Package jgpml.covariancefunctions
Class CovNoise
java.lang.Object
jgpml.covariancefunctions.CovNoise
- All Implemented Interfaces:
CovarianceFunction
Independent covariance function, ie "white noise", with specified variance. The covariance function is specified as:
k(x^p,x^q) = s2 * \delta(p,q)
where s2 is the noise variance and \delta(p,q) is a Kronecker delta function which is 1 iff p=q and zero otherwise. The hyperparameter is
[ log(sqrt(s2)) ]
-
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptionJama.Matrixcompute(Jama.Matrix loghyper, Jama.Matrix X) Compute covariance matrix of a dataset XJama.Matrix[]compute(Jama.Matrix loghyper, Jama.Matrix X, Jama.Matrix Xstar) Compute compute test set covariancesJama.MatrixcomputeDerivatives(Jama.Matrix loghyper, Jama.Matrix X, int index) Coompute the derivatives of thisCovarianceFunctionwith respect to the hyperparameter with indexidxintReturns the number of hyperparameters ofCovSEard
-
Constructor Details
-
CovNoise
public CovNoise()Creates a newCovNoise CovarianceFunction
-
-
Method Details
-
numParameters
public int numParameters()Returns the number of hyperparameters ofCovSEard- Specified by:
numParametersin interfaceCovarianceFunction- Returns:
- number of hyperparameters
-
compute
public Jama.Matrix compute(Jama.Matrix loghyper, Jama.Matrix X) Compute covariance matrix of a dataset X- Specified by:
computein interfaceCovarianceFunction- Parameters:
loghyper- columnMatrixof hyperparametersX- input dataset- Returns:
- K covariance
Matrix
-
compute
public Jama.Matrix[] compute(Jama.Matrix loghyper, Jama.Matrix X, Jama.Matrix Xstar) Compute compute test set covariances- Specified by:
computein interfaceCovarianceFunction- Parameters:
loghyper- columnMatrixof hyperparametersX- input datasetXstar- test set- Returns:
- [K(Xstar, Xstar) K(X,Xstar)]
-
computeDerivatives
public Jama.Matrix computeDerivatives(Jama.Matrix loghyper, Jama.Matrix X, int index) Coompute the derivatives of thisCovarianceFunctionwith respect to the hyperparameter with indexidx- Specified by:
computeDerivativesin interfaceCovarianceFunction- Parameters:
loghyper- hyperparametersX- input datasetindex- hyperparameter index- Returns:
Matrixof derivatives
-