Package edu.cmu.tetrad.data
Class DataUtils
java.lang.Object
edu.cmu.tetrad.data.DataUtils
Some static utility methods for dealing with data sets.
- Version:
- $Id: $Id
- Author:
- Various folks.
-
Method Summary
Modifier and TypeMethodDescriptionstatic DataSet
choleskySimulation.static boolean
containsMissingValue
(DataSet data) containsMissingValue.static boolean
containsMissingValue
(Matrix data) containsMissingValue.static Matrix
cov.createContinuousVariables
(String[] varNames) createContinuousVariables.static String
defaultCategory
(int index) defaultCategory.static DataSet
A discrete data set used to construct some other serializable instances.static double
getEss
(ICovarianceMatrix covariances) Returns the equivalent sample size, assuming all units are equally correlated and all unit variances are equal.getExampleNonsingular
(ICovarianceMatrix covarianceMatrix, int depth) getExampleNonsingular.static boolean
States whether the given column of the given data set is binary.static Vector
mean.static Vector
means
(double[][] data) Column major data.static Vector
means.static double[]
ranks
(double[] x) ranks.static Matrix
subMatrix.static Matrix
subMatrix.static Matrix
subMatrix.static Matrix
subMatrix.
-
Method Details
-
isBinary
States whether the given column of the given data set is binary.- Parameters:
data
- Ibid.column
- Ibid.- Returns:
- true iff the column is binary.
-
defaultCategory
defaultCategory.
- Parameters:
index
- Ond plus the given index.- Returns:
- the default category for index i. (The default category should ALWAYS be obtained by calling this method.)
-
discreteSerializableInstance
A discrete data set used to construct some other serializable instances.- Returns:
- a
DataSet
object
-
containsMissingValue
containsMissingValue.
- Parameters:
data
- aMatrix
object- Returns:
- true iff the data sets contains a missing value.
-
containsMissingValue
containsMissingValue.
- Parameters:
data
- aDataSet
object- Returns:
- a boolean
-
createContinuousVariables
createContinuousVariables.
-
subMatrix
subMatrix.
- Parameters:
m
- aICovarianceMatrix
objectx
- aNode
objecty
- aNode
objectz
- aList
object- Returns:
- the submatrix of m with variables in the order of the x variables.
-
subMatrix
subMatrix.
-
subMatrix
subMatrix.
-
subMatrix
public static Matrix subMatrix(ICovarianceMatrix m, Map<Node, Integer> indexMap, Node x, Node y, List<Node> z) subMatrix.
- Parameters:
m
- aICovarianceMatrix
objectindexMap
- aMap
objectx
- aNode
objecty
- aNode
objectz
- aList
object- Returns:
- the submatrix of m with variables in the order of the x variables.
-
means
means.
-
means
Column major data.- Parameters:
data
- an array ofdouble
objects- Returns:
- a
Vector
object
-
cov
cov.
-
mean
mean.
-
choleskySimulation
choleskySimulation.
- Parameters:
cov
- The variables and covariance matrix over the variables.- Returns:
- The simulated data.
-
ranks
public static double[] ranks(double[] x) ranks.
- Parameters:
x
- an array ofdouble
objects- Returns:
- an array of
double
objects
-
getExampleNonsingular
getExampleNonsingular.
- Parameters:
covarianceMatrix
- aICovarianceMatrix
objectdepth
- a int- Returns:
- a
List
object
-
getEss
Returns the equivalent sample size, assuming all units are equally correlated and all unit variances are equal.- Parameters:
covariances
- aICovarianceMatrix
object- Returns:
- a double
-