Class Gffc

java.lang.Object
edu.cmu.tetrad.search.Gffc

public class Gffc extends Object
Generalized Find Factor Clusters (GFFC). This generalized FOFC and FTFC to first find clusters using pure 2-tads (pure tetrads) and then clusters using pure 3-tads (pure sextads) out of the remaining variables. We do not use an n-tad test here since we need to check rank, so we will check rank directly. (This is equivqalent to using the CCA n-tad test.)

Kummerfeld, E., & Ramsey, J. (2016, August). Causal clustering for 1-factor measurement models. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1655-1664).

Spirtes, P., Glymour, C. N., Scheines, R., & Heckerman, D. (2000). Causation, prediction, and search. MIT press.

Version:
$Id: $Id
Author:
erichkummerfeld, peterspirtes, josephramsey
See Also:
  • Constructor Summary

    Constructors
    Constructor
    Description
    Gffc(DataSet dataSet, double alpha, int rMax, int ess)
    Constructs a new Gffc instance with the specified data set, alpha value, maximum rank (rMax), and effective sample size (ess).
  • Method Summary

    Modifier and Type
    Method
    Description
    Runs the search and returns a graph of clusters with the ir respective latent parents.
    void
    setVerbose(boolean verbose)
    Enables or disables verbose mode for the current instance and associated components.

    Methods inherited from class java.lang.Object

    equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
  • Constructor Details

    • Gffc

      public Gffc(DataSet dataSet, double alpha, int rMax, int ess)
      Constructs a new Gffc instance with the specified data set, alpha value, maximum rank (rMax), and effective sample size (ess). This implementation initializes several internal structures used for clustering and correlation computations.
      Parameters:
      dataSet - The data set containing the variables and data for analysis.
      alpha - The significance level for statistical tests, typically a small value like 0.05.
      rMax - The maximum rank for search operations, influencing the depth and computational expense.
      ess - The effective sample size, used for statistical adjustments in computations.
  • Method Details

    • findClusters

      public Map<List<Integer>,Integer> findClusters()
      Runs the search and returns a graph of clusters with the ir respective latent parents.
      Returns:
      This a map from discovered clusters to their ranks.
    • setVerbose

      public void setVerbose(boolean verbose)
      Enables or disables verbose mode for the current instance and associated components.
      Parameters:
      verbose - a boolean value where true enables verbose mode and false disables it.