Class Ida

java.lang.Object
edu.cmu.tetrad.search.Ida

public class Ida extends Object

Implements the IDA algorithm. The reference is here:

Maathuis, Marloes H., Markus Kalisch, and Peter Bühlmann. "Estimating high-dimensional intervention effects from observational data." The Annals of Statistics 37.6A (2009): 3133-3164.

The IDA algorithm seeks to give a list of possible parents of a given variable Y and their corresponding lower-bounded effects on Y.

Author:
josephramsey
See Also:
  • Constructor Details

    • Ida

      public Ida(DataSet dataSet, Graph cpdag, List<Node> possibleCauses)
      Constructor.
      Parameters:
      dataSet - The dataset being searched over.
      cpdag - The CPDAG (found, e.g., by running PC, or some other CPDAG producing algorithm.
      possibleCauses - The possible causes to be considered.
  • Method Details

    • getSortedMinEffects

      public Ida.NodeEffects getSortedMinEffects(Node y)
      Returns the minimum effects of X on Y for X in V \ {Y}, sorted downward by minimum effect
      Parameters:
      y - The child variable.
      Returns:
      Two sorted lists, one of possible parents, the other of corresponding minimum effects, sorted downward by minimum effect size.
      See Also:
    • trueEffect

      public double trueEffect(Node x, Node y, Graph trueDag)
      Calculates the true effect of (x, y) given the true DAG (which must be provided).
      Parameters:
      trueDag - The true DAG.
      Returns:
      The true effect of (x, y).
    • distance

      public double distance(LinkedList<Double> effects, double trueEffect)
      Returns the distance between the effects and the true effect.
      Returns:
      This difference.
    • calculateMinimumEffectsOnY

      public Map<Node,Double> calculateMinimumEffectsOnY(Node y)
      Returns a map from nodes in V \ {Y} to their minimum effects.
      Parameters:
      y - The child variable
      Returns:
      Thia map.