Package edu.cmu.tetrad.search.score
Class DegenerateGaussianScore
java.lang.Object
edu.cmu.tetrad.search.score.DegenerateGaussianScore
- All Implemented Interfaces:
- Score
=This implements the degenerate Gaussian BIC score for FGES. The degenerate Gaussian score replaces each discrete
 variable in the data with a list of 0/1 continuous indicator columns for each of the categories but one (the last one
 implied). This data, now all continuous, is given to the SEM BIC score and methods used to help determine conditional
 independence for the mixed continuous/discrete case from this information. The references is as follows:
 
Andrews, B., Ramsey, J., & Cooper, G. F. (2019, July). Learning high-dimensional directed acyclic graphs with mixed data-types. In The 2019 ACM SIGKDD Workshop on Causal Discovery (pp. 4-21). PMLR.
As for all scores in Tetrad, higher scores mean more dependence, and negative scores indicate independence.
- Author:
- Bryan Andrews
- 
Constructor SummaryConstructorsConstructorDescriptionDegenerateGaussianScore(DataSet dataSet, boolean precomputeCovariances) Constructs the score using a dataset.
- 
Method SummaryModifier and TypeMethodDescriptionintReturns the max degree.doubleReturns the penalty discount.intReturns the sample sizE.Returns the list of variables.booleanisEffectEdge(double bump) True if an edge with the given bump is an effect edge.doublelocalScore(int i, int... parents) Calculates the sample likelihood and BIC score for i given its parents in a simple SEM model.doublelocalScoreDiff(int x, int y, int[] z) Calculates localScore(y | z, x) - localScore(z).voidsetPenaltyDiscount(double penaltyDiscount) Sets the penalty discount.toString()Returns a string for this object.Methods inherited from class java.lang.Objectclone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitMethods inherited from interface edu.cmu.tetrad.search.score.Scoreappend, determines, getVariable, localScore, localScore, localScoreDiff
- 
Constructor Details- 
DegenerateGaussianScoreConstructs the score using a dataset.- Parameters:
- dataSet- The dataset.
- precomputeCovariances- True if covariances should be precomputed.
 
 
- 
- 
Method Details- 
localScorepublic double localScore(int i, int... parents) Calculates the sample likelihood and BIC score for i given its parents in a simple SEM model. s- Specified by:
- localScorein interface- Score
- Parameters:
- i- The child indes.
- parents- The indices of the parents.
- Returns:
- The score.
 
- 
localScoreDiffpublic double localScoreDiff(int x, int y, int[] z) Calculates localScore(y | z, x) - localScore(z).- Specified by:
- localScoreDiffin interface- Score
- Parameters:
- x- A node.
- y- TAhe node.
- z- A set of nodes.
- Returns:
- The score difference.
 
- 
getVariablesReturns the list of variables.- Specified by:
- getVariablesin interface- Score
- Returns:
- The list of variables.
 
- 
isEffectEdgepublic boolean isEffectEdge(double bump) True if an edge with the given bump is an effect edge.- Specified by:
- isEffectEdgein interface- Score
- Parameters:
- bump- The bump.
- Returns:
- True if so.
 
- 
getSampleSizepublic int getSampleSize()Returns the sample sizE.- Specified by:
- getSampleSizein interface- Score
- Returns:
- The sample size.
 
- 
getMaxDegreepublic int getMaxDegree()Returns the max degree.- Specified by:
- getMaxDegreein interface- Score
- Returns:
- The max degree.
 
- 
toStringReturns a string for this object.
- 
getPenaltyDiscountpublic double getPenaltyDiscount()Returns the penalty discount.- Returns:
- The penalty discount.
 
- 
setPenaltyDiscountpublic void setPenaltyDiscount(double penaltyDiscount) Sets the penalty discount.- Parameters:
- penaltyDiscount- The penalty discount.
 
 
-