Package edu.cmu.tetrad.search
Class IndTestFisherZRecursive
java.lang.Object
edu.cmu.tetrad.search.IndTestFisherZRecursive
- All Implemented Interfaces:
IndependenceTest
Checks conditional independence of variable in a continuous data set using Fisher's Z test. See Spirtes, Glymour, and
Scheines, "Causation, Prediction and Search," 2nd edition, page 94.
- Author:
- Joseph Ramsey, Frank Wimberly adapted IndTestCramerT for Fisher's Z
-
Constructor Summary
ConstructorsConstructorDescriptionIndTestFisherZRecursive(DataSet dataSet, double alpha) Constructs a new Independence test which checks independence facts based on the correlation matrix implied by the given data set (must be continuous).IndTestFisherZRecursive(ICovarianceMatrix covMatrix, double alpha) Constructs a new independence test that will determine conditional independence facts using the given correlation matrix and the given significance level.IndTestFisherZRecursive(Matrix data, List<Node> variables, double alpha) Constructs a new Fisher Z independence test with the listed arguments. -
Method Summary
Modifier and TypeMethodDescriptioncheckIndependence(Node x, Node y, List<Node> z) Determines whether variable x is independent of variable y given a list of conditioning variables z.booleandetermines(List<Node> z, Node x) IfisDeterminismAllowed(), deters to IndTestFisherZD; otherwise throws UnsupportedOperationException.doublegetAlpha()Gets the getModel significance level.getCov()getData()doubleintdoublegetScore()A score that is higher with more likely models.getVariable(String name) indTestSubset(List<Node> vars) Creates a new independence test instance for a subset of the variables.booleanvoidsetAlpha(double alpha) Sets the significance level at which independence judgments should be made.voidsetVariables(List<Node> variables) voidsetVerbose(boolean verbose) toString()Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitMethods inherited from interface edu.cmu.tetrad.search.IndependenceTest
checkIndependence
-
Constructor Details
-
IndTestFisherZRecursive
Constructs a new Independence test which checks independence facts based on the correlation matrix implied by the given data set (must be continuous). The given significance level is used.- Parameters:
dataSet- A data set containing only continuous columns.alpha- The alpha level of the test.
-
IndTestFisherZRecursive
Constructs a new Fisher Z independence test with the listed arguments.- Parameters:
data- A 2D continuous data set with no missing values.variables- A list of variables, a subset of the variables ofdata.alpha- The significance cutoff level. p values less than alpha will be reported as dependent.
-
IndTestFisherZRecursive
Constructs a new independence test that will determine conditional independence facts using the given correlation matrix and the given significance level.
-
-
Method Details
-
indTestSubset
Creates a new independence test instance for a subset of the variables.- Specified by:
indTestSubsetin interfaceIndependenceTest- Returns:
- an Independence test for a subset of the variables.
-
checkIndependence
Determines whether variable x is independent of variable y given a list of conditioning variables z.- Specified by:
checkIndependencein interfaceIndependenceTest- Parameters:
x- the one variable being compared.y- the second variable being compared.z- the list of conditioning variables.- Returns:
- true iff x _||_ y | z.
- Throws:
RuntimeException- if a matrix singularity is encountered.
-
getPValue
public double getPValue()- Returns:
- the probability associated with the most recently computed independence test.
-
setAlpha
public void setAlpha(double alpha) Sets the significance level at which independence judgments should be made. Affects the cutoff for partial correlations to be considered statistically equal to zero.- Specified by:
setAlphain interfaceIndependenceTest
-
getAlpha
public double getAlpha()Gets the getModel significance level.- Specified by:
getAlphain interfaceIndependenceTest- Returns:
- the significance level of the independence test.
-
getVariables
- Specified by:
getVariablesin interfaceIndependenceTest- Returns:
- the list of variables over which this independence checker is capable of determinine independence relations-- that is, all the variables in the given graph or the given data set.
-
getVariable
- Specified by:
getVariablein interfaceIndependenceTest- Returns:
- the variable with the given name.
-
getVariableNames
- Specified by:
getVariableNamesin interfaceIndependenceTest- Returns:
- the list of variable varNames.
-
determines
IfisDeterminismAllowed(), deters to IndTestFisherZD; otherwise throws UnsupportedOperationException.- Specified by:
determinesin interfaceIndependenceTest- Returns:
- true if y is determined the variable in z.
- Throws:
UnsupportedOperationException
-
getData
- Specified by:
getDatain interfaceIndependenceTest- Returns:
- the data set being analyzed.
-
toString
- Specified by:
toStringin interfaceIndependenceTest- Overrides:
toStringin classObject- Returns:
- a string representation of this test.
-
setVariables
-
getCov
- Specified by:
getCovin interfaceIndependenceTest
-
getDataSets
- Specified by:
getDataSetsin interfaceIndependenceTest
-
getSampleSize
public int getSampleSize()- Specified by:
getSampleSizein interfaceIndependenceTest
-
getCovMatrices
- Specified by:
getCovMatricesin interfaceIndependenceTest
-
getScore
public double getScore()Description copied from interface:IndependenceTestA score that is higher with more likely models.- Specified by:
getScorein interfaceIndependenceTest
-
isVerbose
public boolean isVerbose()- Specified by:
isVerbosein interfaceIndependenceTest
-
setVerbose
public void setVerbose(boolean verbose) - Specified by:
setVerbosein interfaceIndependenceTest
-