Uses of Interface
edu.cmu.tetrad.data.DataSet
Packages that use DataSet
Package
Description
This package contains classes for causal graph search algorithms.
This package contains classes for scoring causal graph models.
This package contains classes for testing causal graph search algorithms.
This package contains utility classes for causal graph search algorithms.
A package for algorithms that are not ready for prime time.
-
Uses of DataSet in edu.cmu.tetrad.algcomparison.simulation
Methods in edu.cmu.tetrad.algcomparison.simulation that return DataSetModifier and TypeMethodDescriptionstatic DataSetLeeHastieSimulation.makeMixedData(DataSet dsCont, Map<String, Integer> nodeDists) makeMixedData.static DataSetLeeHastieSimulation.makeMixedData(DataSet dsCont, Map<String, String> nodeDists, int numCategories) makeMixedData.Methods in edu.cmu.tetrad.algcomparison.simulation with parameters of type DataSetModifier and TypeMethodDescriptionstatic DataSetLeeHastieSimulation.makeMixedData(DataSet dsCont, Map<String, Integer> nodeDists) makeMixedData.static DataSetLeeHastieSimulation.makeMixedData(DataSet dsCont, Map<String, String> nodeDists, int numCategories) makeMixedData.Constructors in edu.cmu.tetrad.algcomparison.simulation with parameters of type DataSetModifierConstructorDescriptionSingleDatasetSimulation(DataSet dataSet) ASimulationimplementation that returns a single supplied data set. -
Uses of DataSet in edu.cmu.tetrad.bayes
Methods in edu.cmu.tetrad.bayes that return DataSetModifier and TypeMethodDescriptionInterpolates the given data set, producing a data set with no missing values.Interpolates the given data set, producing a data set with no missing values.CellTableProbs.getDataSet()Getter for the fielddataSet.DataSetProbs.getDataSet()Getter for the fielddataSet.DirichletDataSetProbs.getDataSet()Getter for the fielddataSet.FactoredBayesStructuralEM.getDataSet()Getter for the fielddataSet.IntAveDataSetProbs.getDataSet()Getter for the fielddataSet.EmBayesEstimator.getMixedDataSet()getMixedDataSet.BayesIm.simulateData(int sampleSize, boolean latentDataSaved) Simulates a data set with the specified number of rows.BayesIm.simulateData(DataSet dataSet, boolean latentDataSaved) Simulates data based on the provided data set and saves the latent data if specified.DirichletBayesIm.simulateData(int sampleSize, boolean latentDataSaved) Simulates a data set with the specified number of rows.DirichletBayesIm.simulateData(DataSet dataSet, boolean latentDataSaved) Simulates data based on the provided data set and saves the latent data if specified.MlBayesIm.simulateData(int sampleSize, boolean latentDataSaved) Simulates a data set.MlBayesIm.simulateData(int sampleSize, boolean latentDataSaved, int[] tiers) Simulates a sample with the given sample size.MlBayesIm.simulateData(DataSet dataSet, boolean latentDataSaved) Simulates data for the given data set.MlBayesIm.simulateData(DataSet dataSet, boolean latentDataSaved, int[] tiers) simulateData.MlBayesImObs.simulateData(int sampleSize, boolean latentDataSaved) Simulates a data set with the specified number of rows.MlBayesImObs.simulateData(DataSet dataSet, boolean latentDataSaved) Simulates data based on the provided data set and saves the latent data if specified.UpdatedBayesIm.simulateData(int sampleSize, boolean latentDataSaved) Simulates a data set with the specified number of rows.UpdatedBayesIm.simulateData(DataSet dataSet, boolean latentDataSaved) Simulates data based on the provided data set and saves the latent data if specified.Methods in edu.cmu.tetrad.bayes with parameters of type DataSetModifier and TypeMethodDescriptionstatic DirichletBayesImDirichletEstimator.estimate(DirichletBayesIm prior, DataSet dataSet) estimate.estimate.Estimates parameters of the given Bayes net from the given data using maximum likelihood method.33 Estimates a Bayes IM using the variables, graph, and parameters in the given Bayes PM and the data columns in the given data set.Interpolates the given data set, producing a data set with no missing values.Interpolates the given data set, producing a data set with no missing values.BayesIm.simulateData(DataSet dataSet, boolean latentDataSaved) Simulates data based on the provided data set and saves the latent data if specified.DirichletBayesIm.simulateData(DataSet dataSet, boolean latentDataSaved) Simulates data based on the provided data set and saves the latent data if specified.MlBayesIm.simulateData(DataSet dataSet, boolean latentDataSaved) Simulates data for the given data set.MlBayesIm.simulateData(DataSet dataSet, boolean latentDataSaved, int[] tiers) simulateData.MlBayesImObs.simulateData(DataSet dataSet, boolean latentDataSaved) Simulates data based on the provided data set and saves the latent data if specified.UpdatedBayesIm.simulateData(DataSet dataSet, boolean latentDataSaved) Simulates data based on the provided data set and saves the latent data if specified.Constructors in edu.cmu.tetrad.bayes with parameters of type DataSetModifierConstructorDescriptionBayesProperties(DataSet dataSet) Constructs a new BayesProperties object for the given data set.BdeMetricCache(DataSet dataSet, BayesPm bayesPm) Constructs a BdeMetricCache object for a given dataset and BayesPm.CellTableProbs(DataSet dataSet) Creates a cell count table for the given data set.CptMapCounts(DataSet data) Constructs a new CptMap based on counts from a given dataset.DataSetProbs(DataSet dataSet) Creates a cell count table for the given data set.DirichletDataSetProbs(DataSet dataSet, double symmValue) Creates a cell count table for the given data set.EmBayesEstimator(BayesIm inputBayesIm, DataSet dataSet) Constructor for EmBayesEstimator.EmBayesEstimator(BayesPm bayesPm, DataSet dataSet) Provides methods for estimating a Bayes IM from an existing BayesIM and a discrete dataset using EM (Expectation Maximization).EmBayesProperties(DataSet dataSet, Graph graph) Constructor for EmBayesProperties.FactoredBayesStructuralEM(DataSet dataSet, BayesPm bayesPmM0) Constructor for FactoredBayesStructuralEM.IntAveDataSetProbs(DataSet dataSet) Creates a cell count table for the given data set. -
Uses of DataSet in edu.cmu.tetrad.calculator
Methods in edu.cmu.tetrad.calculator with parameters of type DataSet -
Uses of DataSet in edu.cmu.tetrad.calibration
Methods in edu.cmu.tetrad.calibration that return DataSetModifier and TypeMethodDescriptionDataForCalibrationRfci.bootStrapSampling(DataSet data, int bootsrapSampleSize) bootStrapSampling.Methods in edu.cmu.tetrad.calibration with parameters of type DataSetModifier and TypeMethodDescriptionDataForCalibrationRfci.bootStrapSampling(DataSet data, int bootsrapSampleSize) bootStrapSampling.DataForCalibrationRfci.learnBNRFCI(DataSet bootstrapSample, int depth, Graph truePag) learnBNRFCI. -
Uses of DataSet in edu.cmu.tetrad.classify
Methods in edu.cmu.tetrad.classify that return DataSetModifier and TypeMethodDescriptionClassifierBayesUpdaterDiscrete.getTestData()Returns the test data being used.Constructors in edu.cmu.tetrad.classify with parameters of type DataSetModifierConstructorDescriptionClassifierBayesUpdaterDiscrete(BayesIm bayesIm, DataSet testData) The constructor sets the values of the private member variables. -
Uses of DataSet in edu.cmu.tetrad.data
Classes in edu.cmu.tetrad.data that implement DataSetModifier and TypeClassDescriptionfinal classWraps a DataBox in such a way that mixed data sets can be stored.final classWraps a 2D array of Number objects in such a way that mixed data sets can be stored.Methods in edu.cmu.tetrad.data that return DataSetModifier and TypeMethodDescriptionstatic DataSetDataTransforms.addMissingData(DataSet inData, double[] probs) Adds missing data values to cases in accordance with probabilities specified in a double array which has as many elements as there are columns in the input dataset.static DataSetSubtracts the mean of each column from each datum that column.static DataSetDataUtils.choleskySimulation(CovarianceMatrix cov) choleskySimulation.static DataSetDataTransforms.concatenate(DataSet... dataSets) concatenate.static DataSetDataTransforms.concatenate(DataSet dataSet1, DataSet dataSet2) concatenate.static DataSetDataTransforms.concatenate(List<DataSet> dataSets) concatenate.static DataSetDataTransforms.convertNumericalDiscreteToContinuous(DataSet dataSet) convertNumericalDiscreteToContinuous.BoxDataSet.copy()Returns a copy of this dataset.DataSet.copy()Returns a copy of this dataset.NumberObjectDataSet.copy()Returns a copy of this dataset.static DataSetDataSampling.createDataSample(DataSet dataSet, org.apache.commons.math3.random.RandomGenerator randomGenerator, int[] selectedColumns, Parameters parameters, double percentResamplingSize) Creates a resampled dataset from the given dataset based on the specified parameters.static DataSetDataUtils.discreteSerializableInstance()A discrete data set used to construct some other serializable instances.static DataSetDataTransforms.discretize(DataSet dataSet, int numCategories, boolean variablesCopied) discretize.Discretizer.discretize()discretize.Interpolates the given data set, producing a data set with no missing values.Interpolates the given data set, producing a data set with no missing values.Interpolates the given data set, producing a data set with no missing values.static DataSetDataTransforms.getBootstrapSample(DataSet data, int sampleSize) getBootstrapSample.static DataSetDataTransforms.getBootstrapSample(DataSet data, int sampleSize, org.apache.commons.math3.random.RandomGenerator randomGenerator) Get dataset sampled with replacement.static DataSetSimpleDataLoader.getContinuousDataSet(DataModel dataSet) Returns the datamodel case to DataSet if it is continuous.Histogram.getDataSet()Getter for the fielddataSet.static DataSetSimpleDataLoader.getDiscreteDataSet(DataModel dataSet) Returns the datamodel case to DataSet if it is discrete.static DataSetSimpleDataLoader.getMixedDataSet(DataModel dataSet) Returns the datamodel case to DataSet if it is mixed.static DataSetDataTransforms.getNonparanormalTransformed(DataSet dataSet) getNonparanormalTransformed.static DataSetDataTransforms.getResamplingDataset(DataSet data, int sampleSize) getResamplingDataset.static DataSetDataTransforms.getResamplingDataset(DataSet data, int sampleSize, org.apache.commons.math3.random.RandomGenerator randomGenerator) Get dataset sampled without replacement.Knowledge.getTestingData()Retrieves the testing dataset.BoxDataSet.like()Returns a dataset with the same dimensions as this dataset, but with no data.DataSet.like()Returns a dataset with the same dimensions as this dataset, but with no data.NumberObjectDataSet.like()Returns a dataset with the same dimensions as this dataset, but with no data.static @NotNull DataSetSimpleDataLoader.loadContinuousData(File file, String commentMarker, char quoteCharacter, String missingValueMarker, boolean hasHeader, Delimiter delimiter, boolean excludeFirstColumn) Loads a continuous dataset from a file.static @NotNull DataSetSimpleDataLoader.loadDiscreteData(File file, String commentMarker, char quoteCharacter, String missingValueMarker, boolean hasHeader, Delimiter delimiter, boolean excludeFirstColumn) Loads a discrete dataset from a file.static @NotNull DataSetSimpleDataLoader.loadMixedData(File file, String commentMarker, char quoteCharacter, String missingValueMarker, boolean hasHeader, int maxNumCategories, Delimiter delimiter, boolean excludeFirstColumn) Loads a mixed dataset from a file.static DataSetLog or unlog datastatic DataSetDataTransforms.removeConstantColumns(DataSet dataSet) removeConstantColumns.static DataSetDataTransforms.removeRandomColumns(DataSet dataSet, double aDouble) removeRandomColumns.static DataSetDataTransforms.replaceMissingWithRandom(DataSet inData) replaceMissingWithRandom.static DataSetDataTransforms.restrictToMeasured(DataSet fullDataSet) restrictToMeasured.This method takes a dataset and a sample size and creates a new dataset containing that number of samples by drawing with replacement from the original dataset.static DataSetThis method takes a dataset and a sample size and creates a new dataset containing that number of samples by drawing with replacement from the original dataset.static DataSetScales the columns of the provided dataset based on the given scale factors.static DataSetScales the continuous variables in the given DataSet to have values in the range [-1, 1].static DataSetDataTransforms.shuffleColumns(DataSet dataModel) shuffleColumns.Simulator.simulateData(int sampleSize, boolean latentDataSaved) Simulates data from the model associated with this object.static DataSetDataTransforms.standardizeData(DataSet dataSet) standardizeData.BoxDataSet.subsetColumns(int[] indices) Creates a new DataSet object containing only the specified columns.BoxDataSet.subsetColumns(List<Node> vars) Creates and returns a dataset consisting of those variables in the list vars.DataSet.subsetColumns(int[] columns) subsetColumns.DataSet.subsetColumns(List<Node> vars) Creates and returns a dataset consisting of those variables in the list vars.NumberObjectDataSet.subsetColumns(int[] indices) subsetColumns.NumberObjectDataSet.subsetColumns(List<Node> vars) Creates and returns a dataset consisting of those variables in the list vars.BoxDataSet.subsetRows(int[] rows) Creates a subset of rows from the existing DataSet.BoxDataSet.subsetRows(List<Integer> rows) DataSet.subsetRows(int[] rows) subsetRows.DataSet.subsetRows(List<Integer> rows) Creates a new DataSet containing only the rows specified by the given list of row indices.NumberObjectDataSet.subsetRows(int[] rows) subsetRows.NumberObjectDataSet.subsetRows(List<Integer> rows) BoxDataSet.subsetRowsColumns(int[] rows, int[] columns) Generates a subset of the current DataSet by selecting specified rows and columns.DataSet.subsetRowsColumns(int[] rows, int[] columns) Generates a subset of the current DataSet by selecting specified rows and columns.NumberObjectDataSet.subsetRowsColumns(int[] rows, int[] columns) Generates a subset of the current DataSet by selecting specified rows and columns.Methods in edu.cmu.tetrad.data that return types with arguments of type DataSetModifier and TypeMethodDescriptioncenter.DataSampling.createDataSamples(DataSet dataSet, org.apache.commons.math3.random.RandomGenerator randomGenerator, Parameters parameters) Create a list of dataset resampled from the given dataset.DataSampling.createDataSamples(org.apache.commons.math3.random.RandomGenerator randomGenerator, DataSet dataSet, Parameters parameters) Create a list of dataset resampled from the given dataset.DataTransforms.shuffleColumns2(List<DataSet> dataSets) shuffleColumns2.split.DataTransforms.standardizeData(List<DataSet> dataSets) standardizeData.Methods in edu.cmu.tetrad.data with parameters of type DataSetModifier and TypeMethodDescriptionstatic DataSetDataTransforms.addMissingData(DataSet inData, double[] probs) Adds missing data values to cases in accordance with probabilities specified in a double array which has as many elements as there are columns in the input dataset.static DataSetSubtracts the mean of each column from each datum that column.static DataSetDataTransforms.concatenate(DataSet... dataSets) concatenate.static DataSetDataTransforms.concatenate(DataSet dataSet1, DataSet dataSet2) concatenate.static booleanDataUtils.containsMissingValue(DataSet data) containsMissingValue.static DataSetDataTransforms.convertNumericalDiscreteToContinuous(DataSet dataSet) convertNumericalDiscreteToContinuous.static voidDataTransforms.copyColumn(Node node, DataSet source, DataSet dest) copyColumn.static ICovarianceMatrixDataTransforms.covarianceNonparanormalDrton(DataSet dataSet) covarianceNonparanormalDrton.static DataSetDataSampling.createDataSample(DataSet dataSet, org.apache.commons.math3.random.RandomGenerator randomGenerator, int[] selectedColumns, Parameters parameters, double percentResamplingSize) Creates a resampled dataset from the given dataset based on the specified parameters.DataSampling.createDataSamples(DataSet dataSet, org.apache.commons.math3.random.RandomGenerator randomGenerator, Parameters parameters) Create a list of dataset resampled from the given dataset.DataSampling.createDataSamples(org.apache.commons.math3.random.RandomGenerator randomGenerator, DataSet dataSet, Parameters parameters) Create a list of dataset resampled from the given dataset.static DataSetDataTransforms.discretize(DataSet dataSet, int numCategories, boolean variablesCopied) discretize.Interpolates the given data set, producing a data set with no missing values.Interpolates the given data set, producing a data set with no missing values.Interpolates the given data set, producing a data set with no missing values.static DataSetDataTransforms.getBootstrapSample(DataSet data, int sampleSize) getBootstrapSample.static DataSetDataTransforms.getBootstrapSample(DataSet data, int sampleSize, org.apache.commons.math3.random.RandomGenerator randomGenerator) Get dataset sampled with replacement.DataTransforms.getConstantColumns(DataSet dataSet) getConstantColumns.static @NotNull ICovarianceMatrixSimpleDataLoader.getCorrelationMatrix(DataSet dataSet) getCorrelationMatrix.static @NotNull ICovarianceMatrixSimpleDataLoader.getCovarianceMatrix(DataSet dataSet, boolean precomputeCovariances) getCovarianceMatrix.static DataSetDataTransforms.getNonparanormalTransformed(DataSet dataSet) getNonparanormalTransformed.static DataSetDataTransforms.getResamplingDataset(DataSet data, int sampleSize) getResamplingDataset.static DataSetDataTransforms.getResamplingDataset(DataSet data, int sampleSize, org.apache.commons.math3.random.RandomGenerator randomGenerator) Get dataset sampled without replacement.static booleanStates whether the given column of the given data set is binary.static DataSetLog or unlog datastatic DataSetDataTransforms.removeConstantColumns(DataSet dataSet) removeConstantColumns.static DataSetDataTransforms.removeRandomColumns(DataSet dataSet, double aDouble) removeRandomColumns.static DataSetDataTransforms.replaceMissingWithRandom(DataSet inData) replaceMissingWithRandom.static DataSetDataTransforms.restrictToMeasured(DataSet fullDataSet) restrictToMeasured.This method takes a dataset and a sample size and creates a new dataset containing that number of samples by drawing with replacement from the original dataset.static DataSetThis method takes a dataset and a sample size and creates a new dataset containing that number of samples by drawing with replacement from the original dataset.static DataSetScales the columns of the provided dataset based on the given scale factors.static DataSetScales the continuous variables in the given DataSet to have values in the range [-1, 1].static voidScales the values of a specified node in the given dataset to a specified range [scaleMin, scaleMax].voidKnowledge.setTestingData(DataSet ds) Sets the testing data for this instance.static DataSetDataTransforms.shuffleColumns(DataSet dataModel) shuffleColumns.split.static DataSetDataTransforms.standardizeData(DataSet dataSet) standardizeData.static voidDataWriter.writeRectangularData(DataSet dataSet, Writer out, char separator) Writes a dataset to file.Method parameters in edu.cmu.tetrad.data with type arguments of type DataSetModifier and TypeMethodDescriptioncenter.static DataSetDataTransforms.concatenate(List<DataSet> dataSets) concatenate.DataTransforms.shuffleColumns2(List<DataSet> dataSets) shuffleColumns2.DataTransforms.standardizeData(List<DataSet> dataSets) standardizeData.Constructors in edu.cmu.tetrad.data with parameters of type DataSetModifierConstructorDescriptionCellTableAdTree(DataSet dataSet, int[] testIndices) Constructs a new CellTableAdTree using the provided data set and test indices.CellTableAdTree(DataSet dataSet, int[] testIndices, List<Integer> rows) Constructs a new cell table using the given array for dimensions, initializing all cells in the table to zero.CellTableCountSample(DataSet dataSet, int[] testIndices) Constructs a new cell table using the given array for dimensions, initializing all cells in the table to zero.CellTableCountSample(DataSet dataSet, int[] testIndices, List<Integer> rows) Constructs a new cell table using the given array for dimensions, initializing all cells in the table to zero.CorrelationMatrix(DataSet dataSet) Constructs a new correlation matrix from the the given DataSet.CovarianceMatrix(DataSet dataSet) Constructs a new covariance matrix from the given data set.CovarianceMatrix(DataSet dataSet, boolean biasCorrected) Constructor for CovarianceMatrix.CovarianceMatrixOnTheFly(DataSet dataSet) Constructs a new covariance matrix from the given data set.CovarianceMatrixOnTheFly(DataSet dataSet, boolean verbose) Constructor for CovarianceMatrixOnTheFly.Discretizer(DataSet dataSet) Constructs a new discretizer that discretizes every variable as binary, using evenly distributed values.Discretizer(DataSet dataSet, Map<Node, DiscretizationSpec> specs) Constructor for Discretizer.This histogram is for variables in a particular data set. -
Uses of DataSet in edu.cmu.tetrad.graph
Methods in edu.cmu.tetrad.graph with parameters of type DataSetModifier and TypeMethodDescriptionstatic GraphGraphSaveLoadUtils.loadGraphBNTPcMatrix(List<Node> vars, DataSet dataSet) loadGraphBNTPcMatrix. -
Uses of DataSet in edu.cmu.tetrad.hybridcg
Methods in edu.cmu.tetrad.hybridcg that return DataSetModifier and TypeMethodDescriptionHybridCgModel.HybridCgIm.toDataSet(HybridCgModel.HybridCgIm.Sample sample) Convert a sampled matrix into a Tetrad DataSet with the provided node ordering.Methods in edu.cmu.tetrad.hybridcg with parameters of type DataSetModifier and TypeMethodDescriptionvoidHybridCgModel.HybridCgPm.autoCutpointsForDiscreteChild(Node child, DataSet data, int binsPerParent) Populate cutpoints for each continuous parent of a DISCRETE child using equal-frequency binning.static HybridCgModel.HybridCgImHybridCgEstimator.estimate(HybridCgModel.HybridCgPm pm, DataSet data, Parameters params) Estimates the parameters of a Hybrid Conditional Gaussian (HybridCG) Model using the given parameter model (pm), data set, and optional parameters.HybridCgModel.HybridCgIm.HybridEstimator.mle(HybridCgModel.HybridCgPm pm, DataSet data) Estimates a HybridCgIm model from the given HybridCgPm and DataSet.static intHybridCgModel.HybridCgIm.rowIndexForCase(HybridCgModel.HybridCgPm pm, int nodeIndex, DataSet data, int row, int[] colIndex) Computes the row index for a given data case in the hybrid causal graph model.intHybridCgModel.HybridCgPm.rowIndexForCase(int nodeIndex, DataSet data, int row) Convenience overload that reads parent states/values from a DataSet row.static voidHybridCgCutpoints.setAll(HybridCgModel.HybridCgPm pm, DataSet data, int bins, HybridCgCutpoints.Method method) For every DISCRETE child Y with ≥1 continuous parent, computes and installs cutpoints for each continuous parent using the chosen method and desired number of bins. -
Uses of DataSet in edu.cmu.tetrad.regression
Methods in edu.cmu.tetrad.regression that return DataSetMethods in edu.cmu.tetrad.regression with parameters of type DataSetConstructors in edu.cmu.tetrad.regression with parameters of type DataSetModifierConstructorDescriptionLogisticRegression(DataSet dataSet) A mixed data set.RegressionDataset(DataSet data) Constructs a linear regression model for the given tabular data set. -
Uses of DataSet in edu.cmu.tetrad.search
Methods in edu.cmu.tetrad.search that return DataSetMethods in edu.cmu.tetrad.search with parameters of type DataSetModifier and TypeMethodDescriptionSets the data set for the builder.Provide a DataSet that ALREADY ends with C as the last column.Cdnod.Builder.dataAndIndex(DataSet dataX, double[] cIndex, String cName) Sets the data, index array, and potentially a custom name for the builder.CdnodBoss.Builder.dataAndIndex(DataSet dataX, double[] cIndex, String cName) Provide X and a continuous change index C to append as the last column.static MatrixEstimates the weight matrix W using the Fast Independent Component Analysis (FastICA) algorithm.static MatrixIcaLingD.estimateW(DataSet data, int fastIcaMaxIter, double fastIcaTolerance, double fastIcaA, boolean verbose) Estimates the weight matrix (W) using the Fast Independent Component Analysis (FastICA) algorithm.Fits a dataset to estimate a weight matrix using the ICA-LiNGAM algorithm.Convenience: estimate W via FastICA, then enumerate BÌ‚ candidates.double[][]CpdagParentDistancesFromTrue.getDistances(Graph outputCpdag, double[][] trueEdgeStrengths, DataSet dataSet, CpdagParentDistancesFromTrue.DistanceType distanceType) Calculates the distance matrix for the edges in the given CPDAG (outputCpdag).Cstar.getRecords(DataSet dataSet, List<Node> possibleCauses, List<Node> possibleEffects, int topBracket, String path) Returns records for a set of variables with expected number of false positives bounded by q.static voidRun the ntad explorer on the given dataset and CCA test, using ALL variables in the dataset as the candidate list.static voidNtadExplorerHarness.runDemo(DataSet data, List<Node> vars, Cca ccaTest, int blockSize, int maxResults, double alpha) Runs the NTAD Explorer demo using the specified dataset, variable list, CCA test, and parameters.Computes the score of a given data set and graph by evaluating the Bayesian Information Criterion (BIC), stability of the system, and the number of parameters used.Performs a search operation to generate a causal graph based on the provided dataset.Deprecated.Performs a search operation over the given dataset to analyze dependencies, refine coefficients, and build a directed graph representation.voidSets the dataset to be used in this instance.voidCdnod.setDataAndIndex(DataSet dataX, double[] cIndex, String cName) Sets the dataset with an additional continuous change-index column added as the last column.voidCdnodBoss.setDataAndIndex(DataSet dataX, double[] cIndex, String cName) Updates the internal dataset by appending a change index as the last column.voidCdnodBoss.setDataWithC(DataSet dataWithC) Sets the dataset to be used in this instance.Constructors in edu.cmu.tetrad.search with parameters of type DataSetModifierConstructorDescriptionBuilder(DataSet data, IndependenceTest test) Constructs a Builder instance for configuring and creating a Pcmci object.Constructs a Cam instance with the given data set.Constructor.DirectLingam(DataSet dataset, Score score) Constructor.FactorAnalysis(DataSet dataSet) Constructor.Constructs a new Fask instance with the specified data set and score.FaskOrig(DataSet dataSet, Score score, IndependenceTest test) Deprecated.Constructor.Constructs an instance of the Fofc class using the given dataset, significance level, and equivalent sample size.Ftfc(DataSet dataSet, double alpha, int ess, SingleClusterPolicy policy) Constructs an instance of Ftfc.Constructs a new Gffc instance with the specified data set, alpha value, maximum rank (rMax), and effective sample size (ess).Constructor.Constructs a new IDA check for the given PDAG and data set.PdagPagIda(DataSet dataSet, Graph graph, List<Node> possibleCauses) Constructs a new instance of the PdagPagIda class which is used for processing a dataset and graph combination while ensuring the provided graph is a valid DAG, CPDAG/PDAG, or PAG, and the dataset is continuous.ScoredClusterFinder(DataSet dataSet, Collection<Integer> candidateVarIndices) Constructs a ScoredClusterFinder instance using the provided dataset and a collection of candidate variable indices.Constructor parameters in edu.cmu.tetrad.search with type arguments of type DataSetModifierConstructorDescriptionFaskVote(List<DataSet> dataSets, ScoreWrapper score, IndependenceWrapper test) Constructor.Constructor. -
Uses of DataSet in edu.cmu.tetrad.search.blocks
Methods in edu.cmu.tetrad.search.blocks that return DataSetModifier and TypeMethodDescriptionBlockSpec.dataSet()Returns the data set associated with this block specification.Methods in edu.cmu.tetrad.search.blocks with parameters of type DataSetModifier and TypeMethodDescriptionstatic BlockDiscovererBlockDiscoverers.bpc(DataSet data, double alpha, int ess, SingleClusterPolicy policy, boolean verbose) Constructs aBpcBlockDiscovererinstance, which implements the BPC algorithm for discovering clusters or "blocks" of indices in a dataset.static BlockDiscovererBlockDiscoverers.fofc(DataSet data, double alpha, int ess, SingleClusterPolicy policy, boolean verbose) Creates a new instance of aFofcBlockDiscoverer, which is an implementation of theBlockDiscovererinterface.static BlockDiscovererBlockDiscoverers.ftfc(DataSet data, double alpha, int ess, SingleClusterPolicy policy, boolean verbose) Constructs aFtfcBlockDiscovererinstance, which implements the FTFC algorithm for discovering clusters or "blocks" of indices in a dataset.static BlockDiscovererBlockDiscoverers.gffc(DataSet data, double alpha, int ess, int rMax, SingleClusterPolicy policy, boolean verbose) Constructs aGffcBlockDiscovererinstance, which implements the GFFC algorithm for discovering clusters or "blocks" of indices in a dataset.BlocksUtil.makeBlockVariables(List<List<Integer>> blocks, DataSet dataSet) Creates a list of block variables based on the provided list of blocks and the dataset.static BlockSpecBlocksUtil.makeDisjointSpec(DataSet ds, List<List<Integer>> blocks) Constructs a BlockSpec object using the provided DataSet and block definitions, ensuring that the blocks are made disjoint by prioritizing larger blocks first.Parses an input textual representation of block specifications into a structured format.static BlockSpecConverts a list of block indices and a dataset into a BlockSpec object, ensuring the blocks are canonicalized and generating the appropriate block variables.static BlockSpecConverts a list of blocks, ranks, and a dataset into a BlockSpec object.static BlockDiscovererBlockDiscoverers.tsc(DataSet data, double alpha, int ess, double ridge, int rMax, SingleClusterPolicy policy, int minRedundancy, boolean verbose) Creates a new instance of aTscTestBlockDiscoverer, which is an implementation of theBlockDiscovererinterface.static voidBlocksUtil.validateBlocks(List<List<Integer>> blocks, DataSet data) Validates the provided list of blocks to ensure that all indices within each block are non-negative, within the range of columns in the given dataset, and not null.Constructors in edu.cmu.tetrad.search.blocks with parameters of type DataSetModifierConstructorDescriptionConstructs an instance of BlockSpec with the specified data set, blocks, and block variables.BlockSpec(DataSet dataSet, List<List<Integer>> blocks, List<Node> blockVariables, List<Integer> ranks) Constructs an instance of BlockSpec with the specified data set, blocks, block variables, and their corresponding ranks.BpcBlockDiscoverer(DataSet dataSet, double alpha, int ess, SingleClusterPolicy policy, boolean verbose) Constructor for theBpcBlockDiscovererclass, responsible for initiating the discovery of clusters or blocks of indices within a dataset using the BPC (Bayesian Partitioning for Causal Discovery) algorithm.FofcBlockDiscoverer(DataSet dataSet, double alpha, int ess, SingleClusterPolicy policy, boolean verbose) Constructs a new instance ofFofcBlockDiscoverer, which is used to discover clusters or "blocks" of indices in a dataset based on the FOFC algorithm.FtfcBlockDiscoverer(DataSet dataSet, double alpha, int ess, SingleClusterPolicy policy, boolean verbose) Constructs a new instance ofFofcBlockDiscoverer, which is used to discover clusters or "blocks" of indices in a dataset based on the FOFC algorithm.GffcBlockDiscoverer(DataSet dataSet, double alpha, int ess, int rMax, SingleClusterPolicy policy, boolean verbose) Constructs a new instance ofFofcBlockDiscoverer, which is used to discover clusters or "blocks" of indices in a dataset based on the FOFC algorithm.TscTestBlockDiscoverer(DataSet dataSet, double alpha, int ess, double ridge, int rMax, SingleClusterPolicy policy, int minRedundancy, boolean verbose) Constructs a TscTestBlockDiscoverer instance with the specified parameters for discovering and analyzing blocks of variables in a dataset using the TSC algorithm. -
Uses of DataSet in edu.cmu.tetrad.search.cdnod_pag
Methods in edu.cmu.tetrad.search.cdnod_pag with parameters of type DataSetModifier and TypeMethodDescriptionbooleanDetermines whether changes occur based on a test of the dependence of residuals on an environmental variable using a conditional-Gaussian approach.booleanEvaluates whether there is a change or instability with respect to the given context variable.default booleanChangeTest.changesAny(DataSet data, Node y, Set<Node> Z, Collection<Node> contexts, double alpha) Determines whether there is any change or instability with respect to any of the specified context variables.static voidChangeTest.requireNonNulls(DataSet data, Node y, Set<Node> Z) Ensures that the specified objects are not null.Performs a search operation on the provided dataset to build a graph representing relationships or dependencies within the data.default booleanDetermines whether the data, with respect to a given context variable, is stable (i.e., there is no change or instability).default booleanDetermines whether the data is stable with respect to all specified context variables, meaning no changes or instability are detected across any of the contexts provided.Constructors in edu.cmu.tetrad.search.cdnod_pag with parameters of type DataSetModifierConstructorDescriptionCdnodPag(DataSet dataAll, double alpha, ChangeTest changeTest, CdnodPag.PagBuilder pagBuilder, Function<Graph, Boolean> legalityCheck, Function<Graph, Graph> propagator, Knowledge knowledge) Constructs an instance of the CdnodPag class with the specified parameters.ChangeOracle(DataSet data, Node env, double alpha, ChangeTest test) Constructor for the ChangeOracle class using a single context.ChangeOracle(DataSet data, Collection<Node> contexts, double alpha, ChangeTest test) Constructs a new instance of the ChangeOracle class with multiple contexts. -
Uses of DataSet in edu.cmu.tetrad.search.is
Methods in edu.cmu.tetrad.search.is that return DataSetModifier and TypeMethodDescriptionIsBDeuScore2.getDataSet()Retrieves the required effect/gain threshold for determining an effect edge.IsBicScore.getDataSet()Retrieves the training data set that is utilized within this instance.IsScore.getDataSet()Retrieves the dataset associated with the scoring or inference process.Methods in edu.cmu.tetrad.search.is that return types with arguments of type DataSetModifier and TypeMethodDescriptionIndTestProbabilisticBDeu.getDataSets()Retrieves the list of data sets associated with this independence test.IndTestProbabilisticISBDeu.getDataSets()Retrieves the list of data sets used in the computation.Constructors in edu.cmu.tetrad.search.is with parameters of type DataSetModifierConstructorDescriptionBDeuScoreWOprior(DataSet dataSet) Constructs a BDeuScoreWOprior object for scoring discrete data based on the BDeu scoring metric.IndTestProbabilisticBDeu(DataSet dataSet, double prior) Constructs an independence test object using a probabilistic BDeu (Bayesian Dirichlet equivalent uniform) score.IndTestProbabilisticISBDeu(DataSet dataSet, DataSet test, double prior) Constructs an IndTestProbabilisticISBDeu object for probabilistic independence testing based on BDeu scoring, using a specified prior probability.IsBDeuScore(DataSet train, DataSet instanceOneRow) Constructs an instance of the IsBDeuScore class, which validates and compares the schema and data consistency between a training dataset and a single-row instance dataset, ensuring they meet the criteria for Bayesian scoring.IsBDeuScore2(DataSet dataSet, DataSet testCase) Constructs an instance of the IsBDeuScore2 class with the specified training and test datasets.IsBicScore(DataSet dataSet, DataSet testCase) Constructs an instance of the IsBicScore class. -
Uses of DataSet in edu.cmu.tetrad.search.rlcd
Methods in edu.cmu.tetrad.search.rlcd that return DataSetModifier and TypeMethodDescriptionRLCD.getDataSet()Retrieves the dataset associated with the RLCD process.Methods in edu.cmu.tetrad.search.rlcd with parameters of type DataSetModifier and TypeMethodDescriptionCreates an independence test based on the provided dataset and significance level.Creates a RankTest instance for the given DataSet.Constructors in edu.cmu.tetrad.search.rlcd with parameters of type DataSetModifierConstructorDescriptionRLCD(DataSet dataSet, RLCDParams params) Constructs an instance of the RLCD class. -
Uses of DataSet in edu.cmu.tetrad.search.score
Methods in edu.cmu.tetrad.search.score that return DataSetModifier and TypeMethodDescriptionBdeScore.getDataSet()Returns the DataSet associated with this method.BDeuScore.getDataSet()Retrieves the dataset associated with this BdeuScore object.DiscreteBicScore.getDataSet()Returns the dataset.DiscreteBicScoreAdTree.getDataSet()Returns the dataset.DiscreteScore.getDataSet()Returns the dataset.GicScores.getDataSet()Returns the dataset.IndTestScore.getDataSet()Returns the data set.Methods in edu.cmu.tetrad.search.score with parameters of type DataSetModifier and TypeMethodDescriptionstatic MatrixComputes the covariance matrix for the given subset of rows and columns in the provided data set.Constructors in edu.cmu.tetrad.search.score with parameters of type DataSetModifierConstructorDescriptionBasisFunctionBicScore(DataSet dataSet, int truncationLimit, double lambda) Constructs a BasisFunctionBicScore object with the specified parameters.BasisFunctionBicScoreFullSample(DataSet dataSet, int truncationLimit, double lambda) Constructs a BasisFunctionBicScore object with the specified parameters.Constructs a BDe score for the given dataset.Constructs a BDe score for the given dataset.Constructs an instance of CamAdditivePsplineBic.ConditionalGaussianLikelihood(DataSet dataSet) Constructs the score using a covariance matrix.ConditionalGaussianScore(DataSet dataSet, double penaltyDiscount, boolean discretize) Constructs the score.DegenerateGaussianScore(DataSet dataSet, boolean precomputeCovariances, double lambda) Constructs the score using a dataset.DiscreteBicScore(DataSet dataSet) Constructs the score using a dataset.DiscreteBicScoreAdTree(DataSet dataSet) Constructs the score using a dataset.Constructs the score using a covariance matrix.Constructs the score using a covariance matrix.KcvBicScore(DataSet dataSet) Constructor for the KcvBicScore class.MvpLikelihood(DataSet dataSet, double structurePrior, int fDegree, boolean discretize) Constructs the score using a data set.MvpScore(DataSet dataSet, double structurePrior, int fDegree, boolean discretize, int effectiveSampleSize) Constructs an MvpScore instance with the given dataset and parameters.PoissonPriorScore(DataSet dataSet, boolean precomputeCovariances) Constructs the score using a covariance matrix.RffBicScore(DataSet dataSet) Constructs an instance of the RffBicScore class.SemBicScore(DataSet dataSet, boolean precomputeCovariances) Constructs the score using a covariance matrix.SemBicScore(DataSet dataSet, double penaltyDiscount, boolean precomputeCovariances) Constructs the score using a covariance matrix.Constructs the score using a covariance matrix. -
Uses of DataSet in edu.cmu.tetrad.search.test
Methods in edu.cmu.tetrad.search.test that return DataSetModifier and TypeMethodDescriptionIndTestChiSquare.getData()Returns the data being analyzed.IndTestConditionalCorrelation.getData()Returns the data set being analyzed.IndTestConditionalGaussianLrt.getData()Returns the data.IndTestDegenerateGaussianLrt.getData()Retrieves the data set used for the independence test.IndTestFisherZ.getData()Retrieves the data set associated with the current instance.IndTestFisherZConcatenateResiduals.getData()Deprecated.Returns the concatenated data.IndTestFisherZFisherPValue.getData()Returns the concatenated data.IndTestGin.getData()Returns the current regressor being used for the independence test.IndTestGSquare.getData()Returns the data.IndTestHsic.getData()Deprecated.Returns the data set being analyzed.IndTestMulti.getData()Retrieves the data set.IndTestMvpLrt.getData()Returns the data.IndTestRcit.getData()Returns the data used for the independence test.IndTestRcot.getData()Retrieves the dataset associated with this instance.IndTestRegression.getData()Deprecated.Returns the data used.IndTestTrekSep.getData()Deprecated.Gets the data set used for the independence test.MsepTest.getData()Returns the data set used for the test.Methods in edu.cmu.tetrad.search.test that return types with arguments of type DataSetModifier and TypeMethodDescriptionIndependenceTest.getDataSets()Returns the datasets for this testIndTestFdrWrapper.getDataSets()Retrieves the data sets used in the underlying independence test.IndTestFisherZ.getDataSets()Retrieves a list of data sets associated with this instance.IndTestTrekSep.getDataSets()Deprecated.Returns the data sets used for the independence test.ScoreIndTest.getDataSets()Constructors in edu.cmu.tetrad.search.test with parameters of type DataSetModifierConstructorDescriptionChiSquareTest(DataSet dataSet, double alpha, ChiSquareTest.TestType testType, List<Integer> rows) Constructs a test using the given data set and significance level.ConditionalCorrelationIndependence(DataSet dataSet, int basisType, double basisScale, int numFunctions) Initializes a new instance of the ConditionalCorrelationIndependence class using the provided DataSet.IndTestBasisFunctionBlocks(DataSet dataSet, int truncationLimit, int basisType) Constructs an instance of IndTestBasisFunctionBlocks.IndTestBasisFunctionLrt(DataSet dataSet, int truncationLimit, double lambda) Deprecated.Constructs an instance of IndTestBasisFunctionLrtCovariance.IndTestBasisFunctionLrtFullSample(DataSet dataSet, int truncationLimit, double lambda) Deprecated.Constructs an instance of the IndTestBasisFunctionLrt class.IndTestChiSquare(DataSet dataSet, double alpha) Constructs a new independence checker to check conditional independence facts for discrete data using a g square test.IndTestConditionalCorrelation(DataSet dataSet, double alpha, double scalingFactor, int basisType, double basisScale, int numFunctions) Constructs a newIndTestConditionalCorrelationto check independence based on conditional correlations derived from the given continuous data set.IndTestConditionalGaussianLrt(DataSet data, double alpha, boolean discretize) Constructor.IndTestDegenerateGaussianLrt(DataSet dataSet) Constructs the test using the given (mixed) data set.Deprecated.Constructs an instance of the IndTestBasisFunctionLrt class.IndTestFisherZ(DataSet dataSet, double alpha) Constructs an independence test using the Fisher Z test statistic.IndTestFisherZ(DataSet dataSet, double alpha, double ridge) Constructor for IndTestFisherZ which initializes the independence test using the Fisher Z test with specified parameters.IndTestGin(DataSet data) Constructs an instance of IndTestGin with the specified dataset.IndTestGin(DataSet data, IndTestGin.Regressor regressor, IndTestGin.UncondIndTest backend) Constructs an instance of IndTestGin with the specified dataset, regressor, and backend components.IndTestGSquare(DataSet dataSet, double alpha) Constructs a new independence checker to check conditional independence facts for discrete data using a g square test.IndTestHsic(DataSet dataSet, double alpha) Deprecated.Constructs a new HSIC Independence test.IndTestMvpLrt(DataSet data, double alpha, int fDegree, boolean discretize) Constructor.IndTestProbabilistic(DataSet dataSet) Initializes the test using a discrete data sets.IndTestRcit(DataSet dataSet) Constructs an instance of the IndTestRcit class, which initializes the test with the given data set and default parameters.IndTestRcit(DataSet dataSet, Parameters params) Constructs an instance of the IndTestRcit class, which initializes the test with the given data set and parameters.IndTestRcot(DataSet dataSet) Constructs an instance of IndTestRcot with default parameters.IndTestRcot(DataSet dataSet, Parameters params) Constructs an instance of IndTestRcot with Parameters (legacy keys match IndTestRcit style).IndTestRegression(DataSet dataSet, double alpha) Deprecated.Constructs a new Independence test which checks independence facts based on the correlation matrix implied by the given data set (must be continuous).Constructs a Kci instance with the given DataSet.Constructor parameters in edu.cmu.tetrad.search.test with type arguments of type DataSetModifierConstructorDescriptionIndTestFisherZConcatenateResiduals(List<DataSet> dataSets, double alpha) Deprecated.Constructor.IndTestFisherZFisherPValue(List<DataSet> dataSets, double alpha) Constructor. -
Uses of DataSet in edu.cmu.tetrad.search.unmix
Fields in edu.cmu.tetrad.search.unmix with type parameters of type DataSetModifier and TypeFieldDescriptionUnmixResult.clusterDataA list of datasets corresponding to individual clusters obtained from a clustering algorithm.CausalUnmixer.Config.perClusterGraphFnA function that generates a cluster-specific graph creation method.CausalUnmixer.Config.pooledGraphFnA function that generates a pooled graph model based on a given configuration and dataset.ParentSupersetBuilder.Config.shallowSearchIf provided, called on each subsample to get a shallow graph (e.g., PC-Max depth 1)Methods in edu.cmu.tetrad.search.unmix with parameters of type DataSetModifier and TypeMethodDescriptionParentSupersetBuilder.build(DataSet data, ParentSupersetBuilder.Config cfg) Builds a map representing a superset of parent nodes for each variable node in the given data set.static UnmixDiagnostics.BicDeltaUnmixDiagnostics.computeBicDeltaK1K2(DataSet data, EmUnmix.Config baseCfg, ResidualRegressor regressor, Function<DataSet, Graph> pooled, Function<DataSet, Graph> perCluster) Computes the Bayesian Information Criterion (BIC) for mixture models with K=1 and K=2 clusters, and calculates the BIC difference (delta) between them.voidFits the linear regression model to the given data.voidFits a local mechanism for the target variable using its parents from the provided dataset.static @NotNull UnmixResultCausalUnmixer.getUnmixedResult(DataSet data) Retrieves the unmixing result by processing the provided dataset using default configuration settings.static @NotNull UnmixResultCausalUnmixer.getUnmixedResult(DataSet data, @NotNull CausalUnmixer.Config cfg) Retrieves the unmixing results from the provided dataset and configuration.double[]Predicts the regression output for the given dataset, target node, and parent nodes using the model parameters.double[]Predicts fitted values for all rows for the given target using the current fitted model.static double[][]ResidualUtils.residualMatrix(DataSet data, Graph g, ResidualRegressor reg) Constructs a residual matrix where each column corresponds to a variable in the dataset and contains the residuals obtained after regressing that variable on its parents as specified by the given graph.static double[][]ResidualUtils.residualMatrix(DataSet data, Map<Node, List<Node>> parentsMap, ResidualRegressor reg) Constructs a residual matrix where each column corresponds to a variable in the dataset and contains the residuals obtained after regressing that variable on its parents as specified by the given parent map.default double[]Convenience method computing residuals = y - yhat for all rows.static UnmixResultEmUnmix.run(DataSet data, EmUnmix.Config cfg, ResidualRegressor regressor) Runs the unmixing process on the provided dataset using the specified configuration and regressor.static UnmixResultEmUnmix.run(DataSet data, EmUnmix.Config cfg, ResidualRegressor regressor, Function<DataSet, Graph> pooledSearch, Function<DataSet, Graph> perClusterSearch) Executes the unmixing process on the given dataset using the specified configuration, residual regressor, and optional graph search functions.static UnmixResultEmUnmix.selectK(DataSet data, int Kmin, int Kmax, ResidualRegressor regressor, EmUnmix.Config base) Selects the optimal number of clusters (K) for unmixing the provided dataset within the specified range.static UnmixResultEmUnmix.selectK(DataSet data, int Kmin, int Kmax, ResidualRegressor regressor, Function<DataSet, Graph> pooledSearch, Function<DataSet, Graph> perClusterSearch, EmUnmix.Config base) Selects the optimal number of clusters (K) for unmixing a dataset within the specified range [Kmin, Kmax].UnmixDiagnostics.stabilityAcrossRestarts(DataSet data, EmUnmix.Config cfg, ResidualRegressor regressor, Function<DataSet, Graph> pooled, Function<DataSet, Graph> perCluster, int repeats, long seedBase) Evaluates the stability of clustering results across multiple independent runs of the EM algorithm by calculating the average Adjusted Rand Index (ARI) and its standard deviation between all pairs of runs.Method parameters in edu.cmu.tetrad.search.unmix with type arguments of type DataSetModifier and TypeMethodDescriptionstatic UnmixDiagnostics.BicDeltaUnmixDiagnostics.computeBicDeltaK1K2(DataSet data, EmUnmix.Config baseCfg, ResidualRegressor regressor, Function<DataSet, Graph> pooled, Function<DataSet, Graph> perCluster) Computes the Bayesian Information Criterion (BIC) for mixture models with K=1 and K=2 clusters, and calculates the BIC difference (delta) between them.static UnmixResultEmUnmix.run(DataSet data, EmUnmix.Config cfg, ResidualRegressor regressor, Function<DataSet, Graph> pooledSearch, Function<DataSet, Graph> perClusterSearch) Executes the unmixing process on the given dataset using the specified configuration, residual regressor, and optional graph search functions.static UnmixResultEmUnmix.selectK(DataSet data, int Kmin, int Kmax, ResidualRegressor regressor, Function<DataSet, Graph> pooledSearch, Function<DataSet, Graph> perClusterSearch, EmUnmix.Config base) Selects the optimal number of clusters (K) for unmixing a dataset within the specified range [Kmin, Kmax].UnmixDiagnostics.stabilityAcrossRestarts(DataSet data, EmUnmix.Config cfg, ResidualRegressor regressor, Function<DataSet, Graph> pooled, Function<DataSet, Graph> perCluster, int repeats, long seedBase) Evaluates the stability of clustering results across multiple independent runs of the EM algorithm by calculating the average Adjusted Rand Index (ARI) and its standard deviation between all pairs of runs.Constructor parameters in edu.cmu.tetrad.search.unmix with type arguments of type DataSetModifierConstructorDescriptionUnmixResult(int[] labels, int K, List<DataSet> clusterData, GaussianMixtureEM.Model gmmModel) Constructs an instance of UnmixResult containing essential clustering outcome information without graphical representations.UnmixResult(int[] labels, int K, List<DataSet> clusterData, List<Graph> clusterGraphs, GaussianMixtureEM.Model gmmModel) Constructs an instance of UnmixResult containing information about the results of a clustering algorithm. -
Uses of DataSet in edu.cmu.tetrad.search.utils
Methods in edu.cmu.tetrad.search.utils that return DataSetModifier and TypeMethodDescriptionstatic DataSetCreates new time series dataset from the given one with index variable (e.g., time)static DataSetMissingnessIndicatorAdder.addMissingnessIndicators(DataSet dataSet) Adds missingness indicators to a dataset.static DataSetar.static DataSetar2.static DataSetTsUtils.createLagData(DataSet data, int numLags) Creates new time series dataset from the given one (fixed to deal with mixed datasets)static DataSetTsUtils.createShiftedData(DataSet data, int[] shifts) createShiftedData.static DataSetTsUtils.difference(DataSet data, int d) Calculates the dth difference of the given data.Embedding.EmbeddedData.embeddedData()Returns the value of theembeddedDatarecord component.TetradTest.getDataSet()getDataSet.TetradTestContinuous.getDataSet()Getter for the fielddataSet.TetradTestDiscrete.getDataSet()Getter for the fielddataSet.TetradTestPopulation.getDataSet()getDataSet.static @NotNull DataSetLgMnarDataSimulator.getMnarData(Graph graph, int numVariablesWithMissing, int numExtraInfluences, double threshold, int numRows) Generates a dataset with Missing Not At a Random (MNAR) data mechanism applied to specific variables in a graph.TsUtils.VarResult.getResiduals()Getter for the fieldresiduals.Embedding.EmbeddedData.originalData()Returns the value of theoriginalDatarecord component.Methods in edu.cmu.tetrad.search.utils with parameters of type DataSetModifier and TypeMethodDescriptionstatic DataSetCreates new time series dataset from the given one with index variable (e.g., time)static DataSetMissingnessIndicatorAdder.addMissingnessIndicators(DataSet dataSet) Adds missingness indicators to a dataset.static DataSetar.static DataSetar2.static MatrixConstructs the centralized Gram matrix for a given vector valued sample.static MatrixConstructs Gram matrix for a given vector valued sample.static DataSetTsUtils.createLagData(DataSet data, int numLags) Creates new time series dataset from the given one (fixed to deal with mixed datasets)static DataSetTsUtils.createShiftedData(DataSet data, int[] shifts) createShiftedData.static DataSetTsUtils.difference(DataSet data, int d) Calculates the dth difference of the given data.static @NotNull Embedding.EmbeddedDataEmbedding.getEmbeddedData(DataSet dataSet, int truncationLimit, int basisType, double basisScale) Computes the embedded data representation based on the provided dataset and parameters.static double[]TsUtils.getSelfLoopCoefs(DataSet timeSeries) getSelfLoopCoefs.static MatrixKernelUtils.incompleteCholeskyGramMatrix(List<Kernel> kernels, DataSet dataset, List<Node> nodes, double precision) Approximates Gram matrix using incomplete Cholesky factorizationvoidKernel.setDefaultBw(DataSet dataset, Node node) Sets bandwidth from data using default methodvoidKernelGaussian.setDefaultBw(DataSet dataset, Node node) Sets bandwidth from data using default methodvoidKernelGaussian.setMedianBandwidth(DataSet dataset, Node node) Sets the bandwidth of the kernel to median distance between two points in the given vectorstatic TsUtils.VarResultTsUtils.structuralVar(DataSet timeSeries, int numLags) structuralVar.static doubleTsUtils.sumOfArCoefficients(DataSet timeSeries, int numLags) sumOfArCoefficients.Constructors in edu.cmu.tetrad.search.utils with parameters of type DataSetModifierConstructorDescriptionConstructs an AD Leaf Tree for the given dataset, without subsampling.Constructs an AD Leaf Tree for the given dataset.DeltaSextadTest(DataSet dataSet) Constructs a test using a given data set.DeltaTetradTest(DataSet dataSet) Constructor for Gaussian data.DeltaTetradTest2(DataSet dataSet) Constructs a test using a given data set.DeltaTetradTest3(DataSet dataSet) Constructor for Gaussian data.Creates an instance of aEmbeddedDatarecord class.FgesOrienter(DataSet dataSet) The data set must either be all continuous or all discrete.KernelGaussian(DataSet dataset, Node node) Creates a new Gaussian kernel using the median distance between points to set the bandwidthTetradTestContinuous(DataSet dataSet, BpcTestType sigTestType, double sig) Constructor for TetradTestContinuous.TetradTestDiscrete(DataSet dataSet, double sig) Constructor for TetradTestDiscrete.Constructs a new result. -
Uses of DataSet in edu.cmu.tetrad.search.work_in_progress
Methods in edu.cmu.tetrad.search.work_in_progress that return DataSetModifier and TypeMethodDescriptionDMSearch.getData()Getter for the fielddata.IndTestCramerT.getData()Deprecated.Retrieves the dataset used in the independence test.IndTestFisherZPercentIndependent.getData()Deprecated.Retrieves the data set from the method.IndTestFisherZRecursive.getData()Deprecated.getData.IndTestMixedMultipleTTest.getData()Deprecated.Returne the original data for the method.IndTestMultinomialLogisticRegression.getData()Retrieves the original data used for the independence test.IndTestPositiveCorr.getData()Deprecated.Retrieve the data set used in the independence test.IndTestSepsetDci.getData()getData.SemBicScoreDeterministic.getDataSet()getDataSet.DataSet[]MixtureModel.getDemixedData()getDemixedData.Methods in edu.cmu.tetrad.search.work_in_progress that return types with arguments of type DataSetModifier and TypeMethodDescriptionIndTestFisherZPercentIndependent.getDataSets()Deprecated.Retrieves the list of data sets.IndTestFisherZRecursive.getDataSets()Deprecated.Returns the datasets for this testIndTestPositiveCorr.getDataSets()Deprecated.Retrieves the data sets used in the independence test.Methods in edu.cmu.tetrad.search.work_in_progress with parameters of type DataSetConstructors in edu.cmu.tetrad.search.work_in_progress with parameters of type DataSetModifierConstructorDescriptionBpcTetradPurifyWashdown(DataSet dataSet, BpcTestType testType, double alpha) Construct the algorithm using a data set.Constructor.Constructor for HbsmsBeam.Constructor for HbsmsGes.IndTestCramerT(DataSet dataSet, double alpha) Deprecated.Constructs a new Independence test which checks independence facts based on the correlation matrix implied by the given data set (must be continuous).IndTestFisherZRecursive(DataSet dataSet, double alpha) Deprecated.Constructs a new Independence test which checks independence facts based on the correlation matrix implied by the given data set (must be continuous).IndTestMixedMultipleTTest(DataSet data, double alpha) Deprecated.Constructor for IndTestMixedMultipleTTest.IndTestMultinomialLogisticRegression(DataSet data, double alpha) Constructor for IndTestMultinomialLogisticRegression.IndTestPositiveCorr(DataSet dataSet, double alpha) Deprecated.Constructs a new Independence test which checks independence facts based on the correlation matrix implied by the given data set (must be continuous).InverseCorrelation(DataSet dataSet, double threshold) Constructor for InverseCorrelation.Deprecated.Constructs a new PC search using for the given dataset.MagCgBicScore(DataSet dataSet) Constructor.MagCgBicScore(DataSet dataSet, boolean precomputeCovariances) Constructor.MagDgBicScore(DataSet dataSet) Constructor.MagDgBicScore(DataSet dataSet, boolean precomputeCovariances) Constructor.MagSemBicScore(DataSet dataSet, boolean precomputeCovariances) Constructor.MixtureModel(DataSet data, double[][] dataArray, double[][] meansArray, double[] weightsArray, Matrix[] variancesArray, double[][] gammaArray) Constructs a mixture model from a mixed data set, a means matrix, a weights array, a variance matrix, and a gamma matrix.Mmhc(IndependenceTest test, DataSet dataSet) Constructor for Mmhc.ProbabilisticMapIndependence(DataSet dataSet) Initializes the test using a discrete data sets.Constructor.Constructor parameters in edu.cmu.tetrad.search.work_in_progress with type arguments of type DataSetModifierConstructorDescriptionIndTestFisherZPercentIndependent(List<DataSet> dataSets, double alpha) Deprecated.Initializes an object of the class IndTestFisherZPercentIndependent. -
Uses of DataSet in edu.cmu.tetrad.sem
Methods in edu.cmu.tetrad.sem that return DataSetModifier and TypeMethodDescriptionSemIm.CyclicSimResult.dataSet()Returns the value of thedataSetrecord component.SemIm.Result.dataSet()Returns the value of thedataSetrecord component.AdditiveAnmSimulator.generate()Generates a synthetic dataset based on the configured directed acyclic graph (DAG) structure using additive noise models.AdditiveNoiseDjl.generateData()Generates synthetic data based on a directed acyclic graph (DAG) with causal relationships and post-nonlinear causal mechanisms.AdditiveNoiseSimulation.generateData()Generates a synthetic dataset by simulating data propagation through a graph with additive noise.AdditiveNoiseSimulationOld.generateData()Generates synthetic data based on a directed acyclic graph (DAG) with causal relationships and post-nonlinear causal mechanisms.GeneralNoiseSimulation.generateData()Generates a dataset based on the causal structure defined by the network's graph.NonlinearFunctionOfLinear.generateData()Generates synthetic data based on a directed acyclic graph (DAG) with causal relationships and post-nonlinear causal mechanisms.PostnonlinearSem.generateData()Generates synthetic data based on the directed acyclic graph (DAG) with post-nonlinear causal mechanisms.DagScorer.getDataSet()Getter for the fielddataSet.Scorer.getDataSet()getDataSet.SemEstimator.getDataSet()Getter for the fielddataSet.GeneralizedSemIm.simulateData(int sampleSize, boolean latentDataSaved) Simulates data based on the given parameters.SemIm.simulateData(int sampleSize, boolean latentDataSaved) Simulates data from the model associated with this object.StandardizedSemIm.simulateData(int sampleSize, boolean latentDataSaved) Simulates data from the model associated with this object.GeneralizedSemIm.simulateDataAvoidInfinity(int sampleSize, boolean latentDataSaved) Simulates data avoiding infinity values.SemIm.simulateDataCholesky(int sampleSize, boolean latentDataSaved) Simulates data from this Sem using a Cholesky decomposition of the implied covariance matrix.GeneralizedSemIm.simulateDataFisher(int sampleSize) Simulates data using the model of R.GeneralizedSemIm.simulateDataFisher(int sampleSize, int intervalBetweenShocks, double epsilon) Simulates data using the model of R.LargeScaleSimulation.simulateDataFisher(double[][] shocks, int intervalBetweenShocks, double epsilon) Simulates data using the model of R.LargeScaleSimulation.simulateDataFisher(int sampleSize) Simulates data using the model of R.LargeScaleSimulation.simulateDataFisher(int intervalBetweenShocks, int intervalBetweenRecordings, int sampleSize, double epsilon, boolean saveLatentVars) simulateDataFisher.GeneralizedSemIm.simulateDataMinimizeSurface(int sampleSize, boolean latentDataSaved) Simulates data by minimizing the surface defined by the given sample size and whether latent data is saved.GeneralizedSemIm.simulateDataNSteps(int sampleSize, boolean latentDataSaved) Simulates data for a given number of steps.GeneralizedSemIm.simulateDataRecursive(int sampleSize, boolean latentDataSaved) This simulates data by picking random values for the exogenous terms and percolating this information down through the SEM, assuming it is acyclic.LargeScaleSimulation.simulateDataRecursive(int sampleSize) This simulates data by picking random values for the exogenous terms and percolating this information down through the SEM, assuming it is acyclic.SemIm.simulateDataRecursive(int sampleSize, boolean latentDataSaved) simulateDataRecursive.LargeScaleSimulation.simulateDataReducedForm(int sampleSize) Simulates data using the model X = (I - B)Y^-1 * e.SemIm.simulateDataReducedForm(int sampleSize, boolean latentDataSaved) simulateDataReducedForm.StandardizedSemIm.simulateDataReducedForm(int sampleSize, boolean latentDataSaved) simulateDataReducedForm.Methods in edu.cmu.tetrad.sem with parameters of type DataSetModifier and TypeMethodDescriptionGeneralizedSemEstimator.estimate(GeneralizedSemPm pm, DataSet data) Maximizes likelihood equation by equation.reidentifyVariables2.voidSemIm.setDataSet(DataSet dataSet) Calculates the covariance matrix of the given DataSet and sets the sample covariance matrix for this model to a subset of it.Constructors in edu.cmu.tetrad.sem with parameters of type DataSetModifierConstructorDescriptionCyclicSimResult(DataSet dataSet, SemIm semIm) Creates an instance of aCyclicSimResultrecord class.Constructs a new SemEstimator that uses the specified optimizer.Result(IndTestFisherZ.ShrinkageMode shrinkageMode, DataSet dataSet, int N, SemIm im) Creates an instance of aResultrecord class.SemEstimator(DataSet dataSet, SemPm semPm) Constructs a Sem Estimator that does default estimation.SemEstimator(DataSet dataSet, SemPm semPm, SemOptimizer semOptimizer) Constructs a new SemEstimator that uses the specified optimizer. -
Uses of DataSet in edu.cmu.tetrad.simulation
Methods in edu.cmu.tetrad.simulation that return DataSetModifier and TypeMethodDescriptionHsim.hybridsimulate()hybridsimulate.HsimContinuous.hybridsimulate()hybridsimulate.Methods in edu.cmu.tetrad.simulation with parameters of type DataSetModifier and TypeMethodDescriptionstatic VerticalIntDataBoxHsimUtils.makeVertIntBox(DataSet dataset) makeVertIntBox.voidGdistanceRandom.setLocationMap(DataSet map) Setter for the fieldlocationMap.Constructors in edu.cmu.tetrad.simulation with parameters of type DataSetModifierConstructorDescriptionConstructor for Gdistance.GdistanceRandom(DataSet inMap) Constructor for GdistanceRandom.Constructor for Hsim.Constructor for HsimAutoC.HsimAutoRun(DataSet indata) Constructor for HsimAutoRun.HsimContinuous(Dag thedag, Set<Node> thesimnodes, DataSet thedata) Constructor for HsimContinuous.HsimRepeatAC(DataSet indata) Constructor for HsimRepeatAC.HsimRepeatAutoRun(DataSet indata) Constructor for HsimRepeatAutoRun.Vicinity(List<Edge> edges, DataSet locationMap, int xLow, int xHigh, int yLow, int yHigh, int zLow, int zHigh, double xDist, double yDist, double zDist) Constructor for Vicinity. -
Uses of DataSet in edu.cmu.tetrad.util
Methods in edu.cmu.tetrad.util that return DataSet -
Uses of DataSet in edu.pitt.csb.mgm
Methods in edu.pitt.csb.mgm that return DataSetModifier and TypeMethodDescriptionIndTestMultinomialLogisticRegressionWald.getData()Retrieves the original dataset used for the independence test.Constructors in edu.pitt.csb.mgm with parameters of type DataSetModifierConstructorDescriptionIndTestMultinomialLogisticRegressionWald(DataSet data, double alpha, boolean preferLinear) Constructs a new instance of IndTestMultinomialLogisticRegressionWald with the specified parameters. -
Uses of DataSet in edu.pitt.csb.stability
Methods in edu.pitt.csb.stability with parameters of type DataSet -
Uses of DataSet in edu.pitt.dbmi.algo.bayesian.constraint.search
Constructors in edu.pitt.dbmi.algo.bayesian.constraint.search with parameters of type DataSet