Package edu.cmu.tetrad.regression
Class LogisticRegression.Result
java.lang.Object
edu.cmu.tetrad.regression.LogisticRegression.Result
- All Implemented Interfaces:
TetradSerializable
,Serializable
- Enclosing class:
- LogisticRegression
- See Also:
-
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptiondouble[]
getCoefs()
The array of regression coefficients.double
double
The log likelihood of the regressionint
The number of regressors.int
getNy0()
The number of data points with target = 0.int
getNy1()
The number of data points with target = 1.double[]
getProbs()
The array of coefP-values for the regression coefficients.The variables.double[]
The array of standard errors for the regression coefficients.The target.double[]
THe array of means.double[]
The array of standard devs.static LogisticRegression.Result
Generates a simple exemplar of this class to test serialization.toString()
-
Constructor Details
-
Result
public Result(String target, List<String> regressorNames, double[] xMeans, double[] xStdDevs, int numRegressors, int ny0, int ny1, double[] coefs, double[] stdErrs, double[] probs, double intercept, double logLikelihood, double chiSq, double alpha) Constructs a new LinRegrResult.- Parameters:
numRegressors
- the number of regressorsny0
- the number of cases with target = 0.ny1
- the number of cases with target = 1.coefs
- the array of regression coefficients.stdErrs
- the array of std errors of the coefficients.probs
- the array of P-values for the regression
-
-
Method Details
-
serializableInstance
Generates a simple exemplar of this class to test serialization. -
getRegressorNames
The variables. -
getTarget
The target. -
getNy0
public int getNy0()The number of data points with target = 0. -
getNy1
public int getNy1()The number of data points with target = 1. -
getNumRegressors
public int getNumRegressors()The number of regressors. -
getCoefs
public double[] getCoefs()The array of regression coefficients. -
getStdErrs
public double[] getStdErrs()The array of standard errors for the regression coefficients. -
getProbs
public double[] getProbs()The array of coefP-values for the regression coefficients. -
getxMeans
public double[] getxMeans()THe array of means. -
getxStdDevs
public double[] getxStdDevs()The array of standard devs. -
getIntercept
public double getIntercept() -
getLogLikelihood
public double getLogLikelihood()The log likelihood of the regression -
toString
-