Uses of Class
edu.cmu.tetrad.util.Matrix
Packages that use Matrix
Package
Description
-
Uses of Matrix in edu.cmu.tetrad.cluster
Methods in edu.cmu.tetrad.cluster with parameters of type Matrix -
Uses of Matrix in edu.cmu.tetrad.data
Methods in edu.cmu.tetrad.data that return MatrixModifier and TypeMethodDescriptionstatic Matrix
DataUtils.centerData
(Matrix data) static Matrix
DataUtils.concatenate
(Matrix... dataSets) static Matrix
static Matrix
DataUtils.getBootstrapSample
(Matrix data, int sampleSize) BoxDataSet.getCorrelationMatrix()
DataSet.getCorrelationMatrix()
If this is a continuous data set, returns the correlation matrix.NumberObjectDataSet.getCorrelationMatrix()
BoxDataSet.getCovarianceMatrix()
DataSet.getCovarianceMatrix()
If this is a continuous data set, returns the covariance matrix.NumberObjectDataSet.getCovarianceMatrix()
TimeSeriesData.getData()
BoxDataSet.getDoubleData()
DataSet.getDoubleData()
NumberObjectDataSet.getDoubleData()
final Matrix
CorrelationMatrixOnTheFly.getMatrix()
final Matrix
CovarianceMatrix.getMatrix()
final Matrix
CovarianceMatrixOnTheFly.getMatrix()
final Matrix
CovarianceMatrixOnTheFly.getMatrix
(int[] rows) ICovarianceMatrix.getMatrix()
CorrelationMatrix.getSelection
(int[] rows, int[] cols) CorrelationMatrixOnTheFly.getSelection
(int[] rows, int[] cols) CovarianceMatrix.getSelection
(int[] rows, int[] cols) CovarianceMatrixOnTheFly.getSelection
(int[] rows, int[] cols) CovarianceMatrixOnTheFly.getSelection
(int[] rows, int[] cols, int[] dataRows) ICovarianceMatrix.getSelection
(int[] rows, int[] cols) static Matrix
DataUtils.standardizeData
(Matrix data) static Matrix
static Matrix
static Matrix
static Matrix
Methods in edu.cmu.tetrad.data with parameters of type MatrixModifier and TypeMethodDescriptionstatic Matrix
DataUtils.centerData
(Matrix data) static Matrix
DataUtils.concatenate
(Matrix... dataSets) static boolean
DataUtils.containsMissingValue
(Matrix data) static Matrix
static Matrix
DataUtils.getBootstrapSample
(Matrix data, int sampleSize) static Vector
static Vector
void
void
void
void
void
static Matrix
DataUtils.standardizeData
(Matrix data) static Matrix
static Matrix
Constructors in edu.cmu.tetrad.data with parameters of type MatrixModifierConstructorDescriptionCorrelationMatrix
(List<Node> variables, Matrix matrix, int sampleSize) Constructs a correlation matrix data set using the given information.CovarianceMatrix
(List<Node> variables, Matrix matrix, int sampleSize) Protected constructor to construct a new covariance matrix using the supplied continuous variables and the the given symmetric, positive definite matrix and sample size.TimeSeriesData
(Matrix matrix, List<String> varNames) Constructs a new time series data contains for the given row-major data array and the given list of variables. -
Uses of Matrix in edu.cmu.tetrad.regression
Constructors in edu.cmu.tetrad.regression with parameters of type Matrix -
Uses of Matrix in edu.cmu.tetrad.search
Methods in edu.cmu.tetrad.search that return MatrixModifier and TypeMethodDescriptionstatic @NotNull Matrix
static @NotNull Matrix
FastIca.IcaResult.getK()
PermutationMatrixPair.getMatrixW()
FactorAnalysis.getResidual()
FastIca.IcaResult.getS()
FastIca.IcaResult.getW()
FastIca.getWInit()
Initial un-mixing matrix of dimension (n.comp,n.comp).FastIca.IcaResult.getX()
Ling.pruneEdgesByResampling
(Matrix data) This is the method used in Patrik's code.FactorAnalysis.successiveFactorVarimax
(Matrix factorLoadingMatrix) FactorAnalysis.successiveResidual()
Successive method with residual matrix.Methods in edu.cmu.tetrad.search that return types with arguments of type MatrixModifier and TypeMethodDescriptionIndependenceTest.getCovMatrices()
IndTestChiSquare.getCovMatrices()
IndTestCodec.getCovMatrices()
IndTestConditionalCorrelation.getCovMatrices()
IndTestConditionalCorrelationLingam.getCovMatrices()
IndTestConditionalGaussianLRT.getCovMatrices()
IndTestCramerT.getCovMatrices()
IndTestDegenerateGaussianLRT.getCovMatrices()
IndTestDSep.getCovMatrices()
IndTestFisherZ.getCovMatrices()
IndTestFisherZConcatenateResiduals.getCovMatrices()
IndTestFisherZFisherPValue.getCovMatrices()
IndTestFisherZGeneralizedInverse.getCovMatrices()
IndTestFisherZPercentIndependent.getCovMatrices()
IndTestFisherZRecursive.getCovMatrices()
IndTestGSquare.getCovMatrices()
IndTestHsic.getCovMatrices()
IndTestIndependenceFacts.getCovMatrices()
IndTestMixedMultipleTTest.getCovMatrices()
IndTestMNLRLRT.getCovMatrices()
IndTestMulti.getCovMatrices()
IndTestMultinomialLogisticRegression.getCovMatrices()
IndTestMVPLRT.getCovMatrices()
IndTestPositiveCorr.getCovMatrices()
IndTestProbabilistic.getCovMatrices()
IndTestRegression.getCovMatrices()
IndTestScore.getCovMatrices()
IndTestSepset.getCovMatrices()
IndTestTeyssier.getCovMatrices()
IndTestTrekSep.getCovMatrices()
Kci.getCovMatrices()
ProbabilisticMAPIndependence.getCovMatrices()
Methods in edu.cmu.tetrad.search with parameters of type MatrixModifier and TypeMethodDescriptionstatic boolean
TimeSeriesUtils.allEigenvaluesAreSmallerThanOneInModulus
(Matrix mat) static @NotNull Matrix
static @NotNull Matrix
double
IndTestHsic.empiricalHSIC
(Matrix Ky, Matrix Kx, int m) Empirical unconditional Hilbert-Schmidt Dependence Measure for X and Ydouble
IndTestHsic.empiricalHSICincompleteCholesky
(Matrix Gy, Matrix Gx, int m) Empirical unconditional Hilbert-Schmidt Dependence Measure for X and Y using incomplete Cholesky decomposition to approximate Gram matricesdouble
IndTestHsic.empiricalHSICincompleteCholesky
(Matrix Gy, Matrix Gx, Matrix Gz, int m) Empirical unconditional Hilbert-Schmidt Dependence Measure for X and Y given Z using incomplete Cholesky decomposition to approximate Gram matricesstatic double
SemBicScore.getVarRy
(int i, int[] parents, Matrix data, ICovarianceMatrix covariances, boolean calculateRowSubsets) static double
ZhangShenBoundTest.getVarRy
(int i, int[] parents, Matrix data, ICovarianceMatrix covariances, boolean calculateRowSubsets, boolean calculateSquareEuclideanNorms) double
Ling.ngFullData
(int rowIndex, Matrix data, Matrix W) Ling.pruneEdgesByResampling
(Matrix data) This is the method used in Patrik's code.double
void
Initial un-mixing matrix of dimension (n.comp,n.comp).FactorAnalysis.successiveFactorVarimax
(Matrix factorLoadingMatrix) Constructors in edu.cmu.tetrad.search with parameters of type MatrixModifierConstructorDescriptionConstructs an instance of the Fast ICA algorithm, taking as arguments the two arguments that cannot be defaulted: the data matrix itself and the number of components to be extracted.IndTestFisherZ
(Matrix data, List<Node> variables, double alpha) Constructs a new Fisher Z independence test with the listed arguments.IndTestFisherZRecursive
(Matrix data, List<Node> variables, double alpha) Constructs a new Fisher Z independence test with the listed arguments.IndTestHsic
(Matrix data, List<Node> variables, double alpha) PermutationMatrixPair
(List<Integer> permutation, Matrix matrixW) RecursivePartialCorrelation
(List<Node> nodes, Matrix cov, int sampleSize) -
Uses of Matrix in edu.cmu.tetrad.search.kernel
Methods in edu.cmu.tetrad.search.kernel that return MatrixModifier and TypeMethodDescriptionstatic Matrix
Constructs the centralized Gram matrix for a given vector valued sample.static Matrix
Constructs Gram matrix for a given vector valued sample.static Matrix
KernelUtils.constructH
(int m) Constructs the projection matrix on 1/mstatic Matrix
KernelUtils.incompleteCholeskyGramMatrix
(List<Kernel> kernels, DataSet dataset, List<Node> nodes, double precision) Approximates Gram matrix using incomplete Cholesky factorization -
Uses of Matrix in edu.cmu.tetrad.sem
Methods in edu.cmu.tetrad.sem that return MatrixModifier and TypeMethodDescriptionSemEstimatorGibbs.getDataSet()
DagScorer.getEdgeCoef()
Scorer.getEdgeCoef()
SemIm.getEdgeCoef()
SemIm.getErrCovar()
DagScorer.getErrorCovar()
Scorer.getErrorCovar()
ISemIm.getImplCovar
(boolean recalculate) SemIm.getImplCovar
(boolean recalculate) SemIm.getImplCovar
(List<Node> nodes) StandardizedSemIm.getImplCovar()
ISemIm.getImplCovarMeas()
SemIm.getImplCovarMeas()
StandardizedSemIm.getImplCovarMeas()
DagScorer.getSampleCovar()
Scorer.getSampleCovar()
SemIm.getSampleCovar()
Methods in edu.cmu.tetrad.sem with parameters of type MatrixModifier and TypeMethodDescriptiondouble
double
double
ISemIm.getVariance
(Node nodeA, Matrix implCovar) double
SemIm.getVariance
(Node node, Matrix implCovar) Constructors in edu.cmu.tetrad.sem with parameters of type Matrix -
Uses of Matrix in edu.cmu.tetrad.util
Methods in edu.cmu.tetrad.util that return MatrixModifier and TypeMethodDescriptionstatic Matrix
static Matrix
MatrixUtils.convertCovToCorr
(Matrix m) Converts a covariance matrix to a correlation matrix in place; the same matrix is returned for convenience, but m is modified in the process.Matrix.copy()
Vector.diag()
Matrix.getPart
(int i, int j, int k, int l) Matrix.getSelection
(int[] rows, int[] cols) Matrix.ginverse()
static Matrix
Matrix.identity
(int rows) static Matrix
TetradAlgebra.identity
(int rows) static Matrix
MatrixUtils.impliedCovar
(Matrix edgeCoef, Matrix errCovar) static Matrix
MatrixUtils.impliedCovar2
(Matrix edgeCoef, Matrix errCovar) Matrix.inverse()
Matrix.like()
static Matrix
static Matrix
LingUtils.normalizeDiagonal
(Matrix matrix) Matrix.scalarMult
(double scalar) static Matrix
Matrix.serializableInstance()
Generates a simple exemplar of this class to test serialization.static Matrix
static Matrix
Matrix.sparseMatrix
(int m, int n) Matrix.sqrt()
Matrix.symmetricInverse()
Matrix.transpose()
Methods in edu.cmu.tetrad.util with parameters of type MatrixModifier and TypeMethodDescriptionvoid
static Matrix
static Matrix
MatrixUtils.convertCovToCorr
(Matrix m) Converts a covariance matrix to a correlation matrix in place; the same matrix is returned for convenience, but m is modified in the process.boolean
static Matrix
MatrixUtils.impliedCovar
(Matrix edgeCoef, Matrix errCovar) static Matrix
MatrixUtils.impliedCovar2
(Matrix edgeCoef, Matrix errCovar) static boolean
LingUtils.isPositiveDefinite
(Matrix matrix) static boolean
MatrixUtils.isPositiveDefinite
(Matrix matrix) Return true if the given matrix is symmetric positive definite--that is, if it would make a valid covariance matrix.static Matrix
LingUtils.normalizeDiagonal
(Matrix matrix) static double
StatUtils.partialCorrelation
(Matrix submatrix) Assumes that the given covariance matrix was extracted in such a way that the order of the variables (in either direction) is X, Y, Z1, ..., Zn, where the partial correlation one wants is correlation(X, Y | Z1,...,Zn).static double
StatUtils.partialCorrelation
(Matrix covariance, int x, int y, int... z) static double
StatUtils.partialCorrelationPrecisionMatrix
(Matrix submatrix) static double
StatUtils.partialCovarianceWhittaker
(Matrix submatrix) Assumes that the given covariance matrix was extracted in such a way that the order of the variables (in either direction) is X, Y, Z1, ..., Zn, where the partial covariance one wants is covariance(X, Y | Z1,...,Zn).static double
StatUtils.partialCovarianceWhittaker
(Matrix covariance, int x, int y, int... z) static double
StatUtils.partialStandardDeviation
(Matrix covariance, int x, int... z) static double
StatUtils.partialVariance
(Matrix covariance, int x, int... z) static Vector
static Matrix
Constructors in edu.cmu.tetrad.util with parameters of type Matrix -
Uses of Matrix in edu.pitt.csb.mgm
Methods in edu.pitt.csb.mgm that return types with arguments of type Matrix