Class BicDiffPerRecord

java.lang.Object
edu.cmu.tetrad.algcomparison.statistic.BicDiffPerRecord
All Implemented Interfaces:
Statistic, Serializable

public class BicDiffPerRecord extends Object implements Statistic
Difference between the true and estiamted BIC scores.
Version:
$Id: $Id
Author:
josephramsey
See Also:
  • Constructor Details

    • BicDiffPerRecord

      public BicDiffPerRecord()
      Constructs a new instance of the statistic.
  • Method Details

    • getAbbreviation

      public String getAbbreviation()
      The abbreviation for the statistic. This will be printed at the top of each column.
      Specified by:
      getAbbreviation in interface Statistic
      Returns:
      Thsi abbreviation.
    • getDescription

      public String getDescription()
      Returns a short one-line description of this statistic. This will be printed at the beginning of the report.
      Specified by:
      getDescription in interface Statistic
      Returns:
      This description.
    • getValue

      public double getValue(Graph trueGraph, Graph estGraph, DataModel dataModel)
      Returns the value of this statistic, given the true graph and the estimated graph.

      Returns the difference between the true and estimated BIC scores, divided by the sample size.

      Specified by:
      getValue in interface Statistic
      Parameters:
      trueGraph - The true graph (DAG, CPDAG, PAG_of_the_true_DAG).
      estGraph - The estimated graph (same type).
      dataModel - The data model.
      Returns:
      The value of the statistic.
    • getNormValue

      public double getNormValue(double value)
      Returns a mapping of the statistic to the interval [0, 1], with higher being better. This is used for a calculation of a utility for an algorithm. If the statistic is already between 0 and 1, you can just return the statistic.

      Returns the normalized value of the statistic.

      Specified by:
      getNormValue in interface Statistic
      Parameters:
      value - The value of the statistic.
      Returns:
      The weight of the statistic, 0 to 1, higher is better.
    • setPrecomputeCovariances

      public void setPrecomputeCovariances(boolean precomputeCovariances)
      Returns true if the covariances are precomputed.
      Parameters:
      precomputeCovariances - True if the covariances are precomputed.