Uses of Interface
edu.cmu.tetrad.graph.Graph
Packages that use Graph
Package
Description
Contains classes for searching for (mostly structural) causal models given data.
Contains classes for various sorts of scores for running score-based algorithms.
Contains classes for running conditional independence tests for various sorts of data.
Contains some utility classes for search algorithms.
Contains some classes that aren't ready for prime time.
- 
Uses of Graph in edu.cmu.tetrad.algcomparisonMethods in edu.cmu.tetrad.algcomparison with parameters of type GraphModifier and TypeMethodDescriptionstatic @NotNull StringCompareTwoGraphs.getEdgewiseComparisonString(Graph trueGraph, Graph targetGraph) Returns an edgewise comparison of two graphs.static @NotNull StringCompareTwoGraphs.getMisclassificationTable(Graph trueGraph, Graph targetGraph) Returns a misclassification comparison of two graphs.static StringCompareTwoGraphs.getStatsListTable(Graph trueGraph, Graph targetGraph) Returns a string representing a table of statistics that can be printed.static StringCompareTwoGraphs.getStatsListTable(Graph trueGraph, Graph targetGraph, DataModel dataModel) Returns a string representing a table of statistics that can be printed.
- 
Uses of Graph in edu.cmu.tetrad.algcomparison.algorithmMethods in edu.cmu.tetrad.algcomparison.algorithm that return GraphModifier and TypeMethodDescriptionAlgorithm.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.FirstInflection.getComparisonGraph(Graph graph) StabilitySelection.getComparisonGraph(Graph graph) StARS.getComparisonGraph(Graph graph) Algorithm.search(DataModel dataSet, Parameters parameters) Runs the search.FirstInflection.search(DataModel dataSet, Parameters parameters) MultiDataSetAlgorithm.search(List<DataModel> dataSets, Parameters parameters) Runs the search.StabilitySelection.search(DataModel dataSet, Parameters parameters) StARS.search(DataModel dataSet, Parameters parameters) Methods in edu.cmu.tetrad.algcomparison.algorithm that return types with arguments of type GraphModifier and TypeMethodDescriptionReturnsBootstrapGraphs.getBootstrapGraphs()Returns the bootstrap graphs.Methods in edu.cmu.tetrad.algcomparison.algorithm with parameters of type GraphModifier and TypeMethodDescriptionstatic AlgorithmAlgorithmFactory.create(Class<? extends Algorithm> algoClass, IndependenceWrapper test, ScoreWrapper score, Graph externalGraph) Creates an algorithm.static AlgorithmAlgorithmFactory.create(Class<? extends Algorithm> algoClass, Class<? extends IndependenceWrapper> indTestClass, Class<? extends ScoreWrapper> scoreClass, Graph externalGraph) Creates an algorithm.Algorithm.getComparisonGraph(Graph graph) Returns that graph that the result should be compared to.FirstInflection.getComparisonGraph(Graph graph) StabilitySelection.getComparisonGraph(Graph graph) StARS.getComparisonGraph(Graph graph) 
- 
Uses of Graph in edu.cmu.tetrad.algcomparison.algorithm.clusterMethods in edu.cmu.tetrad.algcomparison.algorithm.cluster that return GraphModifier and TypeMethodDescriptionBpc.getComparisonGraph(Graph graph) Fofc.getComparisonGraph(Graph graph) Ftfc.getComparisonGraph(Graph graph) Bpc.search(DataModel dataSet, Parameters parameters) Fofc.search(DataModel dataSet, Parameters parameters) Ftfc.search(DataModel dataSet, Parameters parameters) Methods in edu.cmu.tetrad.algcomparison.algorithm.cluster with parameters of type GraphModifier and TypeMethodDescriptionBpc.getComparisonGraph(Graph graph) Fofc.getComparisonGraph(Graph graph) Ftfc.getComparisonGraph(Graph graph) 
- 
Uses of Graph in edu.cmu.tetrad.algcomparison.algorithm.continuous.dagMethods in edu.cmu.tetrad.algcomparison.algorithm.continuous.dag that return GraphModifier and TypeMethodDescriptionDagma.getComparisonGraph(Graph graph) DirectLingam.getComparisonGraph(Graph graph) IcaLingam.getComparisonGraph(Graph graph) IcaLingD.getComparisonGraph(Graph graph) Dagma.search(DataModel dataSet, Parameters parameters) DirectLingam.search(DataModel dataSet, Parameters parameters) IcaLingam.search(DataModel dataSet, Parameters parameters) IcaLingD.search(DataModel dataSet, Parameters parameters) Methods in edu.cmu.tetrad.algcomparison.algorithm.continuous.dag that return types with arguments of type GraphModifier and TypeMethodDescriptionDagma.getBootstrapGraphs()DirectLingam.getBootstrapGraphs()IcaLingam.getBootstrapGraphs()IcaLingD.getBootstrapGraphs()Methods in edu.cmu.tetrad.algcomparison.algorithm.continuous.dag with parameters of type GraphModifier and TypeMethodDescriptionDagma.getComparisonGraph(Graph graph) DirectLingam.getComparisonGraph(Graph graph) IcaLingam.getComparisonGraph(Graph graph) IcaLingD.getComparisonGraph(Graph graph) 
- 
Uses of Graph in edu.cmu.tetrad.algcomparison.algorithm.externalMethods in edu.cmu.tetrad.algcomparison.algorithm.external that return GraphModifier and TypeMethodDescriptionExternalAlgorithmBnlearnMmhc.getComparisonGraph(Graph graph) Returns the CPDAG of the supplied DAG.ExternalAlgorithmBNTPc.getComparisonGraph(Graph graph) Returns the CPDAG of the supplied DAG.ExternalAlgorithmIntersection.getComparisonGraph(Graph graph) Returns the CPDAG of the supplied DAG.ExternalAlgorithmPcalgGes.getComparisonGraph(Graph graph) Returns the CPDAG of the supplied DAG.ExternalAlgorithmPcalgPc.getComparisonGraph(Graph graph) Returns the CPDAG of the supplied DAG.ExternalAlgorithmTetrad.getComparisonGraph(Graph graph) Returns the CPDAG of the supplied DAG.static GraphExternalAlgorithmPcalgPc.loadGraphPcAlgMatrix(DataSet dataSet) ExternalAlgorithmBnlearnMmhc.search(DataModel dataSet, Parameters parameters) Reads in the relevant graph from the file (see above) and returns it.ExternalAlgorithmBNTPc.search(DataModel dataSet, Parameters parameters) Reads in the relevant graph from the file (see above) and returns it.ExternalAlgorithmIntersection.search(DataModel dataSet, Parameters parameters) Reads in the relevant graph from the file (see above) and returns it.ExternalAlgorithmPcalgGes.search(DataModel dataSet, Parameters parameters) Reads in the relevant graph from the file (see above) and returns it.ExternalAlgorithmPcalgPc.search(DataModel dataSet, Parameters parameters) Reads in the relevant graph from the file (see above) and returns it.ExternalAlgorithmTetrad.search(DataModel dataSet, Parameters parameters) Reads in the relevant graph from the file and returns it.Methods in edu.cmu.tetrad.algcomparison.algorithm.external with parameters of type GraphModifier and TypeMethodDescriptionExternalAlgorithmBnlearnMmhc.getComparisonGraph(Graph graph) Returns the CPDAG of the supplied DAG.ExternalAlgorithmBNTPc.getComparisonGraph(Graph graph) Returns the CPDAG of the supplied DAG.ExternalAlgorithmIntersection.getComparisonGraph(Graph graph) Returns the CPDAG of the supplied DAG.ExternalAlgorithmPcalgGes.getComparisonGraph(Graph graph) Returns the CPDAG of the supplied DAG.ExternalAlgorithmPcalgPc.getComparisonGraph(Graph graph) Returns the CPDAG of the supplied DAG.ExternalAlgorithmTetrad.getComparisonGraph(Graph graph) Returns the CPDAG of the supplied DAG.
- 
Uses of Graph in edu.cmu.tetrad.algcomparison.algorithm.mixedMethods in edu.cmu.tetrad.algcomparison.algorithm.mixed that return GraphModifier and TypeMethodDescriptionMgm.getComparisonGraph(Graph graph) Mgm.search(DataModel ds, Parameters parameters) Methods in edu.cmu.tetrad.algcomparison.algorithm.mixed with parameters of type Graph
- 
Uses of Graph in edu.cmu.tetrad.algcomparison.algorithm.multiMethods in edu.cmu.tetrad.algcomparison.algorithm.multi that return GraphModifier and TypeMethodDescriptionFask.getComparisonGraph(Graph graph) FaskConcatenated.getComparisonGraph(Graph graph) FaskLofsConcatenated.getComparisonGraph(Graph graph) FaskVote.getComparisonGraph(Graph graph) FasLofs.getComparisonGraph(Graph graph) FciIod.getComparisonGraph(Graph graph) FgesConcatenated.getComparisonGraph(Graph graph) Images.getComparisonGraph(Graph graph) ImagesBoss.getComparisonGraph(Graph graph) Fask.search(DataModel dataSet, Parameters parameters) FaskConcatenated.search(DataModel dataSet, Parameters parameters) FaskConcatenated.search(List<DataModel> dataSets, Parameters parameters) FaskLofsConcatenated.search(DataModel dataSet, Parameters parameters) FaskLofsConcatenated.search(List<DataModel> dataModels, Parameters parameters) FaskVote.search(DataModel dataSet, Parameters parameters) FaskVote.search(List<DataModel> dataSets, Parameters parameters) FasLofs.search(DataModel dataSet, Parameters parameters) FciIod.search(DataModel dataSet, Parameters parameters) FciIod.search(List<DataModel> dataSets, Parameters parameters) FgesConcatenated.search(DataModel dataSet, Parameters parameters) FgesConcatenated.search(List<DataModel> dataModels, Parameters parameters) Images.search(DataModel dataSet, Parameters parameters) Images.search(List<DataModel> dataSets, Parameters parameters) ImagesBoss.search(DataModel dataSet, Parameters parameters) ImagesBoss.search(List<DataModel> dataSets, Parameters parameters) Methods in edu.cmu.tetrad.algcomparison.algorithm.multi with parameters of type GraphModifier and TypeMethodDescriptionFask.getComparisonGraph(Graph graph) FaskConcatenated.getComparisonGraph(Graph graph) FaskLofsConcatenated.getComparisonGraph(Graph graph) FaskVote.getComparisonGraph(Graph graph) FasLofs.getComparisonGraph(Graph graph) FciIod.getComparisonGraph(Graph graph) FgesConcatenated.getComparisonGraph(Graph graph) Images.getComparisonGraph(Graph graph) ImagesBoss.getComparisonGraph(Graph graph) 
- 
Uses of Graph in edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdagMethods in edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag that return GraphModifier and TypeMethodDescriptionBoss.getComparisonGraph(Graph graph) BossLingam.getComparisonGraph(Graph graph) Cpc.getComparisonGraph(Graph graph) Fas.getComparisonGraph(Graph graph) Fges.getComparisonGraph(Graph graph) FgesMb.getComparisonGraph(Graph graph) FgesMeasurement.getComparisonGraph(Graph graph) GesMe.getComparisonGraph(Graph graph) Grasp.getComparisonGraph(Graph graph) Pc.getComparisonGraph(Graph graph) Pcd.getComparisonGraph(Graph graph) PcMb.getComparisonGraph(Graph graph) RestrictedBoss.getComparisonGraph(Graph graph) SingleGraphAlg.getComparisonGraph(Graph graph) Sp.getComparisonGraph(Graph graph) Boss.search(DataModel dataModel, Parameters parameters) BossLingam.search(DataModel dataModel, Parameters parameters) Cpc.search(DataModel dataModel, Parameters parameters) Fas.search(DataModel dataSet, Parameters parameters) Fges.search(DataModel dataModel, Parameters parameters) FgesMb.search(DataModel dataSet, Parameters parameters) FgesMeasurement.search(DataModel dataModel, Parameters parameters) GesMe.search(DataModel dataSet, Parameters parameters) Grasp.search(DataModel dataModel, Parameters parameters) Pc.search(DataModel dataModel, Parameters parameters) Pcd.search(DataModel dataSet, Parameters parameters) PcMb.search(DataModel dataSet, Parameters parameters) RestrictedBoss.search(DataModel dataModel, Parameters parameters) SingleGraphAlg.search(DataModel dataSet, Parameters parameters) Sp.search(DataModel dataModel, Parameters parameters) Methods in edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag that return types with arguments of type GraphModifier and TypeMethodDescriptionBoss.getBootstrapGraphs()BossLingam.getBootstrapGraphs()Cpc.getBootstrapGraphs()Fas.getBootstrapGraphs()Fges.getBootstrapGraphs()FgesMb.getBootstrapGraphs()FgesMeasurement.getBootstrapGraphs()GesMe.getBootstrapGraphs()Grasp.getBootstrapGraphs()Pc.getBootstrapGraphs()Pcd.getBootstrapGraphs()PcMb.getBootstrapGraphs()RestrictedBoss.getBootstrapGraphs()Sp.getBootstrapGraphs()Methods in edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag with parameters of type GraphModifier and TypeMethodDescriptionBoss.getComparisonGraph(Graph graph) BossLingam.getComparisonGraph(Graph graph) Cpc.getComparisonGraph(Graph graph) Fas.getComparisonGraph(Graph graph) Fges.getComparisonGraph(Graph graph) FgesMb.getComparisonGraph(Graph graph) FgesMeasurement.getComparisonGraph(Graph graph) GesMe.getComparisonGraph(Graph graph) Grasp.getComparisonGraph(Graph graph) Pc.getComparisonGraph(Graph graph) Pcd.getComparisonGraph(Graph graph) PcMb.getComparisonGraph(Graph graph) RestrictedBoss.getComparisonGraph(Graph graph) SingleGraphAlg.getComparisonGraph(Graph graph) Sp.getComparisonGraph(Graph graph) Constructors in edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag with parameters of type Graph
- 
Uses of Graph in edu.cmu.tetrad.algcomparison.algorithm.oracle.pagMethods in edu.cmu.tetrad.algcomparison.algorithm.oracle.pag that return GraphModifier and TypeMethodDescriptionBfci.getComparisonGraph(Graph graph) Ccd.getComparisonGraph(Graph graph) Cfci.getComparisonGraph(Graph graph) Fci.getComparisonGraph(Graph graph) FciMax.getComparisonGraph(Graph graph) Gfci.getComparisonGraph(Graph graph) GraspFci.getComparisonGraph(Graph graph) PagSampleRfci.getComparisonGraph(Graph graph) Rfci.getComparisonGraph(Graph graph) RfciBsc.getComparisonGraph(Graph graph) SpFci.getComparisonGraph(Graph graph) SvarFci.getComparisonGraph(Graph graph) SvarGfci.getComparisonGraph(Graph graph) Bfci.search(DataModel dataModel, Parameters parameters) Ccd.search(DataModel dataSet, Parameters parameters) Cfci.search(DataModel dataModel, Parameters parameters) Fci.search(DataModel dataModel, Parameters parameters) FciMax.search(DataModel dataModel, Parameters parameters) Gfci.search(DataModel dataModel, Parameters parameters) GraspFci.search(DataModel dataModel, Parameters parameters) PagSampleRfci.search(DataModel dataSet, Parameters parameters) Rfci.search(DataModel dataModel, Parameters parameters) RfciBsc.search(DataModel dataSet, Parameters parameters) SpFci.search(DataModel dataModel, Parameters parameters) SvarFci.search(DataModel dataModel, Parameters parameters) SvarGfci.search(DataModel dataModel, Parameters parameters) Methods in edu.cmu.tetrad.algcomparison.algorithm.oracle.pag that return types with arguments of type GraphModifier and TypeMethodDescriptionBfci.getBootstrapGraphs()Ccd.getBootstrapGraphs()Cfci.getBootstrapGraphs()Fci.getBootstrapGraphs()FciMax.getBootstrapGraphs()Gfci.getBootstrapGraphs()GraspFci.getBootstrapGraphs()Rfci.getBootstrapGraphs()SpFci.getBootstrapGraphs()SvarFci.getBootstrapGraphs()SvarGfci.getBootstrapGraphs()Methods in edu.cmu.tetrad.algcomparison.algorithm.oracle.pag with parameters of type GraphModifier and TypeMethodDescriptionBfci.getComparisonGraph(Graph graph) Ccd.getComparisonGraph(Graph graph) Cfci.getComparisonGraph(Graph graph) Fci.getComparisonGraph(Graph graph) FciMax.getComparisonGraph(Graph graph) Gfci.getComparisonGraph(Graph graph) GraspFci.getComparisonGraph(Graph graph) PagSampleRfci.getComparisonGraph(Graph graph) Rfci.getComparisonGraph(Graph graph) RfciBsc.getComparisonGraph(Graph graph) SpFci.getComparisonGraph(Graph graph) SvarFci.getComparisonGraph(Graph graph) SvarGfci.getComparisonGraph(Graph graph) 
- 
Uses of Graph in edu.cmu.tetrad.algcomparison.algorithm.oracle.patternMethods in edu.cmu.tetrad.algcomparison.algorithm.oracle.pattern that return GraphModifier and TypeMethodDescriptionCstar.getComparisonGraph(Graph graph) Cstar.search(DataModel dataSet, Parameters parameters) Methods in edu.cmu.tetrad.algcomparison.algorithm.oracle.pattern with parameters of type Graph
- 
Uses of Graph in edu.cmu.tetrad.algcomparison.algorithm.otherMethods in edu.cmu.tetrad.algcomparison.algorithm.other that return GraphModifier and TypeMethodDescriptionFactorAnalysis.getComparisonGraph(Graph graph) Glasso.getComparisonGraph(Graph graph) FactorAnalysis.search(DataModel ds, Parameters parameters) Glasso.search(DataModel ds, Parameters parameters) Methods in edu.cmu.tetrad.algcomparison.algorithm.other with parameters of type GraphModifier and TypeMethodDescriptionFactorAnalysis.getComparisonGraph(Graph graph) Glasso.getComparisonGraph(Graph graph) 
- 
Uses of Graph in edu.cmu.tetrad.algcomparison.algorithm.pairwiseMethods in edu.cmu.tetrad.algcomparison.algorithm.pairwise that return GraphModifier and TypeMethodDescriptionEb.getComparisonGraph(Graph graph) FaskPw.getComparisonGraph(Graph graph) R1.getComparisonGraph(Graph graph) R2.getComparisonGraph(Graph graph) R3.getComparisonGraph(Graph graph) Rskew.getComparisonGraph(Graph graph) RskewE.getComparisonGraph(Graph graph) Skew.getComparisonGraph(Graph graph) SkewE.getComparisonGraph(Graph graph) Tanh.getComparisonGraph(Graph graph) Eb.search(DataModel dataSet, Parameters parameters) FaskPw.search(DataModel dataModel, Parameters parameters) R1.search(DataModel dataSet, Parameters parameters) R2.search(DataModel dataSet, Parameters parameters) R3.search(DataModel dataSet, Parameters parameters) Rskew.search(DataModel dataSet, Parameters parameters) RskewE.search(DataModel dataSet, Parameters parameters) Skew.search(DataModel dataSet, Parameters parameters) SkewE.search(DataModel dataSet, Parameters parameters) Tanh.search(DataModel dataSet, Parameters parameters) Methods in edu.cmu.tetrad.algcomparison.algorithm.pairwise with parameters of type GraphModifier and TypeMethodDescriptionEb.getComparisonGraph(Graph graph) FaskPw.getComparisonGraph(Graph graph) R1.getComparisonGraph(Graph graph) R2.getComparisonGraph(Graph graph) R3.getComparisonGraph(Graph graph) Rskew.getComparisonGraph(Graph graph) RskewE.getComparisonGraph(Graph graph) Skew.getComparisonGraph(Graph graph) SkewE.getComparisonGraph(Graph graph) Tanh.getComparisonGraph(Graph graph) 
- 
Uses of Graph in edu.cmu.tetrad.algcomparison.comparegraphsConstructors in edu.cmu.tetrad.algcomparison.comparegraphs with parameters of type Graph
- 
Uses of Graph in edu.cmu.tetrad.algcomparison.graphMethods in edu.cmu.tetrad.algcomparison.graph that return GraphModifier and TypeMethodDescriptionCyclic.createGraph(Parameters parameters) ErdosRenyi.createGraph(Parameters parameters) RandomForward.createGraph(Parameters parameters) RandomGraph.createGraph(Parameters parameters) RandomSingleFactorMim.createGraph(Parameters parameters) RandomTwoFactorMim.createGraph(Parameters parameters) ScaleFree.createGraph(Parameters parameters) SingleGraph.createGraph(Parameters parameters) Constructors in edu.cmu.tetrad.algcomparison.graph with parameters of type Graph
- 
Uses of Graph in edu.cmu.tetrad.algcomparison.independenceMethods in edu.cmu.tetrad.algcomparison.independence with parameters of type GraphModifier and TypeMethodDescriptionvoidvoidConstructors in edu.cmu.tetrad.algcomparison.independence with parameters of type Graph
- 
Uses of Graph in edu.cmu.tetrad.algcomparison.scoreMethods in edu.cmu.tetrad.algcomparison.score with parameters of type GraphConstructors in edu.cmu.tetrad.algcomparison.score with parameters of type Graph
- 
Uses of Graph in edu.cmu.tetrad.algcomparison.simulationMethods in edu.cmu.tetrad.algcomparison.simulation that return GraphModifier and TypeMethodDescriptionBayesNetSimulation.getTrueGraph(int index) Returns the true graph.BooleanGlassSimulation.getTrueGraph(int index) ConditionalGaussianSimulation.getTrueGraph(int index) GeneralSemSimulation.getTrueGraph(int index) GeneralSemSimulationSpecial1.getTrueGraph(int index) LeeHastieSimulation.getTrueGraph(int index) LinearFisherModel.getTrueGraph(int index) LinearSineSimulation.getTrueGraph(int index) NLSemSimulation.getTrueGraph(int index) SemSimulation.getTrueGraph(int index) SemThenDiscretize.getTrueGraph(int index) Simulation.getTrueGraph(int index) Returns the true graph at the given index.StandardizedSemSimulation.getTrueGraph(int index) TimeSeriesSemSimulation.getTrueGraph(int index) 
- 
Uses of Graph in edu.cmu.tetrad.algcomparison.statisticMethods in edu.cmu.tetrad.algcomparison.statistic with parameters of type GraphModifier and TypeMethodDescriptionstatic booleanCommonAncestorTruePositiveBidirected.existsCommonAncestor(Graph trueGraph, Edge edge) static booleanNumCommonMeasuredAncestorBidirected.existsCommonAncestor(Graph trueGraph, Edge edge) booleanNumDirectedEdgeNoMeasureAncestors.existsDirectedPathFromTo(Graph graph, Node node1, Node node2) static booleanLatentCommonAncestorTruePositiveBidirected.existsLatentCommonAncestor(Graph trueGraph, Edge edge) doubleReturns the value of the statistic, given the true graph and the estimated graph.doubledoubleReturns the value of the statistic, given the true graph and the estimated graph.doubledoubledoubleReturns the value of the statistic, given the true graph and the estimated graph.doubleReturns the value of the statistic, given the true graph and the estimated graph.doubleReturns the value of the statistic, given the true graph and the estimated graph.doubleCalculates the F1 statistic for adjacencies.doubleCalculates the statistic.doubleCalculates the statistic.doubleCalculates the statistic.doubleCalculates the statistic.doubledoubledoubledoubledoubledoubledoubledoubledoubledoubledoubledoubleReturns the value of the statistic.doubleReturns the difference between the true and estimated BIC scores, divided by the sample size.doubleReturns the value of the statistic.doubleReturns the value of the statistic.doubledoubledoubledoubledoubledoubledoubledoubleCommonAncestorFalseNegativeBidirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel) doubleCommonAncestorFalsePositiveBidirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel) doubledoubleCommonMeasuredAncestorRecallBidirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel) doubledoubledoubledoubledoubledoubledoubledoubledoubledoubledoubledoubledoubledoubledoubledoubleLatentCommonAncestorFalseNegativeBidirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel) doubleLatentCommonAncestorFalsePositiveBidirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel) doubledoubleLatentCommonAncestorTruePositiveBidirected.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel) doubledoubledoubledoubledoubledoubledoubledoubledoubledoubledoubledoubledoubledoubledoubledoubledoubledoubledoubledoubledoubledoubledoubledoubledoubledoubledoubleNumCompatibleDefiniteDirectedEdgeAncestors.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel) doubledoubleNumCompatibleDirectedEdgeNonAncestors.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel) doubledoubleNumCompatiblePossiblyDirectedEdgeAncestors.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel) doubleNumCompatiblePossiblyDirectedEdgeNonAncestors.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel) doubledoubledoubledoubledoubledoubledoubledoubledoubleNumDirectedEdgeBnaMeasuredCounfounded.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel) doubledoubledoubledoubledoubledoubledoubledoubledoubledoubledoubledoubledoubledoubledoubledoubledoubledoubledoubledoubledoubledoubledoubledoubledoubledoubleProportionSemidirectedPathsNotReversedEst.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel) doubleProportionSemidirectedPathsNotReversedTrue.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel) doubledoubledoubledoubledoubledoubleReturns the value of this statistic, given the true graph and the estimated graph.doubledoubledoubledoubledoubledoubledoubledoubledoubledoubledoubledoubledoubleTrueDagTruePositiveDirectedPathNonancestor.getValue(Graph trueGraph, Graph estGraph, DataModel dataModel) doubledoubledoubledoubledoubledouble
- 
Uses of Graph in edu.cmu.tetrad.algcomparison.statistic.utilsConstructors in edu.cmu.tetrad.algcomparison.statistic.utils with parameters of type GraphModifierConstructorDescriptionAdjacencyConfusion(Graph truth, Graph est) Constructs a new AdjacencyConfusion object from the given graphs.ArrowConfusion(Graph truth, Graph est) Constructs a new ArrowConfusion object.ArrowConfusion(Graph truth, Graph est, boolean truthAdj) Constructs a new ArrowConfusion object.BidirectedConfusion(Graph truth, Graph est) Constructs a new confusion matrix for bidirected edges.OrientationConfusion(Graph truth, Graph est) TailConfusion(Graph truth, Graph est) 
- 
Uses of Graph in edu.cmu.tetrad.bayesMethods in edu.cmu.tetrad.bayes that return GraphModifier and TypeMethodDescriptionBayesIm.getDag()$DescriptionBayesPm.getDag()Returns the DAG.DirichletBayesIm.getDag()MlBayesIm.getDag()MlBayesImObs.getDag()UpdatedBayesIm.getDag()ApproximateUpdater.getManipulatedGraph()CptInvariantUpdater.getManipulatedGraph()Identifiability.getManipulatedGraph()JunctionTreeUpdater.getManipulatedGraph()ManipulatingBayesUpdater.getManipulatedGraph()Returns the manipulated graph.RowSummingExactUpdater.getManipulatedGraph()static GraphCreate a moral graph.Methods in edu.cmu.tetrad.bayes that return types with arguments of type GraphModifier and TypeMethodDescriptionThis method takes an acyclic graph as input and returns a list of graphs each of which is a modification of the original graph with either an edge deleted, added or reversed.Methods in edu.cmu.tetrad.bayes with parameters of type GraphModifier and TypeMethodDescriptionstatic voidApply Tarjan and Yannakakis (1984) fill in algorithm for graph triangulation.This method takes an acyclic graph as input and returns a list of graphs each of which is a modification of the original graph with either an edge deleted, added or reversed.GraphTools.getCliques(Node[] ordering, Graph graph) Get cliques in a decomposable graph.BayesProperties.getLikelihoodRatioP(Graph graph) Calculates the p-value of the graph with respect to the given data.static Node[]GraphTools.getMaximumCardinalityOrdering(Graph graph) Perform Tarjan and Yannakakis (1984) maximum cardinality search (MCS) to get the maximum cardinality ordering.static GraphCreate a moral graph.voidConstructors in edu.cmu.tetrad.bayes with parameters of type GraphModifierConstructorDescriptionConstruct a new BayesPm using the given DAG, assigning each variable two values named "value1" and "value2" unless nodes are discrete variables with categories already defined.Constructs a new BayesPm from the given DAG, assigning each variable a random number of values betweenlowerBoundandupperBound.Constructs a new BayesPm using a given DAG, using as much information from the old BayesPm as possible.Constructs a new BayesPm from the given DAG, using as much information from the old BayesPm as possible.EmBayesProperties(DataSet dataSet, Graph graph) JunctionTreeAlgorithm(Graph graph, DataModel dataModel) 
- 
Uses of Graph in edu.cmu.tetrad.calibrationMethods in edu.cmu.tetrad.calibration that return GraphModifier and TypeMethodDescriptionDataForCalibrationRfci.learnBNRFCI(DataSet bootstrapSample, int depth, Graph truePag) DataForCalibrationRfci.makeDAG(int numVars, double edgesPerNode, int numLatentConfounders) Methods in edu.cmu.tetrad.calibration with parameters of type GraphModifier and TypeMethodDescriptionDataForCalibrationRfci.learnBNRFCI(DataSet bootstrapSample, int depth, Graph truePag) 
- 
Uses of Graph in edu.cmu.tetrad.dataMethods in edu.cmu.tetrad.data that return GraphModifier and TypeMethodDescriptionKnowledgeBoxInput.getResultGraph()KnowledgeBoxInput.getSourceGraph()static GraphDataGraphUtils.randomBifactorModel(int numStructuralNodes, int numStructuralEdges, int numMeasurementsPerLatent, int numLatentMeasuredImpureParents, int numMeasuredMeasuredImpureParents, int numMeasuredMeasuredImpureAssociations) First a random single factor model is created with the specified number of latent nodes and latent edges, and impurity structure.static GraphDataGraphUtils.randomMim(Graph graph, int numMeasurementsPerLatent, int numLatentMeasuredImpureParents, int numMeasuredMeasuredImpureParents, int numMeasuredMeasuredImpureAssociations, boolean arrangeGraph) static GraphDataGraphUtils.randomSingleFactorModel(int numStructuralNodes, int numStructuralEdges, int numMeasurementsPerLatent, int numLatentMeasuredImpureParents, int numMeasuredMeasuredImpureParents, int numMeasuredMeasuredImpureAssociations) Methods in edu.cmu.tetrad.data with parameters of type GraphModifier and TypeMethodDescriptionbooleanKnowledge.isViolatedBy(Graph graph) static GraphDataGraphUtils.randomMim(Graph graph, int numMeasurementsPerLatent, int numLatentMeasuredImpureParents, int numMeasuredMeasuredImpureParents, int numMeasuredMeasuredImpureAssociations, boolean arrangeGraph) Constructors in edu.cmu.tetrad.data with parameters of type Graph
- 
Uses of Graph in edu.cmu.tetrad.data.simulationMethods in edu.cmu.tetrad.data.simulation that return GraphModifier and TypeMethodDescriptionLoadContinuousDataAndGraphs.getTrueGraph(int index) LoadContinuousDataAndSingleGraph.getTrueGraph(int index) LoadContinuousDataSmithSim.getTrueGraph(int index) LoadDataAndGraphs.getTrueGraph(int index) LoadDataFromFileWithoutGraph.getTrueGraph(int index) 
- 
Uses of Graph in edu.cmu.tetrad.graphClasses in edu.cmu.tetrad.graph that implement GraphModifier and TypeClassDescriptionfinal classRepresents a directed acyclic graph--that is, a graph containing only directed edges, with no cycles.classStores a graph a list of lists of edges adjacent to each node in the graph, with an additional list storing all of the edges in the graph.classImplements a graph allowing nodes in the getModel time lag to have parents taken from previous time lags.final classRepresents the graphical structure of a structural equation model.classRepresents a time series graph--that is, a graph with a fixed number S of lags, with edges into initial lags only--that is, into nodes in the first R lags, for some R.Methods in edu.cmu.tetrad.graph that return GraphModifier and TypeMethodDescriptionstatic GraphGraphUtils.bidirectedToUndirected(Graph graph) static GraphGraphUtils.completeGraph(Graph graph) static GraphConverts a string spec of a graph--for example, "X1-->X2, X1---X3, X2o->X4, X3<->X4" to a Graph.static GraphGraphTransforms.cpdagForDag(Graph dag) static GraphGraphTransforms.dagFromCpdag(Graph graph) static GraphGraphTransforms.dagFromCpdag(Graph graph, Knowledge knowledge) Returns a DAG from the given CPDAG.static @NotNull Graphstatic GraphGraphUtils.emptyGraph(int numNodes) static GraphGraphUtils.getComparisonGraph(Graph graph, Parameters params) RandomGraph.UniformGraphGenerator.getDag()static Graphstatic GraphGraphSaveLoadUtils.loadGraphBNTPcMatrix(List<Node> vars, DataSet dataSet) static GraphGraphSaveLoadUtils.loadGraphJson(File file) static GraphGraphSaveLoadUtils.loadGraphPcalg(File file) static GraphGraphSaveLoadUtils.loadGraphRuben(File file) static GraphGraphSaveLoadUtils.loadGraphTxt(File file) static GraphGraphSaveLoadUtils.loadRSpecial(File file) static GraphGraphUtils.markovBlanketSubgraph(Node target, Graph graph) Calculates the subgraph over the Markov blanket of a target node in a given DAG, CPDAG, MAG, or PAG.static Graphstatic GraphGraphSaveLoadUtils.parseGraphXml(nu.xom.Element graphElement, Map<String, Node> nodes) static GraphRandomGraph.randomCyclicGraph2(int numNodes, int numEdges, int maxDegree) Makes a cyclic graph by repeatedly adding cycles of length of 3, 4, or 5 to the graph, then finally adding two cycles.static GraphRandomGraph.randomCyclicGraph3(int numNodes, int numEdges, int maxDegree, double probCycle, double probTwoCycle) Makes a cyclic graph by repeatedly adding cycles of length of 3, 4, or 5 to the graph, then finally adding two cycles.static GraphRandomGraph.randomDag(int numNodes, int numLatentConfounders, int maxNumEdges, int maxDegree, int maxIndegree, int maxOutdegree, boolean connected) static GraphRandomGraph.randomGraph(int numNodes, int numLatentConfounders, int numEdges, int maxDegree, int maxIndegree, int maxOutdegree, boolean connected) static GraphRandomGraph.randomGraph(List<Node> nodes, int numLatentConfounders, int maxNumEdges, int maxDegree, int maxIndegree, int maxOutdegree, boolean connected) Defaults to random forward graphs.static GraphRandomGraph.randomGraphRandomForwardEdges(int numNodes, int numLatentConfounders, int numEdges, int maxDegree, int maxIndegree, int maxOutdegree, boolean connected) static GraphRandomGraph.randomGraphRandomForwardEdges(List<Node> nodes, int numLatentConfounders, int numEdges, int maxDegree, int maxIndegree, int maxOutdegree, boolean connected) static GraphRandomGraph.randomGraphRandomForwardEdges(List<Node> nodes, int numLatentConfounders, int numEdges, int maxDegree, int maxIndegree, int maxOutdegree, boolean connected, boolean layoutAsCircle) static GraphRandomGraph.randomGraphUniform(List<Node> nodes, int numLatentConfounders, int maxNumEdges, int maxDegree, int maxIndegree, int maxOutdegree, boolean connected, int numIterations) static GraphRandomGraph.randomScaleFreeGraph(int numNodes, int numLatentConfounders, double alpha, double beta, double delta_in, double delta_out) static GraphGraphSaveLoadUtils.readerToGraphJson(Reader reader) static GraphGraphSaveLoadUtils.readerToGraphRuben(Reader reader) static GraphGraphSaveLoadUtils.readerToGraphTxt(Reader reader) static GraphGraphSaveLoadUtils.readerToGraphTxt(String graphString) static GraphGraphUtils.removeBidirectedOrientations(Graph estCpdag) static GraphGraphUtils.replaceNodes(Graph originalGraph, List<Node> newVariables) Converts the given graph,originalGraph, to use the new variables (with the same names as the old).static GraphGraphUtils.restrictToMeasured(Graph graph) Constructs and returns a subgraph consisting of a given subset of the nodes of this graph together with the edges between them.static Graphstatic GraphGraphUtils.undirectedGraph(Graph graph) static GraphGraphUtils.undirectedToBidirected(Graph graph) Methods in edu.cmu.tetrad.graph that return types with arguments of type GraphModifier and TypeMethodDescriptionGraphTransforms.generateCpdagDags(Graph cpdag, boolean orientBidirectedEdges) Generates the list of DAGs in the given cpdag.GraphTransforms.getAllGraphsByDirectingUndirectedEdges(Graph skeleton) GraphTransforms.getDagsInCpdagMeek(Graph cpdag, Knowledge knowledge) Methods in edu.cmu.tetrad.graph with parameters of type GraphModifier and TypeMethodDescriptionstatic voidGraphUtils.addForbiddenReverseEdgesForDirectedEdges(Graph graph, Knowledge knowledge) static voidGraphUtils.addPagColoring(Graph graph) static voidRandomGraph.addTwoCycles(Graph graph, int numTwoCycles) booleanTriple.alongPathIn(Graph graph) static voidLayoutUtil.arrangeByLayout(Graph graph, HashMap<String, PointXy> layout) static booleanLayoutUtil.arrangeBySourceGraph(Graph resultGraph, Graph sourceGraph) Arranges the nodes in the result graph according to their positions in the source graph.static GraphGraphUtils.bidirectedToUndirected(Graph graph) static voidLayoutUtil.circleLayout(Graph graph) Arranges the nodes in the graph in a circle.static GraphGraphUtils.completeGraph(Graph graph) static booleanGraphUtils.containsBidirectedEdge(Graph graph) static nu.xom.ElementGraphSaveLoadUtils.convertToXml(Graph graph) static intGraphUtils.countAdjErrors(Graph graph1, Graph graph2) Counts the adjacencies that are in graph1 but not in graph2.static intGraphUtils.countArrowptErrors(Graph graph1, Graph graph2) Counts the arrowheads that are in graph1 but not in graph2.static GraphGraphTransforms.cpdagForDag(Graph dag) static GraphGraphTransforms.dagFromCpdag(Graph graph) static GraphGraphTransforms.dagFromCpdag(Graph graph, Knowledge knowledge) Returns a DAG from the given CPDAG.static @NotNull Graphstatic voidLayoutUtil.defaultLayout(Graph graph) Arranges the nodes in the graph in a circle if there are 20 or fewer nodes, otherwise arranges them in a square.static intstatic int[][]GraphUtils.edgeMisclassificationCounts(Graph leftGraph, Graph topGraph, boolean print) static StringMisclassificationUtils.edgeMisclassifications(Graph estGraph, Graph refGraph) static StringMisclassificationUtils.endpointMisclassification(Graph estGraph, Graph refGraph) static voidGraphUtils.fciOrientbk(Knowledge knowledge, Graph graph, List<Node> variables) Orients according to background knowledgestatic voidRandomGraph.fixLatents1(int numLatentConfounders, Graph graph) static voidRandomGraph.fixLatents4(int numLatentConfounders, Graph graph) static voidLayoutUtil.fruchtermanReingoldLayout(Graph graph) GraphTransforms.generateCpdagDags(Graph cpdag, boolean orientBidirectedEdges) Generates the list of DAGs in the given cpdag.GraphTransforms.getAllGraphsByDirectingUndirectedEdges(Graph skeleton) GraphUtils.getAmbiguousTriplesFromGraph(Node node, Graph graph) static NodeGraphUtils.getAssociatedNode(Node errorNode, Graph graph) GraphSaveLoadUtils.getCollidersFromGraph(Node node, Graph graph) static GraphGraphUtils.getComparisonGraph(Graph graph, Parameters params) GraphTransforms.getDagsInCpdagMeek(Graph cpdag, Knowledge knowledge) static intGraphUtils.getDottedUnderlinedTriplesFromGraph(Node node, Graph graph) static intGraphUtils.getIndegree(Graph graph) static intGraphUtils.getNumCorrectArrowpts(Graph correct, Graph estimated) static GraphUtils.TwoCycleErrorsGraphUtils.getTwoCycleErrors(Graph trueGraph, Graph estGraph) GraphUtils.getUnderlinedTriplesFromGraph(Node node, Graph graph) static voidGraphUtils.gfciExtraEdgeRemovalStep(Graph graph, Graph referenceCpdag, List<Node> nodes, SepsetProducer sepsets) The extra edge removal step for GFCI.static voidGraphUtils.gfciR0(Graph graph, Graph referenceCpdag, SepsetProducer sepsets, Knowledge knowledge) static StringGraphUtils.graphAttributesToText(Graph graph, String title) static StringGraphUtils.graphEdgesToText(Graph graph, String title) static StringGraphUtils.graphNodeAttributesToText(Graph graph, String title, char delimiter) static StringGraphUtils.graphNodesToText(Graph graph, String title, char delimiter) static StringGraphSaveLoadUtils.graphRMatrixTxt(Graph graph) static StringGraphSaveLoadUtils.graphToDot(Graph graph) Converts a graph to a Graphviz .dot filestatic voidGraphSaveLoadUtils.graphToDot(Graph graph, File file) static StringGraphSaveLoadUtils.graphToLavaan(Graph g) static StringGraphSaveLoadUtils.graphToPcalg(Graph g) static StringGraphUtils.graphToText(Graph graph, boolean doPagColoring) static StringGraphSaveLoadUtils.graphToXml(Graph graph) static booleanGraphUtils.isClique(Collection<Node> set, Graph graph) static booleanbooleanCheck to see if a set of variables Z satisfies the back-door criterion relative to node x and node y.static voidLayoutUtil.kamadaKawaiLayout(Graph graph, boolean randomlyInitialized, double naturalEdgeLength, double springConstant, double stopEnergy) static voidLayoutUtil.layoutByCausalOrder(Graph graph) static LinkedList<Triple>GraphUtils.listColliderTriples(Graph graph) static StringGraphSaveLoadUtils.loadGraphRMatrix(Graph graph) GraphUtils.markovBlanket(Node x, Graph G) Returns a Markov blanket of a node for a DAG, CPDAG, MAG, or PAG.static GraphGraphUtils.markovBlanketSubgraph(Node target, Graph graph) Calculates the subgraph over the Markov blanket of a target node in a given DAG, CPDAG, MAG, or PAG.GraphUtils.maximalCliques(Graph graph, List<Node> nodes) static Graphstatic StringGraphUtils.pathString(Graph graph, Node... x) static StringGraphUtils.pathString(Graph graph, List<Node> path) static StringTriple.pathString(Graph graph, Node x, Node y, Node z) static GraphGraphUtils.removeBidirectedOrientations(Graph estCpdag) static voidGraphUtils.removeNonSkeletonEdges(Graph graph, Knowledge knowledge) static GraphGraphUtils.replaceNodes(Graph originalGraph, List<Node> newVariables) Converts the given graph,originalGraph, to use the new variables (with the same names as the old).GraphUtils.replaceNodes(List<Node> originalNodes, Graph graph) Converts the given list of nodes,originalNodes, to use the replacement nodes for them by the same name in the givengraph.static GraphGraphUtils.restrictToMeasured(Graph graph) static PrintWriterstatic voidLayoutUtil.squareLayout(Graph graph) voidDag.transferAttributes(Graph graph) voidEdgeListGraph.transferAttributes(Graph graph) voidGraph.transferAttributes(Graph graph) voidLagGraph.transferAttributes(Graph graph) voidSemGraph.transferAttributes(Graph graph) voidTimeLagGraph.transferAttributes(Graph graph) voidDag.transferNodesAndEdges(Graph graph) voidEdgeListGraph.transferNodesAndEdges(Graph graph) Transfers nodes and edges from one graph to another.voidGraph.transferNodesAndEdges(Graph graph) Transfers nodes and edges from one graph to another.voidLagGraph.transferNodesAndEdges(Graph graph) voidSemGraph.transferNodesAndEdges(Graph graph) voidTimeLagGraph.transferNodesAndEdges(Graph graph) static Graphstatic GraphGraphUtils.undirectedGraph(Graph graph) static GraphGraphUtils.undirectedToBidirected(Graph graph) Method parameters in edu.cmu.tetrad.graph with type arguments of type GraphModifier and TypeMethodDescriptionstatic StringGraphUtils.getIntersectionComparisonString(List<Graph> graphs) Constructors in edu.cmu.tetrad.graph with parameters of type GraphModifierConstructorDescriptionConstructs a new directed acyclic graph from the given graph object.EdgeListGraph(Graph graph) Constructs a EdgeListGraph using the nodes and edges of the given graph.FruchtermanReingoldLayout(Graph graph) KamadaKawaiLayout(Graph graph) Constructs a new SemGraph from the nodes and edges of the given graph.Underlines(Graph graph) 
- 
Uses of Graph in edu.cmu.tetrad.regressionMethods in edu.cmu.tetrad.regression that return GraphModifier and TypeMethodDescriptionRegression.getGraph()RegressionCovariance.getGraph()RegressionDataset.getGraph()Methods in edu.cmu.tetrad.regression with parameters of type Graph
- 
Uses of Graph in edu.cmu.tetrad.searchMethods in edu.cmu.tetrad.search that return GraphModifier and TypeMethodDescriptionSvarFges.getAdjacencies()SvarFges.getExternalGraph()Mimbuild.getFullGraph()The full graph inferred, including the edges from latents to measures.MimbuildTrek.getFullGraph()The full graph discovered.Cpc.getGraph()The graph that's constructed during the search.@NotNull GraphGrasp.getGraph(boolean cpDag) Returns the graph implied by the discovered permutation.static GraphConstruct a graph given a specification of the parents for each node.static GraphPermutationSearch.getGraph(List<Node> nodes, Map<Node, Set<Node>> parents, Knowledge knowledge, boolean cpDag) Construct a graph given a specification of the parents for each node.Cstar.makeGraph(List<Cstar.Record> records) Makes a graph of the estimated predictors to the effect.static @NotNull GraphReturns a graph given a coefficient matrix and a list of variables.Lofs.orient()Orients the graph and returns the oriented graph.PcMb.resultGraph()Returns the result graph.BFci.search()Does the search and returns a PAG.BossLingam.search()Runs the search and returns the result graph.Bpc.search()Runs the search and returns the graph, or null if there is no model.Ccd.search()The search method assumes that the IndependenceTest provided to the constructor is a conditional independence oracle for the SEM (or Bayes network) which describes the causal structure of the population.Cfci.search()Performs the search and returns the PAG.Cpc.search()Runs CPC starting with a fully connected graph over all the variables in the domain of the independence test.Dagma.search()NEEDS DOCUMENTATIONDirectLingam.search()Performs the search.Fas.search()Runs the search and returns the resulting (undirected) graph.Discovers all adjacencies in data.Fasd.search()Discovers all adjacencies in data.Fask.search()Runs the search on the concatenated data, returning a graph, possibly cyclic, possibly with two-cycles.Fci.search()Performs the search.FciMax.search()Performs the search and returns the PAG.Fges.search()Greedy equivalence search: Start from the empty graph, add edges till the model is significant.Greedy equivalence search: Start from the empty graph, add edges till the model is significant.Fofc.search()Runs the search and returns a graph of clusters with the ir respective latent parents.Ftfc.search()Runs the search and returns a graph of clusters, each of which has two common latent parents.GFci.search()Runs the graph and returns the search PAG.GraspFci.search()Run the search and return s a PAG.IGraphSearch.search()Runs the search and returns a graph.Mimbuild.search(List<List<Node>> clustering, List<String> latentNames, ICovarianceMatrix measuresCov) Does a Mimbuild search.MimbuildTrek.search(List<List<Node>> clustering, List<String> latentNames, ICovarianceMatrix measuresCov) Does the search and returns the graph.Pc.search()Runs PC starting with a complete graph over all nodes of the given conditional independence test, using the given independence test and knowledge and returns the resultant graph.Runs the search using a particular implementation of the fast adjacency search (FAS), over the given sublist of nodes.Runs PC starting with a complete graph over the given list of nodes, using the given independence test and knowledge and returns the resultant graph.Pcd.search()Runs PC starting with a complete graph over all nodes of the given conditional independence test, using the given independence test and knowledge and returns the resultant graph.Runs PC starting with a complete graph over the given list of nodes, using the given independence test and knowledge and returns the resultant graph.PcMb.search()Does the search.Searches for the MB CPDAG for the given targets.PermutationSearch.search()Performe the search and return a CPDAG.Rfci.search()Runs the search and returns the RFCI PAG.Runs the search and returns the RFCI PAG.Searches of a specific sublist of nodes.SpFci.search()Runs the search and returns the discovered PAG.SvarFas.search()Discovers all adjacencies in data.SvarFci.search()Runs the search and returns the PAG.Runs the search using a particular implementation of FAS.SvarFges.search()Greedy equivalence search: Start from the empty graph, add edges till the model is significant.SvarGfci.search()Runs the search and returns a PAG.Methods in edu.cmu.tetrad.search with parameters of type GraphModifier and TypeMethodDescriptionCheckKnowledge.forbiddenViolations(Graph graph, Knowledge knowledge) Returns a sorted list of edges that violate the given knowledge.doubleReturns the score of the given DAG.CheckKnowledge.requiredViolations(Graph graph, Knowledge knowledge) Returns a sorted list of edges that are required by knowledge but which do not appear in the graph.doubledoubledoubleScores the given DAG, up to a constant.voidSvarFges.setAdjacencies(Graph adjacencies) Sets the set of preset adjacencies for the algorithm; edges not in this adjacencies graph will not be added.voidFges.setBoundGraph(Graph boundGraph) If non-null, edges not adjacent in this graph will not be added.voidFgesMb.setBoundGraph(Graph boundGraph) If non-null, edges not adjacent in this graph will not be added.voidFasd.setExternalGraph(Graph externalGraph) Sets the external graph.voidFask.setExternalGraph(Graph externalGraph) Sets the external graph to use.voidSvarFas.setExternalGraph(Graph externalGraph) Sets an external graph.voidSvarFges.setExternalGraph(Graph externalGraph) Sets the initial graph.voidFges.setInitialGraph(Graph initialGraph) voidFgesMb.setInitialGraph(Graph initialGraph) voidSvarFges.setTrueGraph(Graph trueGraph) Sets the true graph, which will result in some edges in output graphs being marked with asterisks.doubleIda.trueEffect(Node x, Node y, Graph trueDag) Calculates the true effect of (x, y) given the true DAG (which must be provided).Constructors in edu.cmu.tetrad.search with parameters of type GraphModifierConstructorDescriptionBossLingam(Graph cpdag, DataSet dataSet) Constructor.Constructor.Constructor.MarkovCheck(Graph graph, IndependenceTest independenceTest, ConditioningSetType setType) Constructor.
- 
Uses of Graph in edu.cmu.tetrad.search.scoreMethods in edu.cmu.tetrad.search.score that return GraphModifier and TypeMethodDescriptionGraphScore.getDag()Returns a copy of the DAG being searched over.ScoredGraph.getGraph()Returns the graph.Methods in edu.cmu.tetrad.search.score with parameters of type GraphModifier and TypeMethodDescriptionstatic doubleScores the given DAG using the given data model, usimg a BIC score.static doubleSemBicScorer.scoreDag(Graph dag, DataModel data, double penaltyDiscount, boolean precomputeCovariances) Scores the given DAG using the given data model, usimg a BIC score.Constructors in edu.cmu.tetrad.search.score with parameters of type GraphModifierConstructorDescriptionGraphScore(Graph dag) Constructs a GraphScore from a DAG.ScoredGraph(Graph graph, Double score) Constructs a scored graph.
- 
Uses of Graph in edu.cmu.tetrad.search.testMethods in edu.cmu.tetrad.search.test that return GraphModifier and TypeMethodDescriptionMsepTest.getGraph()Returns the underlying graph that is being used to calculate d-separation relationships.Constructors in edu.cmu.tetrad.search.test with parameters of type Graph
- 
Uses of Graph in edu.cmu.tetrad.search.utilsMethods in edu.cmu.tetrad.search.utils that return GraphModifier and TypeMethodDescriptionDagToPag.convert()This method does the convertion of DAG to PAG.TsDagToPag.convert()static GraphClusterUtils.convertSearchGraph(List<int[]> clusters, String[] varNames) Converts a list of indices into a list of Nodes representing a cluster.static GraphPurify.convertSearchGraph(SemGraph input) FgesOrienter.getAdjacencies()TsUtils.VarResult.getCollapsedVarGraph()DagSepsets.getDag()Returns the DAG being analyzed.SepsetsGreedy.getDag()FgesOrienter.getExternalGraph()TeyssierScorer.getGraph(boolean cpDag) Returns the DAG build for the current permutation, or its CPDAG.static GraphMbUtils.getOneMbDag(Graph mbCpdag) Returns an example DAG from the given MB CPDAG.PossibleMConnectingPath.getPag()FciOrient.getTruePag()The true PAG if available.SvarFciOrient.getTruePag()The true PAG if available.TsDagToPag.getTruePag()DagInCpcagIterator.next()Successive calls to this method return successive DAGs in the CPDAG, in a more or less natural enumeration of them in which an arbitrary undirected edge is picked, oriented one way, Meek rules applied, then a remaining unoriented edge is picked, oriented one way, and so on, until a DAG is obtained, and then by backtracking the other orientation of each chosen edge is tried.DagIterator.next()Successive calls to this method return successive DAGs in the CPDAG, in a more or less natural enumeration of them in which an arbitrary undirected edge is picked, oriented one way, Meek rules applied, then a remaining unoriented edge is picked, oriented one way, and so on, until a DAG is obtained, and then by backtracking the other orientation of each chosen edge is tried.Performs final FCI orientation on the given graph.FgesOrienter.search()Greedy equivalence search: Start from the empty graph, add edges till model is significant.PcCommon.search()Runs the search and returns the search graph.Runs the search over the given list of nodes only, returning the serach graph.Purify.search()****************************************************** SEARCH INTERFACE *******************************************************Methods in edu.cmu.tetrad.search.utils that return types with arguments of type GraphModifier and TypeMethodDescriptionMbUtils.generateMbDags(Graph mbCPDAG, boolean orientBidirectedEdges, IndependenceTest test, int depth, Node target) Generates the list of MB DAGs consistent with the MB CPDAG returned by the previous search.Methods in edu.cmu.tetrad.search.utils with parameters of type GraphModifier and TypeMethodDescriptionstatic voidGraphSearchUtils.arrangeByKnowledgeTiers(Graph graph) static voidGraphSearchUtils.arrangeByKnowledgeTiers(Graph graph, Knowledge knowledge) static voidGraphSearchUtils.basicCpdag(Graph graph) Get a graph and direct only the unshielded colliders.static voidGraphSearchUtils.basicCpdagRestricted2(Graph graph, Node node) voidRuns BES for a graph over the given list of variablesvoidRuns BES.static ClustersMimUtils.convertToClusters(Graph clusterGraph) static ClustersMimUtils.convertToClusters(Graph clusterGraph, List<Node> measuredVariables) Converts a disconnected multiple indicator model into a set of clusters.MimUtils.convertToClusters2(Graph clusterGraph) voida method to search "back from a" to find a DDP.voida method to search "back from a" to find a DDP.booleanOrients the edges inside the definte discriminating path triangle.voidFciOrient.doFinalOrientation(Graph graph) Orients the graph according to rules in the graph (FCI step D).voidSvarFciOrient.doFinalOrientation(Graph graph) Orients the graph according to rules in the graph (FCI step D).static booleanDagToPag.existsInducingPathInto(Node x, Node y, Graph graph) static booleanTsDagToPag.existsInducingPathInto(Node x, Node y, Graph graph, Knowledge knowledge) static booleanTsDagToPag.existsInducingPathVisitts(Graph graph, Node a, Node b, Node x, Node y, LinkedList<Node> path, Knowledge knowledge) voidFciOrient.fciOrientbk(Knowledge bk, Graph graph, List<Node> variables) Orients according to background knowledgestatic List<PossibleMConnectingPath>PossibleMConnectingPath.findMConnectingPaths(Graph pag, Node x, Node y, Collection<Node> z) Finds all possible D-connection undirectedPaths as sub-graphs of the pag given at construction time from x to y given z.static List<PossibleMConnectingPath>PossibleMConnectingPath.findMConnectingPathsOfLength(Graph pag, Node x, Node y, Collection<Node> z, Integer length) Finds all possible D-connection undirectedPaths as sub-graphs of the pag given at construction time from x to y given z for a particular path length.MbUtils.generateMbDags(Graph mbCPDAG, boolean orientBidirectedEdges, IndependenceTest test, int depth, Node target) Generates the list of MB DAGs consistent with the MB CPDAG returned by the previous search.GraphSearchUtils.getCpcTripleType(Node x, Node y, Node z, IndependenceTest test, int depth, Graph graph) static StringGraphSearchUtils.getEdgewiseComparisonString(String trueGraphName, Graph trueGraph, String targetGraphName, Graph targetGraph) static GraphUtils.GraphComparisonGraphSearchUtils.getGraphComparison(Graph trueGraph, Graph targetGraph) Just counts arrowhead errors--for cyclic edges counts an arrowhead at each node.static KnowledgeTsUtils.getKnowledge(Graph graph) static GraphMbUtils.getOneMbDag(Graph mbCpdag) Returns an example DAG from the given MB CPDAG.GraphSearchUtils.getReachableNodes(List<Node> initialNodes, LegalPairs legalPairs, List<Node> c, List<Node> d, Graph graph, int maxPathLength) doubleFciOrient.getUcCirclePaths(Node n1, Node n2, Graph graph) Gets a list of every uncovered circle path between two nodes in the graph by iterating through the uncovered partially directed undirectedPaths and only keeping the circle undirectedPaths.FciOrient.getUcPdPaths(Node n1, Node n2, Graph graph) Gets a list of every uncovered partially directed path between two nodes in the graph.static int[][]GraphSearchUtils.graphComparison(Graph trueCpdag, Graph estCpdag, PrintStream out) static booleanGraphInPag.graphInPagStep0(Graph pag, Graph dag) This method implements step (1) of the definition.static booleanGraphInPag.graphInPagStep1(Graph pag, Graph dag) static booleanGraphInPag.graphInPagStep2(Graph pag, Graph dag) static booleanGraphInPag.graphInPagStep3(Graph pag, Graph dag) static booleanGraphInPag.graphInPagStep4(Graph pag, Graph dag) static booleanGraphInPag.graphInPagStep5(Graph pag, Graph dag) static TimeLagGraphTsUtils.graphToLagGraph(Graph _graph, int numLags) static booleanFciOrient.isArrowheadAllowed(Node x, Node y, Graph graph, Knowledge knowledge) static GraphSearchUtils.LegalPagRetGraphSearchUtils.isLegalPag(Graph pag) static booleanReturns true just in case the given graph is a CPDAG.static ClustersClusterUtils.mimClusters(Graph mim) Converts a list of indices into a list of Nodes representing a cluster.Performs final FCI orientation on the given graph.voidvoidAdds colliders to the given graph using the max P rule.static voidPcCommon.orientCollider(Node x, Node y, Node z, PcCommon.ConflictRule conflictRule, Graph graph) Orient a single unshielded triple, x*-*y*-*z, in a graph.static voidGraphSearchUtils.orientCollidersUsingSepsets(SepsetMap set, Knowledge knowledge, Graph graph, boolean verbose, boolean enforceCpdag) Step C of PC; orients colliders using specified sepset.MeekRules.orientImplied(Graph graph) Uses the Meek rules to do as many orientations in the given graph as possible.voidFciOrient.orientTailPath(List<Node> path, Graph graph) Orients every edge on a path as undirected (i.e.static voidGraphSearchUtils.pcdOrientC(IndependenceTest test, Knowledge knowledge, Graph graph) Performs step C of the algorithm, as indicated on page xxx of CPS, with the modification that X--W--Y is oriented as X-->W<--Y if W is *determined by* the sepset of (X, Y), rather than W just being *in* the sepset of (X, Y).static voidGraphSearchUtils.pcOrientbk(Knowledge bk, Graph graph, List<Node> nodes) Orients according to background knowledge.voidOrients colliders in the graph.voidOrients colliders in the graph.voidvoidTries to apply Zhang's rule R10 to a pair of nodes A and C which are assumed to be such that Ao->C.voidvoidImplements the double-triangle orientation rule, which states that if D*-oB, A*->B<-*C and A*-oDo-*C, and !adj(a, c), D*-oB, then D*->B.voidImplements the double-triangle orientation rule, which states that if D*-oB, A*->B<-*C and A*-oDo-*C, then D*->B.voidThe triangles that must be oriented this way (won't be done by another rule) all look like the ones below, where the dots are a collider path from L to A with each node on the path (except L) a parent of C.voidThe triangles that must be oriented this way (won't be done by another rule) all look like the ones below, where the dots are a collider path from L to A with each node on the path (except L) a parent of C.voidImplements Zhang's rule R5, orient circle undirectedPaths: for any Ao-oB, if there is an uncovered circle path u = [A,C,...,D,B] such that A,D nonadjacent and B,C nonadjacent, then A---B and orient every edge on u undirected.voidImplements Zhang's rule R5, orient circle undirectedPaths: for any Ao-oB, if there is an uncovered circle path u = [A,C,...,D,B] such that A,D nonadjacent and B,C nonadjacent, then A---B and orient every edge on u undirected.voidImplements Zhang's rules R6 and R7, applies them over the graph once.voidImplements Zhang's rules R6 and R7, applies them over the graph once.booleanTries to apply Zhang's rule R8 to a pair of nodes A and C which are assumed to be such that Ao->C.booleanTries to apply Zhang's rule R9 to a pair of nodes A and C which are assumed to be such that Ao->C.voidFciOrient.rulesR1R2cycle(Graph graph) voidSvarFciOrient.rulesR1R2cycle(Graph graph) voidFciOrient.rulesR8R9R10(Graph graph) Implements Zhang's rules R8, R9, R10, applies them over the graph once.voidSvarFciOrient.rulesR8R9R10(Graph graph) Implements Zhang's rules R8, R9, R10, applies them over the graph once.doubledoubleScores the given DAG, up to a constant.voidFgesOrienter.setAdjacencies(Graph adjacencies) Sets the set of preset adjacenies for the algorithm; edges not in this adjacencies graph will not be added.voidFgesOrienter.setExternalGraph(Graph externalGraph) Sets the initial graph.voidFgesOrienter.setTrueGraph(Graph trueGraph) If the true graph is set, askterisks will be printed in log output for the true edges.voidIPurify.setTrueGraph(Graph mim) voidPurifyScoreBased.setTrueGraph(Graph mim) voidPurifyTetradBased.setTrueGraph(Graph mim) voidFciOrient.setTruePag(Graph truePag) Sets the true PAG for comparison.voidSvarFciOrient.setTruePag(Graph truePag) voidTsDagToPag.setTruePag(Graph truePag) voidFciOrient.spirtesFinalOrientation(Graph graph) static voidLogUtilsSearch.stampWithBic(Graph graph, DataModel dataModel) static voidLogUtilsSearch.stampWithScore(Graph graph, Score score) static intGraphSearchUtils.structuralHammingDistance(Graph trueGraph, Graph estGraph) Tsamardinos, I., Brown, L.static voidMbUtils.trimEdgesAmongParents(Graph graph, Node target) Removes edges among the parents of the target.static voidMbUtils.trimEdgesAmongParentsOfChildren(Graph graph, Node target) Removes edges among the parents of children of the target.static voidMbUtils.trimToAdjacents(Graph graph, Node target) Trims the graph to just the adjacents of the target.static voidMbUtils.trimToMbNodes(Graph graph, Node target, boolean includeBidirected) Trims the graph to the target, the parents and children of the target, and the parents of the children of the target.voidFciOrient.zhangFinalOrientation(Graph graph) Constructors in edu.cmu.tetrad.search.utils with parameters of type GraphModifierConstructorDescriptionDagInCpcagIterator(Graph CPDAG) The given CPDAG must be a CPDAG.DagInCpcagIterator(Graph CPDAG, Knowledge knowledge) The given CPDAG must be a CPDAG.DagInCpcagIterator(Graph CPDAG, Knowledge knowledge, boolean allowArbitraryOrientations, boolean allowNewColliders) The given CPDAG must be a CPDAG.DagIterator(Graph CPDAG) The given CPDAG must be a CPDAG.DagSepsets(Graph dag) Constructs a new DagSepsets object for the given DAG.Constructs a new FCI search for the given independence test and background knowledge.PossibleMsepFci(Graph graph, IndependenceTest test) Creates a new SepSet and assumes that none of the variables have yet been checked.SepsetsConservative(Graph graph, IndependenceTest independenceTest, SepsetMap extraSepsets, int depth) SepsetsGreedy(Graph graph, IndependenceTest independenceTest, SepsetMap extraSepsets, int depth, Knowledge knowledge) SepsetsPossibleMsep(Graph graph, IndependenceTest test, Knowledge knowledge, int depth, int maxPathLength) TsDagToPag(Graph dag) Constructs a new FCI search for the given independence test and background knowledge.
- 
Uses of Graph in edu.cmu.tetrad.search.work_in_progressMethods in edu.cmu.tetrad.search.work_in_progress that return GraphModifier and TypeMethodDescriptionOutputs a new PAG, a copy of the input excepting the applied changes of this object.@NotNull GraphGraspTol.getGraph(boolean cpDag) HbsmsBeam.getGraph()HbsmsGes.getGraph()HbsmsGes.GraphWithPValue.getGraph()@NotNull GraphOtherPermAlgs.getGraph(boolean cpDag) SampleVcpc.getGraph()The graph that's constructed during the search.SampleVcpcFast.getGraph()The graph that's constructed during the search.VcPc.getGraph()The graph that's constructed during the search.VcPcAlt.getGraph()The graph that's constructed during the search.VcPcFast.getGraph()The graph that's constructed during the search.MagSemBicScore.getMag()Returns the wrapped MAG.DMSearch.LatentStructure.latentStructToEdgeListGraph(DMSearch.LatentStructure structure) HbsmsBeam.removeZeroEdges(Graph bestGraph) BpcTetradPurifyWashdown.search()Runs the search and returns a graph.DMSearch.search()FasFdr.search()Discovers all adjacencies in data.FaskVote.search(Parameters parameters) Does the search.FasLofs.search()Runs the search on the concatenated data, returning a graph, possibly cyclic, possibly with two-cycles.Hbsms.search()HbsmsBeam.search()HbsmsGes.search()InverseCorrelation.search()Kpc.search()Runs PC starting with a complete graph over all nodes of the given conditional independence test, using the given independence test and knowledge and returns the resultant graph.Runs PC starting with a commplete graph over the given list of nodes, using the given independence test and knowledge and returns the resultant graph.Mmhc.search()Runs PC starting with a fully connected graph over all of the variables in the domain of the independence test.SampleVcpc.search()SampleVcpcFast.search()VcFas.search()Discovers all adjacencies in data.VcPc.search()VcPcAlt.search()VcPcFast.search()Washdown.search()Runs the Washdown algorithm and return a graph.Methods in edu.cmu.tetrad.search.work_in_progress that return types with arguments of type GraphModifier and TypeMethodDescriptionDci.search()Begins the DCI search procedure, described at each stepIon.search()Runs the ION search and returns a list of compatible graphs.Methods in edu.cmu.tetrad.search.work_in_progress with parameters of type GraphModifier and TypeMethodDescriptionDMSearch.applyDmSearch(Graph pattern, Set<String> inputString, double penalty) Outputs a new PAG, a copy of the input excepting the applied changes of this object.static voidSampleVcpc.futureNodeVisit(Graph graph, Node b, LinkedList<Node> path, Set<Node> futureNodes) static voidSampleVcpcFast.futureNodeVisit(Graph graph, Node b, LinkedList<Node> path, Set<Node> futureNodes) static voidVcPc.futureNodeVisit(Graph graph, Node b, LinkedList<Node> path, Set<Node> futureNodes) static voidVcPcAlt.futureNodeVisit(Graph graph, Node b, LinkedList<Node> path, Set<Node> futureNodes) static voidVcPcFast.futureNodeVisit(Graph graph, Node b, LinkedList<Node> path, Set<Node> futureNodes) VcPc.getPopulationTripleType(Node x, Node y, Node z, IndependenceTest test, int depth, Graph graph, boolean verbose) VcPcFast.getPopulationTripleType(Node x, Node y, Node z, IndependenceTest test, int depth, Graph graph, boolean verbose) HbsmsBeam.removeZeroEdges(Graph bestGraph) HbsmsBeam.scoreGraph(Graph graph) HbsmsGes.scoreGraph(Graph graph) voidVcFas.setExternalGraph(Graph externalGraph) voidvoidvoidvoidvoidvoidSets the MAG to wrap.Constructors in edu.cmu.tetrad.search.work_in_progress with parameters of type GraphModifierConstructorDescriptionFasDci(Graph graph, IndependenceTest independenceTest) Constructs a new FastAdjacencySearch for DCI.FasDci(Graph graph, IndependenceTest independenceTest, ResolveSepsets.Method method, List<Set<Node>> marginalVars, List<IndependenceTest> independenceTests, SepsetMapDci knownIndependencies, SepsetMapDci knownAssociations) Constructs a new FastAdjacencySearch for DCI with independence test pooling to resolve inconsistencies.GraphWithPValue(Graph graph, double pValue) HbsmsBeam(Graph graph, CovarianceMatrix cov, Knowledge knowledge) Constructor parameters in edu.cmu.tetrad.search.work_in_progress with type arguments of type Graph
- 
Uses of Graph in edu.cmu.tetrad.semMethods in edu.cmu.tetrad.sem that return GraphModifier and TypeMethodDescriptionLargeScaleSimulation.getGraph()SemUpdater.getManipulatedGraph()Methods in edu.cmu.tetrad.sem with parameters of type GraphModifier and TypeMethodDescriptionLargeScaleSimulation.getKnowledge(Graph graph) ReidentifyVariables.getLatents(Graph graph) ReidentifyVariables.reidentifyVariables1(List<List<Node>> partition, Graph trueGraph) Ricf.ricf2(Graph mag, ICovarianceMatrix covMatrix, double tolerance) same as above but takes a Graph instead of a SemGraphdoubleRuns the estimator on the data and SemPm passed in through the constructor.doubleConstructors in edu.cmu.tetrad.sem with parameters of type GraphModifierConstructorDescriptionGeneralizedSemPm(Graph graph) Constructs a BayesPm from the given Graph, which must be convertible first into a ProtoSemGraph and then into a SemGraph.LargeScaleSimulation(Graph graph) LargeScaleSimulation(Graph graph, List<Node> nodes, int[] tierIndices) Constructs a BayesPm from the given Graph, which must be convertible first into a ProtoSemGraph and then into a SemGraph.
- 
Uses of Graph in edu.cmu.tetrad.simulationMethods in edu.cmu.tetrad.simulation that return GraphModifier and TypeMethodDescriptionstatic Graphstatic GraphHsimUtils.mkRandSEMDAG(int numVars, int numEdges) Methods in edu.cmu.tetrad.simulation with parameters of type GraphModifier and TypeMethodDescriptionstatic double[]static GraphHsimUtils.getAllParents(Graph inputgraph, Set<Node> inputnodes) 
- 
Uses of Graph in edu.cmu.tetrad.study.performanceMethods in edu.cmu.tetrad.study.performance that return GraphModifier and TypeMethodDescriptionComparisonResult.getCorrectResult()ComparisonResult.getResultGraph()ComparisonResult.getTrueDag()Methods in edu.cmu.tetrad.study.performance with parameters of type GraphModifier and TypeMethodDescriptionstatic StringPerformanceTests.endpointMisclassification(List<Node> _nodes, Graph estGraph, Graph refGraph) static KnowledgeComparison2.getKnowledge(Graph graph) voidComparisonResult.setCorrectResult(Graph correctResult) voidComparisonResult.setResultGraph(Graph graph) voidComparisonResult.setTrueDag(Graph trueDag) 
- 
Uses of Graph in edu.cmu.tetrad.utilMethods in edu.cmu.tetrad.util that return GraphModifier and TypeMethodDescriptionstatic GraphGraphSampling.createDisplayGraph(Graph graph, ResamplingEdgeEnsemble ensemble) Create a graph for displaying and print out.static GraphGraphSampling.createGraphWithHighProbabilityEdges(List<Graph> graphs) Combine all the edges from the list of graphs onto one graph with the edge type that has the highest frequency probability.static GraphGraphSampling.createGraphWithHighProbabilityEdges(List<Graph> graphs, ResamplingEdgeEnsemble ensemble) static GraphGraphSampling.createGraphWithoutNullEdges(Graph graph) Create a graph from the given graph that contains no null edges.static GraphJsonUtils.parseJSONObjectToTetradGraph(String jsonResponse) static GraphJsonUtils.parseJSONObjectToTetradGraph(org.json.JSONObject jObj) Methods in edu.cmu.tetrad.util with parameters of type GraphModifier and TypeMethodDescriptionstatic GraphGraphSampling.createDisplayGraph(Graph graph, ResamplingEdgeEnsemble ensemble) Create a graph for displaying and print out.static GraphGraphSampling.createGraphWithoutNullEdges(Graph graph) Create a graph from the given graph that contains no null edges.JsonUtils.parseJSONArrayToTetradEdges(Graph graph, org.json.JSONArray jArray) static EdgeJsonUtils.parseJSONObjectToTetradEdge(Graph graph, org.json.JSONObject jObj) Method parameters in edu.cmu.tetrad.util with type arguments of type GraphModifier and TypeMethodDescriptionstatic GraphGraphSampling.createGraphWithHighProbabilityEdges(List<Graph> graphs) Combine all the edges from the list of graphs onto one graph with the edge type that has the highest frequency probability.static GraphGraphSampling.createGraphWithHighProbabilityEdges(List<Graph> graphs, ResamplingEdgeEnsemble ensemble) static Set<edu.cmu.tetrad.util.GraphSampling.NodePair>GraphSampling.getEdgeNodePairs(List<Graph> graphs) 
- 
Uses of Graph in edu.pitt.csb.mgmMethods in edu.pitt.csb.mgm that return GraphModifier and TypeMethodDescriptionMgm.graphFromMGM()Converts MGM object to Graph object with edges if edge parameters are non-zero.static GraphMixedUtils.makeMixedGraph(Graph g, Map<String, Integer> m) Mgm.search()Simple search command for GraphSearch implementation.Methods in edu.pitt.csb.mgm with parameters of type GraphModifier and TypeMethodDescriptionstatic int[][]MixedUtils.allEdgeStats(Graph pT, Graph pE) static int[][]static GeneralizedSemPmMixedUtils.GaussianCategoricalPm(Graph trueGraph, String paramTemplate) static GeneralizedSemPmMixedUtils.GaussianTrinaryPm(Graph trueGraph, HashMap<String, String> nodeDists, int maxSample, String paramTemplate) MixedUtils.getNodeDists(Graph g) static cern.colt.matrix.DoubleMatrix2DMixedUtils.graphToMatrix(Graph graph) static cern.colt.matrix.DoubleMatrix2DMixedUtils.graphToMatrix(Graph graph, double undirectedWeight, double directedWeight) static GraphMixedUtils.makeMixedGraph(Graph g, Map<String, Integer> m) static cern.colt.matrix.DoubleMatrix2DMixedUtils.skeletonToMatrix(Graph graph) 
- 
Uses of Graph in edu.pitt.csb.stabilityMethods in edu.pitt.csb.stability that return Graph
- 
Uses of Graph in edu.pitt.dbmi.algo.bayesian.constraint.searchMethods in edu.pitt.dbmi.algo.bayesian.constraint.search that return GraphModifier and TypeMethodDescriptionRfciBsc.getGraphRBD()Returns the graph that was learned using the BSC-D method.RfciBsc.getGraphRBI()Returns the graph that was learned using the BSC-I method.PagSamplingRfci.search()Search for a PAG.RfciBsc.search()Performs the search.
- 
Uses of Graph in edu.pitt.dbmi.algo.resamplingMethods in edu.pitt.dbmi.algo.resampling that return GraphMethods in edu.pitt.dbmi.algo.resampling that return types with arguments of type GraphModifier and TypeMethodDescriptionGeneralResamplingTest.getGraphs()Returns the individual bootstrap result graphs.GeneralResamplingSearch.search()Performs the search.Methods in edu.pitt.dbmi.algo.resampling with parameters of type GraphModifier and TypeMethodDescriptionstatic int[][]GeneralResamplingTest.getAdjConfusionMatrix(Graph truth, Graph estimate) Constructor.static int[][]GeneralResamplingTest.getEdgeTypeConfusionMatrix(Graph truth, Graph estimate) Constructor.voidGeneralResamplingSearch.setExternalGraph(Graph externalGraph) Sets the external graph.voidGeneralResamplingTest.setExternalGraph(Graph externalGraph) Sets the initial graph.
- 
Uses of Graph in edu.pitt.dbmi.algo.resampling.taskMethods in edu.pitt.dbmi.algo.resampling.task that return GraphModifier and TypeMethodDescriptionGeneralResamplingSearchRunnable.call()GeneralResamplingSearchRunnable.getExternalGraph()Methods in edu.pitt.dbmi.algo.resampling.task with parameters of type GraphModifier and TypeMethodDescriptionvoidGeneralResamplingSearchRunnable.setExternalGraph(Graph externalGraph)