Package jgpml.covariancefunctions
Class CovLINard
java.lang.Object
jgpml.covariancefunctions.CovLINard
- All Implemented Interfaces:
CovarianceFunction
Linear covariance function with Automatic Relevance Determination (ARD). The covariance function is parameterized
as:
k(x^p,x^q) = x^p'*inv(P)*x^q
where the P matrix is diagonal with ARD parameters ell_1^2,...,ell_D^2, where D is the dimension of the input space. The hyperparameters are:
[ log(ell_1)
log(ell_2)
.
log(ell_D) ]
Note that there is no bias term; use covConst to add a bias.
-
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptionJama.Matrixcompute(Jama.Matrix loghyper, Jama.Matrix X) Compute covariance matrix of a dataset XJama.Matrix[]compute(Jama.Matrix loghyper, Jama.Matrix X, Jama.Matrix Xstar) Compute compute test set covariancesJama.MatrixcomputeDerivatives(Jama.Matrix loghyper, Jama.Matrix X, int index) Coompute the derivatives of thisCovarianceFunctionwith respect to the hyperparameter with indexidxstatic voidintReturns the number of hyperparameters of thisCovarianceFunction
-
Constructor Details
-
CovLINard
public CovLINard(int inputDimension) Creates a newCovSEard CovarianceFunction- Parameters:
inputDimension- muber of dimension of the input
-
-
Method Details
-
main
-
numParameters
public int numParameters()Returns the number of hyperparameters of thisCovarianceFunction- Specified by:
numParametersin interfaceCovarianceFunction- Returns:
- number of hyperparameters
-
compute
public Jama.Matrix compute(Jama.Matrix loghyper, Jama.Matrix X) Compute covariance matrix of a dataset X- Specified by:
computein interfaceCovarianceFunction- Parameters:
loghyper- columnMatrixof hyperparametersX- input dataset- Returns:
- K covariance
Matrix
-
compute
public Jama.Matrix[] compute(Jama.Matrix loghyper, Jama.Matrix X, Jama.Matrix Xstar) Compute compute test set covariances- Specified by:
computein interfaceCovarianceFunction- Parameters:
loghyper- columnMatrixof hyperparametersX- input datasetXstar- test set- Returns:
- [K(Xstar, Xstar) K(X,Xstar)]
-
computeDerivatives
public Jama.Matrix computeDerivatives(Jama.Matrix loghyper, Jama.Matrix X, int index) Coompute the derivatives of thisCovarianceFunctionwith respect to the hyperparameter with indexidx- Specified by:
computeDerivativesin interfaceCovarianceFunction- Parameters:
loghyper- hyperparametersX- input datasetindex- hyperparameter index- Returns:
Matrixof derivatives
-