getData()Returns The data model for the independence test.ScoreIndTest.getData()Retrieves the data model associated with this object.Constructors in edu.cmu.tetrad.search.test with parameters of type DataModelModifierConstructorDescriptionScoreIndTest(Score score, DataModel data) Constructor for ScoreIndTest. -
Uses of DataModel in edu.cmu.tetrad.search.utils
Methods in edu.cmu.tetrad.search.utils with parameters of type DataModelModifier and TypeMethodDescriptionstatic voidLogUtilsSearch.stampWithBic(Graph graph, DataModel dataModel) stampWithBic.Constructors in edu.cmu.tetrad.search.utils with parameters of type DataModelModifierConstructorDescriptionClusterSignificance(List<Node> variables, DataModel dataModel) Constructs a new cluster significance object.Constructor parameters in edu.cmu.tetrad.search.utils with type arguments of type DataModel -
Uses of DataModel in edu.cmu.tetrad.search.work_in_progress
Methods in edu.cmu.tetrad.search.work_in_progress that return DataModel -
Uses of DataModel in edu.cmu.tetrad.util
Methods in edu.cmu.tetrad.util that return DataModelModifier and TypeMethodDescriptionstatic DataModelMultidataUtils.combineDataset(List<DataModel> dataModels) combineDataset.static DataModelDataConvertUtils.toContinuousDataModel(ContinuousData dataset) toContinuousDataModel.static DataModelDataConvertUtils.toCovarianceMatrix(CovarianceData dataset) toCovarianceMatrix.static DataModelDataConvertUtils.toDataModel(Data data) toDataModel.static DataModelDataConvertUtils.toDataModel(Data data, Metadata metadata) toDataModel.static DataModelDataConvertUtils.toMixedDataBox(MixedTabularData dataset) toMixedDataBox.static DataModelDataConvertUtils.toMixedDataBox(MixedTabularData dataset, Metadata metadata) Converting using metadatastatic DataModelDataConvertUtils.toVerticalDiscreteDataModel(VerticalDiscreteTabularData dataset) toVerticalDiscreteDataModel.static DataModelDataConvertUtils.toVerticalDiscreteDataModel(VerticalDiscreteTabularData dataset, Metadata metatdata) Converting using metadataMethods in edu.cmu.tetrad.util with parameters of type DataModelModifier and TypeMethodDescriptionstatic intMultidataUtils.getNumberOfColumns(DataModel dataModel) getNumberOfColumns.Method parameters in edu.cmu.tetrad.util with type arguments of type DataModelModifier and TypeMethodDescriptionstatic voidMultidataUtils.combineContinuousData(List<DataModel> dataModels, double[][] combinedData) combineContinuousData.static DataModelMultidataUtils.combineDataset(List<DataModel> dataModels) combineDataset.static voidMultidataUtils.combineDiscreteDataToDiscreteVerticalData(List<DataModel> dataModels, List<Node> variables, int[][] combinedData, int numOfRows, int numOfColumns) combineDiscreteDataToDiscreteVerticalData.static voidMultidataUtils.combineMixedContinuousData(List<DataModel> dataModels, List<Node> variables, double[][] combinedData, int numOfRows, int numOfColumns) combineMixedContinuousData.static voidMultidataUtils.combineMixedDiscreteData(List<DataModel> dataModels, List<Node> variables, int[][] combinedData, int numOfRows, int numOfColumns) combineMixedDiscreteData.static voidMultidataUtils.combineVariables(List<DataModel> dataModels, List<Node> variables) Combine the list of variables from each of data model in the list into one variable list.static int[]MultidataUtils.getRowCounts(List<DataModel> dataModels) getRowCounts.