Package edu.cmu.tetrad.search.utils
Class GaussianProcessRBF
java.lang.Object
edu.cmu.tetrad.search.utils.GaussianProcessRBF
GaussianProcessRBF simulates a Gaussian Process (GP) with a Radial Basis Function (RBF) kernel. It provides
functionality for generating simulated function values based on the covariance matrix of the RBF kernel and
evaluating the function at arbitrary points using interpolation.
-
Constructor Summary
ConstructorsConstructorDescriptionGaussianProcessRBF(double[] xValues, double lengthScale, double amplitude, double noiseStd) Constructor for Gaussian Process simulation using an RBF kernel. -
Method Summary
Modifier and TypeMethodDescriptiondoubleadjustedEvaluate(double x) Evaluates the adjusted value of the simulated function at a given point.doubleevaluate(double x) Evaluates the simulated function at a given point using interpolation.static voidThe main method serves as the entry point for the Gaussian Process simulation demonstration.
-
Constructor Details
-
GaussianProcessRBF
public GaussianProcessRBF(double[] xValues, double lengthScale, double amplitude, double noiseStd) Constructor for Gaussian Process simulation using an RBF kernel.- Parameters:
xValues- Input points for simulation.lengthScale- Length scale parameter for the RBF kernel.amplitude- Amplitude parameter for the RBF kernel.noiseStd- Small noise for numerical stability.
-
-
Method Details
-
main
The main method serves as the entry point for the Gaussian Process simulation demonstration. It creates a series of input points, initializes the simulation parameters, and uses those to create and evaluate a Gaussian Process with an RBF kernel.- Parameters:
args- Command-line arguments passed to the program, not used in this demonstration.
-
evaluate
public double evaluate(double x) Evaluates the simulated function at a given point using interpolation.- Parameters:
x- The input value.- Returns:
- The interpolated function value.
-
adjustedEvaluate
public double adjustedEvaluate(double x) Evaluates the adjusted value of the simulated function at a given point. The adjustment is done by subtracting the function value at 0.- Parameters:
x- The input value at which the adjusted function is evaluated.- Returns:
- The adjusted function value at the input point.
-