Package edu.cmu.tetrad.search.score
Class GicScores
java.lang.Object
edu.cmu.tetrad.search.score.GicScores
- All Implemented Interfaces:
Score
Implements scores motivated by the Generalized Information Criterion (GIC) approach as given in Kim et al. (2012).
Kim, Y., Kwon, S., & Choi, H. (2012). Consistent model selection criteria on high dimensions. The Journal of Machine Learning Research, 13(1), 1037-1057.
As for all scores in Tetrad, higher scores mean more dependence, and negative scores indicate independence.
- Author:
- josephramsey
-
Nested Class Summary
Nested ClassesModifier and TypeClassDescriptionstatic enumGives the options for the rules to use for calculating the scores. -
Constructor Summary
ConstructorsConstructorDescriptionConstructs the score using a covariance matrix.GicScores(ICovarianceMatrix covariances) Constructs the score using a covariance matrix. -
Method Summary
Modifier and TypeMethodDescriptionbooleandetermines(List<Node> z, Node y) Specialized scoring method for a single parent.intdoubleintThe sample size of the data.The variables of the score.booleanisEffectEdge(double bump) booleandoublelocalScore(int i, int... parents) The score of a node given its parents.doublelocalScoreDiff(int x, int y, int[] z) voidsetLambda(double lambda) voidsetPenaltyDiscount(double penaltyDiscount) voidsetRuleType(GicScores.RuleType ruleType) voidsetVariables(List<Node> variables) voidsetVerbose(boolean verbose) Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitMethods inherited from interface edu.cmu.tetrad.search.score.Score
append, getVariable, localScore, localScore, localScoreDiff, toString
-
Constructor Details
-
GicScores
Constructs the score using a covariance matrix. -
GicScores
Constructs the score using a covariance matrix.
-
-
Method Details
-
localScoreDiff
public double localScoreDiff(int x, int y, int[] z) - Specified by:
localScoreDiffin interfaceScore
-
localScore
public double localScore(int i, int... parents) Description copied from interface:ScoreThe score of a node given its parents.- Specified by:
localScorein interfaceScore- Parameters:
i- The node.parents- The parents.- Returns:
- The score.
-
getCovariances
Specialized scoring method for a single parent. Used to speed up the effect edges search. -
getSampleSize
public int getSampleSize()Description copied from interface:ScoreThe sample size of the data.- Specified by:
getSampleSizein interfaceScore- Returns:
- This size.
-
isEffectEdge
public boolean isEffectEdge(double bump) - Specified by:
isEffectEdgein interfaceScore
-
getDataSet
-
isVerbose
public boolean isVerbose() -
setVerbose
public void setVerbose(boolean verbose) -
getVariables
Description copied from interface:ScoreThe variables of the score.- Specified by:
getVariablesin interfaceScore- Returns:
- This list.
-
setVariables
-
getMaxDegree
public int getMaxDegree()- Specified by:
getMaxDegreein interfaceScore
-
determines
- Specified by:
determinesin interfaceScore
-
setRuleType
-
setLambda
public void setLambda(double lambda) -
getPenaltyDiscount
public double getPenaltyDiscount() -
setPenaltyDiscount
public void setPenaltyDiscount(double penaltyDiscount)
-