Package edu.cmu.tetrad.bayes
Class ApproximateUpdater
java.lang.Object
edu.cmu.tetrad.bayes.ApproximateUpdater
- All Implemented Interfaces:
BayesUpdater,ManipulatingBayesUpdater,TetradSerializable,Serializable
Calculates updated marginals for a Bayes net by simulating data and calculating likelihood ratios. The method is as
follows. For P(A | B), enough sample points are simulated from the underlying BayesIm so that 1000 satisfy the
condition B. Then the maximum likelihood estimate of condition A is calculated.
- Author:
- josephramsey
- See Also:
-
Constructor Summary
ConstructorsConstructorDescriptionApproximateUpdater(BayesIm bayesIm) Constructs a new updater for the given Bayes net.ApproximateUpdater(BayesIm bayesIm, Evidence evidence) Constructs a new updater for the given Bayes net. -
Method Summary
Modifier and TypeMethodDescriptiondouble[]calculatePriorMarginals(int nodeIndex) Calculates the prior marginal probabilities of the given node.double[]calculateUpdatedMarginals(int nodeIndex) Calculates the updated marginal probabilities of the given node, given the evidence.Returns the evidence for the updater.Returns the manipulation that was used to manipulate the Bayes IM.doublegetJointMarginal(int[] variables, int[] values) Returns the joint marginal probability of the given variables taking the given values, given the evidence.Returns the manipulated Bayes IM.Returns the manipulated graph.doublegetMarginal(int variable, int value) Returns the updated graph.Returns the updated Bayes IM.booleanReturns the joint marginal probability of the given variables taking the given values, given the evidence.static ApproximateUpdaterReturns a simple exemplar of this class to test serialization.voidsetEvidence(Evidence evidence) Sets new evidence for the next update operation.toString()Prints out the most recent marginal.
-
Constructor Details
-
ApproximateUpdater
Constructs a new updater for the given Bayes net.- Parameters:
bayesIm- the Bayes net to be updated.
-
ApproximateUpdater
Constructs a new updater for the given Bayes net.- Parameters:
bayesIm- the Bayes net to be updated.evidence- the evidence for the update.
-
-
Method Details
-
serializableInstance
Returns a simple exemplar of this class to test serialization.- Returns:
- a simple exemplar of this class to test serialization.
-
getBayesIm
Description copied from interface:BayesUpdaterReturns the evidence for the updater.- Specified by:
getBayesImin interfaceBayesUpdater- Returns:
- the Bayes instantiated model that is being updated.
-
getManipulatedBayesIm
Description copied from interface:ManipulatingBayesUpdaterReturns the manipulated Bayes IM. This is the Bayes IM in which the variables in the manipulation have been removed from the graph.- Specified by:
getManipulatedBayesImin interfaceManipulatingBayesUpdater- Returns:
- the Bayes instantiated model after manipulations have been applied.
-
getManipulatedGraph
Description copied from interface:ManipulatingBayesUpdaterReturns the manipulated graph. This is the graph in which the variables in the manipulation have been removed from the graph.- Specified by:
getManipulatedGraphin interfaceManipulatingBayesUpdater- Returns:
- the graph for getManipulatedBayesIm().
-
getUpdatedBayesIm
Description copied from interface:ManipulatingBayesUpdaterReturns the updated Bayes IM. This is the Bayes IM in which all probabilities of variables conditional on their parents have been updated.- Specified by:
getUpdatedBayesImin interfaceManipulatingBayesUpdater- Returns:
- the updated Bayes IM, or null if there is no updated Bayes IM.
-
getEvidence
Description copied from interface:ManipulatingBayesUpdaterReturns the manipulation that was used to manipulate the Bayes IM.- Specified by:
getEvidencein interfaceManipulatingBayesUpdater- Returns:
- a copy of the getModel evidence.
-
setEvidence
Sets new evidence for the next update operation.- Specified by:
setEvidencein interfaceBayesUpdater- Specified by:
setEvidencein interfaceManipulatingBayesUpdater- Parameters:
evidence- the new evidence.
-
getMarginal
public double getMarginal(int variable, int value) Description copied from interface:ManipulatingBayesUpdaterReturns the updated graph. This is the graph in which all probabilities of variables conditional on their parents have been updated.- Specified by:
getMarginalin interfaceBayesUpdater- Specified by:
getMarginalin interfaceManipulatingBayesUpdater- Parameters:
variable- variable indexvalue- category index- Returns:
- P(variable = category | evidence) where evidence is getEvidence().
-
isJointMarginalSupported
public boolean isJointMarginalSupported()Description copied from interface:BayesUpdaterReturns the joint marginal probability of the given variables taking the given values, given the evidence.- Specified by:
isJointMarginalSupportedin interfaceBayesUpdater- Returns:
- true if the getJointMarginal() method is supported.
-
getJointMarginal
public double getJointMarginal(int[] variables, int[] values) Description copied from interface:BayesUpdaterReturns the joint marginal probability of the given variables taking the given values, given the evidence.- Specified by:
getJointMarginalin interfaceBayesUpdater- Parameters:
variables- variable indicesvalues- category indices- Returns:
- the joint marginal.
-
calculatePriorMarginals
public double[] calculatePriorMarginals(int nodeIndex) Description copied from interface:BayesUpdaterCalculates the prior marginal probabilities of the given node.- Specified by:
calculatePriorMarginalsin interfaceBayesUpdater- Parameters:
nodeIndex- node index- Returns:
- P(node = value), where value is the value of the node in the Bayes net.
-
calculateUpdatedMarginals
public double[] calculateUpdatedMarginals(int nodeIndex) Description copied from interface:BayesUpdaterCalculates the updated marginal probabilities of the given node, given the evidence.- Specified by:
calculateUpdatedMarginalsin interfaceBayesUpdater- Parameters:
nodeIndex- node index- Returns:
- P(node = value | evidence), where value is the value of the node in the Bayes net.
-
toString
Prints out the most recent marginal.
-