Package edu.cmu.tetrad.search.score
Class MvpScore
java.lang.Object
edu.cmu.tetrad.search.score.MvpScore
- All Implemented Interfaces:
- Score
Implements a mixed variable polynomial BIC score. The reference is here:
 
Andrews, B., Ramsey, J., & Cooper, G. F. (2018). Scoring Bayesian networks of mixed variables. International journal of data science and analytics, 6, 3-18.
- Version:
- $Id: $Id
- Author:
- Bryan Andrews
- 
Constructor SummaryConstructors
- 
Method SummaryModifier and TypeMethodDescriptionbooleandetermines(List<Node> z, Node y) Returns true iff the score determines the edge between x and y.intReturns the max degree, by default 1000.intReturns the sample size.The variables of the score.booleanisEffectEdge(double bump) Returns true iff the edge between x and y is an effect edge.doublelocalScore(int i, int... parents) The local score of the child given its parents.doublelocalScoreDiff(int x, int y, int[] z) Returns localScore(y | z, x) - localScore(y | z).Methods inherited from class java.lang.Objectequals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitMethods inherited from interface edu.cmu.tetrad.search.score.Scoreappend, getVariable, localScore, localScore, localScoreDiff, toString
- 
Constructor Details- 
MvpScorepublic MvpScore(DataSet dataSet, double structurePrior, int fDegree, boolean discretize, int effectiveSampleSize) Constructs an MvpScore instance with the given dataset and parameters.- Parameters:
- dataSet- The dataset to be used for scoring. Must not be null.
- structurePrior- The prior over structures, influencing the scoring model.
- fDegree- The degree of freedom adjustment for the scoring algorithm.
- discretize- Whether the data should be discretized (true) or not (false).
- effectiveSampleSize- The effective sample size to be used; if less than 0, the actual sample size of the dataset is used.
- Throws:
- NullPointerException- If the dataSet is null.
 
 
- 
- 
Method Details- 
localScorepublic double localScore(int i, int... parents) The local score of the child given its parents.- Specified by:
- localScorein interface- Score
- Parameters:
- i- The child.
- parents- The parents.
- Returns:
- The local score.
 
- 
localScoreDiffpublic double localScoreDiff(int x, int y, int[] z) Returns localScore(y | z, x) - localScore(y | z).- Specified by:
- localScoreDiffin interface- Score
- Parameters:
- x- A node.
- y- The node.
- z- A set of nodes.
- Returns:
- The score difference.
 
- 
getSampleSizepublic int getSampleSize()Returns the sample size.- Specified by:
- getSampleSizein interface- Score
- Returns:
- This size.
 
- 
isEffectEdgepublic boolean isEffectEdge(double bump) Returns true iff the edge between x and y is an effect edge.A method for FGES returning a judgment of whether an edge with a given bump counts as a effect edge. - Specified by:
- isEffectEdgein interface- Score
- Parameters:
- bump- The bump.
- Returns:
- True iff the edge between x and y is an effect edge.
- See Also:
 
- 
getVariablesThe variables of the score.Returns the list of variables. - Specified by:
- getVariablesin interface- Score
- Returns:
- This list.
 
- 
getMaxDegreepublic int getMaxDegree()Returns the max degree, by default 1000.Returns an estimate of the maximum degree of the graph for some algorithms. - Specified by:
- getMaxDegreein interface- Score
- Returns:
- The max degree.
 
- 
determinesReturns true iff the score determines the edge between x and y.Returns a judgment of whether the variable in z determine y exactly. - Specified by:
- determinesin interface- Score
- Parameters:
- z- The set of nodes.
- y- The node.
- Returns:
- True iff the score determines the edge between x and y.
 
 
-