Class CovNoise

java.lang.Object
jgpml.covariancefunctions.CovNoise
All Implemented Interfaces:
CovarianceFunction

public class CovNoise extends Object implements CovarianceFunction
Independent covariance function, ie "white noise", with specified variance. The covariance function is specified as:

k(x^p,x^q) = s2 * \delta(p,q)

where s2 is the noise variance and \delta(p,q) is a Kronecker delta function which is 1 iff p=q and zero otherwise. The hyperparameter is

[ log(sqrt(s2)) ]

  • Constructor Summary

    Constructors
    Constructor
    Description
    Creates a new CovNoise CovarianceFunction
  • Method Summary

    Modifier and Type
    Method
    Description
    Jama.Matrix
    compute(Jama.Matrix loghyper, Jama.Matrix X)
    Compute covariance matrix of a dataset X
    Jama.Matrix[]
    compute(Jama.Matrix loghyper, Jama.Matrix X, Jama.Matrix Xstar)
    Compute compute test set covariances
    Jama.Matrix
    computeDerivatives(Jama.Matrix loghyper, Jama.Matrix X, int index)
    Coompute the derivatives of this CovarianceFunction with respect to the hyperparameter with index idx
    int
    Returns the number of hyperparameters of CovSEard

    Methods inherited from class java.lang.Object

    clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
  • Constructor Details

    • CovNoise

      public CovNoise()
      Creates a new CovNoise CovarianceFunction
  • Method Details

    • numParameters

      public int numParameters()
      Returns the number of hyperparameters of CovSEard
      Specified by:
      numParameters in interface CovarianceFunction
      Returns:
      number of hyperparameters
    • compute

      public Jama.Matrix compute(Jama.Matrix loghyper, Jama.Matrix X)
      Compute covariance matrix of a dataset X
      Specified by:
      compute in interface CovarianceFunction
      Parameters:
      loghyper - column Matrix of hyperparameters
      X - input dataset
      Returns:
      K covariance Matrix
    • compute

      public Jama.Matrix[] compute(Jama.Matrix loghyper, Jama.Matrix X, Jama.Matrix Xstar)
      Compute compute test set covariances
      Specified by:
      compute in interface CovarianceFunction
      Parameters:
      loghyper - column Matrix of hyperparameters
      X - input dataset
      Xstar - test set
      Returns:
      [K(Xstar, Xstar) K(X,Xstar)]
    • computeDerivatives

      public Jama.Matrix computeDerivatives(Jama.Matrix loghyper, Jama.Matrix X, int index)
      Coompute the derivatives of this CovarianceFunction with respect to the hyperparameter with index idx
      Specified by:
      computeDerivatives in interface CovarianceFunction
      Parameters:
      loghyper - hyperparameters
      X - input dataset
      index - hyperparameter index
      Returns:
      Matrix of derivatives