Package edu.cmu.tetrad.hybridcg
Class HybridCgModel.HybridCgIm.HybridEstimator
java.lang.Object
edu.cmu.tetrad.hybridcg.HybridCgModel.HybridCgIm.HybridEstimator
- Enclosing class:
- HybridCgModel.HybridCgIm
The HybridEstimator class estimates Hybrid Causal Graphical Models using Maximum Likelihood Estimation (MLE).
 It supports both discrete and continuous variables and handles mixed parent configurations.
 This class provides functionalities to compute probabilities and coefficients, based on the provided
 Hybrid Causal Graphical Model (HybridCgPm) and an associated data set (DataSet).
- 
Constructor SummaryConstructorsConstructorDescriptionConstructs a new instance of the HybridEstimator class using default values.HybridEstimator(double alpha, boolean shareVarianceAcrossRows) Constructs a new instance of the HybridEstimator class with the specified parameters.
- 
Method SummaryModifier and TypeMethodDescriptionmle(HybridCgModel.HybridCgPm pm, DataSet data) Estimates a HybridCgIm model from the given HybridCgPm and DataSet.
- 
Constructor Details- 
HybridEstimatorpublic HybridEstimator()Constructs a new instance of the HybridEstimator class using default values. Specifically, the `alpha` parameter is set to 1.0, and the `shareVarianceAcrossRows` parameter is set to false.This constructor is intended to provide a convenient way to initialize a HybridEstimator with standard default configurations. 
- 
HybridEstimatorpublic HybridEstimator(double alpha, boolean shareVarianceAcrossRows) Constructs a new instance of the HybridEstimator class with the specified parameters.- Parameters:
- alpha- the regularization parameter to control the estimation process
- shareVarianceAcrossRows- whether to share the variance across rows in the estimation process
 
 
- 
- 
Method Details- 
mleEstimates a HybridCgIm model from the given HybridCgPm and DataSet.- Parameters:
- pm- the HybridCgPm
- data- the DataSet
- Returns:
- the estimated HybridCgIm model
 
 
-