Package edu.cmu.tetrad.regression
Class LogisticRegression.Result
java.lang.Object
edu.cmu.tetrad.regression.LogisticRegression.Result
- All Implemented Interfaces:
- TetradSerializable,- Serializable
- Enclosing class:
- LogisticRegression
- See Also:
- 
Constructor SummaryConstructors
- 
Method SummaryModifier and TypeMethodDescriptiondouble[]getCoefs()The array of regression coefficients.doubledoubleThe log likelihood of the regressionintThe number of regressors.intgetNy0()The number of data points with target = 0.intgetNy1()The number of data points with target = 1.double[]getProbs()The array of coefP-values for the regression coefficients.The variables.double[]The array of standard errors for the regression coefficients.The target.double[]THe array of means.double[]The array of standard devs.static LogisticRegression.ResultGenerates a simple exemplar of this class to test serialization.toString()
- 
Constructor Details- 
Resultpublic Result(String target, List<String> regressorNames, double[] xMeans, double[] xStdDevs, int numRegressors, int ny0, int ny1, double[] coefs, double[] stdErrs, double[] probs, double intercept, double logLikelihood, double chiSq, double alpha) Constructs a new LinRegrResult.- Parameters:
- numRegressors- the number of regressors
- ny0- the number of cases with target = 0.
- ny1- the number of cases with target = 1.
- coefs- the array of regression coefficients.
- stdErrs- the array of std errors of the coefficients.
- probs- the array of P-values for the regression
 
 
- 
- 
Method Details- 
serializableInstanceGenerates a simple exemplar of this class to test serialization.
- 
getRegressorNamesThe variables.
- 
getTargetThe target.
- 
getNy0public int getNy0()The number of data points with target = 0.
- 
getNy1public int getNy1()The number of data points with target = 1.
- 
getNumRegressorspublic int getNumRegressors()The number of regressors.
- 
getCoefspublic double[] getCoefs()The array of regression coefficients.
- 
getStdErrspublic double[] getStdErrs()The array of standard errors for the regression coefficients.
- 
getProbspublic double[] getProbs()The array of coefP-values for the regression coefficients.
- 
getxMeanspublic double[] getxMeans()THe array of means.
- 
getxStdDevspublic double[] getxStdDevs()The array of standard devs.
- 
getInterceptpublic double getIntercept()
- 
getLogLikelihoodpublic double getLogLikelihood()The log likelihood of the regression
- 
toString
 
-