Package jgpml.covariancefunctions
Class CovLINone
java.lang.Object
jgpml.covariancefunctions.CovLINone
- All Implemented Interfaces:
CovarianceFunction
Linear covariance function with a single hyperparameter. The covariance function is parameterized as:
k(x^p,x^q) = x^p'*inv(P)*x^q + 1./t2;
where the P matrix is t2 times the unit matrix. The second term plays the role of the bias. The hyperparameter is:
[ log(sqrt(t2)) ]
-
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptionJama.Matrix
compute
(Jama.Matrix loghyper, Jama.Matrix X) Compute covariance matrix of a dataset XJama.Matrix[]
compute
(Jama.Matrix loghyper, Jama.Matrix X, Jama.Matrix Xstar) Compute compute test set covariancesJama.Matrix
computeDerivatives
(Jama.Matrix loghyper, Jama.Matrix X, int index) Coompute the derivatives of thisCovarianceFunction
with respect to the hyperparameter with indexidx
static void
int
Returns the number of hyperparameters of thisCovarianceFunction
-
Constructor Details
-
CovLINone
public CovLINone()
-
-
Method Details
-
main
-
numParameters
public int numParameters()Returns the number of hyperparameters of thisCovarianceFunction
- Specified by:
numParameters
in interfaceCovarianceFunction
- Returns:
- number of hyperparameters
-
compute
public Jama.Matrix compute(Jama.Matrix loghyper, Jama.Matrix X) Compute covariance matrix of a dataset X- Specified by:
compute
in interfaceCovarianceFunction
- Parameters:
loghyper
- columnMatrix
of hyperparametersX
- input dataset- Returns:
- K covariance
Matrix
-
compute
public Jama.Matrix[] compute(Jama.Matrix loghyper, Jama.Matrix X, Jama.Matrix Xstar) Compute compute test set covariances- Specified by:
compute
in interfaceCovarianceFunction
- Parameters:
loghyper
- columnMatrix
of hyperparametersX
- input datasetXstar
- test set- Returns:
- [K(Xstar, Xstar) K(X,Xstar)]
-
computeDerivatives
public Jama.Matrix computeDerivatives(Jama.Matrix loghyper, Jama.Matrix X, int index) Coompute the derivatives of thisCovarianceFunction
with respect to the hyperparameter with indexidx
- Specified by:
computeDerivatives
in interfaceCovarianceFunction
- Parameters:
loghyper
- hyperparametersX
- input datasetindex
- hyperparameter index- Returns:
Matrix
of derivatives
-