Class NumGenuineAdjacenciesInPag

java.lang.Object
edu.cmu.tetrad.algcomparison.statistic.NumGenuineAdjacenciesInPag
All Implemented Interfaces:
Statistic, Serializable

public class NumGenuineAdjacenciesInPag extends Object implements Statistic
The number of genuine adjacencies in an estimated PAG compared to the true PAG. These are edges that are not induced edges or covering colliders or non-colliders.
Version:
$Id: $Id
Author:
josephramsey
See Also:
  • Constructor Details

    • NumGenuineAdjacenciesInPag

      public NumGenuineAdjacenciesInPag()
      Constructs the statistic.
  • Method Details

    • getAbbreviation

      public String getAbbreviation()
      The abbreviation for the statistic. This will be printed at the top of each column.
      Specified by:
      getAbbreviation in interface Statistic
      Returns:
      This abbreviation.
    • getDescription

      public String getDescription()
      Returns a short one-line description of this statistic. This will be printed at the beginning of the report.
      Specified by:
      getDescription in interface Statistic
      Returns:
      This description.
    • getValue

      public double getValue(Graph trueGraph, Graph estGraph, DataModel dataModel)
      Returns the value of this statistic, given the true graph and the estimated graph.
      Specified by:
      getValue in interface Statistic
      Parameters:
      trueGraph - The true graph (DAG, CPDAG, PAG_of_the_true_DAG).
      estGraph - The estimated graph (same type).
      dataModel - The data model.
      Returns:
      The value of the statistic.
    • getNormValue

      public double getNormValue(double value)
      Returns a mapping of the statistic to the interval [0, 1], with higher being better. This is used for a calculation of a utility for an algorithm. If the statistic is already between 0 and 1, you can just return the statistic.
      Specified by:
      getNormValue in interface Statistic
      Parameters:
      value - The value of the statistic.
      Returns:
      The weight of the statistic, 0 to 1, higher is better.